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Acoular is an open source object-oriented Python package for microphone array data processing. It sup-
ports various methods for sound source characterization and mapping. The background of these methods,
which rely on synchronously captured microphone signals, is shortly introduced, and the requirements
for a software that implements these methods are discussed. The object-oriented design based on
Python allows for easy-to-use scripting and graphical user interfaces, the practical combination with
other data handling and scientific computing libraries, and the possibility to extend the software by
implementing new processing methods with minimal effort. Built-in result caching and fast C++ based
parallelized implementation of core routines is explained. Together with data handling procedures that
can accommodate the huge amounts of measured data needed, this makes the application of Acoular
to industrial-scale problems possible. Basic examples of Acoular use and extension are given.
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1. Introduction

The design of low-noise machinery and vehicles requires ana-
lyzing the sources of sound. Information on the characteristics of
any sound sources is necessary to find measures to reduce the gen-
eration of sound or its propagation. This includes the location and
strength of the sources as well as their frequency content. Often,
this information is only available through experimental analysis,
either on the machine or vehicle itself or on specially designed lab-
oratory setups of noise generating machinery parts. The necessary
acoustical measurements can generally be performed using stan-
dard equipment such as a microphone, sound level meter or ana-
lyzer. However, this approach makes it difficult to reliably
characterize sound sources in the case of multiple sound sources,
which is a very common scenario.

In such a case, the results are dominated by the strongest source
and expensive experimental procedures are needed to get separate
results for each source. One solution for this problem is the appli-
cation of a microphone array, where a number – some ten to some
hundred – of microphones is used simultaneously to characterize
multiple sound sources at the same time. This is done by comput-
ing acoustic source maps (often referred to as acoustic pho-
tographs) from the output signals of the microphones. Then,
location, strength, and spectrum of the sources can be estimated
from these maps.

A number of different methods are available for the computa-
tion of acoustic source maps. These methods either rely on the
direct simultaneous processing of a large number of time-
dependent microphone signals, or they perform the computation
in the frequency domain after having transformed the signals
accordingly into cross power spectra. Both kinds of methods are
computationally demanding and require considerable computer
resources. Some of the methods need to solve huge systems of
equations, while others need to deal with large-scale optimization
problems. The methods have different properties and deliver
results of different kind and quality. Depending on the specific
acoustic source characterization task, different methods may be
appropriate. Consequently, the practical application of microphone
arrays benefits from the uncomplicated availability of different
methods.

While a larger number of publications on the methods them-
selves is available, the implementation of the methods is less often
discussed. To the knowledge of the authors, no software is publicly
available to date that implements more than a few of these meth-
ods. The available commercial software products are generally
bound to a specific vendor’s measuring and data acquisition hard-
ware. Moreover, available software codes are not focused on the
extensibility with new or modified methods.

The present contribution introduces Acoular, an open source
Python library [1] that was published under the terms of the
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new BSD license and is available for all major operating systems.
The library is aimed at applications in acoustic testing where
sources of sound need to be characterized. Its design is object-
oriented and it is intended to be easily extensible with the incorpo-
ration of new methods. Further design goals are computational
efficiency and easy application. This concept makes it possible to
apply the library for education and for research on methods for
sound source characterization. Further, Acoular can be used to effi-
ciently handle applications of industrial size, where larger num-
bers of measurements need to be analyzed.

The remainder of the paper is organized as follows. First, the
theoretical background of the microphone array methods imple-
mented in Acoular is briefly introduced. Second, the object-
oriented design and operation of Acoular is addressed. Third, the
application of Acoular is demonstrated using some examples.
Finally, it is explained how a new method can be introduced into
Acoular.
2. Background

Consider the scenario shown in Fig. 1, where a microphone
array consisting of N microphones is used to analyze a sound field
that is produced by an arbitrary number of sound sources. The
sound will need a certain time Dsmn to travel from source m to
microphone n, and its amplitude will be changed by a certain factor
amn. Both will depend on the distance between source and micro-
phone and other factors such as the speed of sound and presence
of flow. Because linear superposition can be assumed, the sound
pressure at the microphone is the sum of contributions from all
sources:

pnðtÞ ¼
X
m

amnqmðt � DsmnÞ: ð1Þ

The quantity qm stands for a measure of source strength such as the
flux of a monopole source. As long as both source strength and posi-
tion of the sources are known, the calculation of all pn is straightfor-
ward. The characterization of sound sources frommicrophone array
measurements represents the inverse problem: to estimate the
source strength and position of the sources from the measured pn.

One possibility to achieve this is to calculate a weighted sum of
the delayed and attenuated microphone signals, as shown in Fig. 1:

pm ¼
X
n

hmnpnðt þ DtmnÞ: ð2Þ

Here, the idea is to choose hmn and Dtmn in such a way that the out-
put pout will contain the signal qm from source m while any other
source signals will be suppressed as much as possible. This can be
seen as a spatial filter, and there are a number of options to
Fig. 1. Working principle of b
calculate the filter coefficients hmn and Dtmn [2] from amn and smn.
Because of the calculation procedure in (2), this approach is called
Delay-and-Sum Beamforming. The characterization of multiple
sources with unknown positions is possible when the procedure
is applied for each possible source position in a grid of source posi-
tions (see Fig. 1) in turn. In order to get an acoustic photograph, it is
then convenient to calculate the power hp2

outiT over a certain time
interval T and map this quantity onto the grid. This can be done
for arbitrary kinds of grids including such that are irregular or
three-dimensional.

The principle from (2) can be extended in many different ways.
Instead of using fixed filter coefficients that depend on the sound
propagation model only, it is possible to use variable coefficients
that adapt the spatial filter and depend also on the signals pn them-
selves [3]. Another option, that can be used if the sound sources are
moving on a known trajectory, is to treat the filter coefficients as
functions of time [4,5]. Very often (2) is combined with subsequent
frequency filtering. With a bandpass filter applied for each fre-
quency band of interest, the method then also allows to estimate
the frequency spectrum of the sound sources. In a practical appli-
cation the microphone signals are containing additional noise not
originating from the sound sources. The influence of this noise on
the result can be considerably reduced by the following modifica-
tion of (2):

p2
mðtÞ¼max

X
n
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Besides Delay-and-Sum Beamforming in the time domain, a
second possibility to estimate the source strength and position of
the sources from the measured pn is analysis in the frequency
domain. To this end, the cross spectral matrix of the microphone
signals is estimated using Welch’s method [6]. All microphone sig-
nals are partitioned into nd blocks of a certain number of samples.
These blocks are then Fourier-transformed. An estimate of a matrix
containing the N2 cross power spectra of all possible pairs of micro-
phones is then

Gðf kÞ ¼ 2
1
ndT

Xnd
i¼1

piðf kÞp�
i ðf kÞ; ð4Þ

where pðf kÞ denotes the vector of the values of the Fourier-
transform at the frequency f k for all microphone signals. The cross
spectral matrix G can then be used as a basis to perform the spatial
filtering in frequency domain:

p2
m ¼ hH

mGhm: ð5Þ
eamforming algorithms.
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The complex-valued steering vectors hm now contain the hmn and
Dtmn transformed into frequency domain and H stands for the her-
mitian transpose. While this is fully equivalent to (2), it allows for a
generally more efficient calculation of frequency-dependent acous-
tic source maps. The steering vector hm has to be computed again
for each possible source position, but G needs to be computed only
once. More important, the frequency domain approach is the basis
for a number of more advanced methods. Among those are methods
that make use of an eigen-decomposition of the cross spectral
matrix and process the noise space [7] or work with individual
eigenvalue/eigenvector pairs separately [8].

Both time and frequency domain spatial filters have imperfec-
tions that lead to imperfect acoustic source maps with blurred
mappings that may also contain ‘ghost’ images of actual sources.
In many practical situations, this makes it impossible to obtain
an accurate source characterization from that approach. A group
of methods (e.g. [9–12]) aim to remove the influence of filter
imperfections from the source maps. Because the imperfect maps
can be seen as a possibly multidimensional convolution of the per-
fect map with a point spread function that contains the filter
imperfections, these methods are referred to as deconvolution
methods. Deconvolution methods are computationally demanding,
with some methods having very high computational cost.

The last group of methods to be mentioned here attempts to
solve the inverse problem

G ¼ ADAH ð6Þ

directly, where G is the known cross spectral matrix, A is a matrix of
the dimension N �M that contains the transfer functions from each
of the M possible sources to each of the microphones and D is a
diagonal matrix containing the unknown source powers. This is
effectively the same as the model in (1). The methods (e.g. [13–
15]) dealing with that problem do so without spatial filtering, but
apply different solution strategies for the inverse problem that pre-
fer sparse solutions, where only few of the possible source positions
are actually occupied by sources.

A great number of further methods are not mentioned here, but
do also fall in one of the categories: time domain approach filter
methods, frequency domain filter methods, deconvolution meth-
ods or inverse methods. It is obvious that the methods must have
some computing steps and requirements in common. Once imple-
mented for a certain method, these steps and requirements may be
reused for other methods.

3. Design and operation

The design of Acoular is based on some requirements that are
identified and briefly discussed here.

1. There are already many different methods for microphone array
data analysis available. They may be improved, and new meth-
ods may be developed in the future. It is desirable to take
advantage of these improved and new methods with minimal
effort. Thus, the implementation of new features and methods
should reuse as much as possible of the existing code. One
way to make that possible is the use of an object-oriented
design approach, as detailed below.

2. Practical applications require the use of further software such
as plotting and reporting, database storage or data acquisition
tools. Easy integration of the analysis of microphone array data
with these tools is important and enables complex applications
such as the automated processing of multiple measurements.
This is supported by using a script language such as Python,
with bindings to many efficient data handling and scientific
computing libraries available.
3. The user interface should hide implementation details and
allow the simple application of the library within user-
generated scripts. Thus, at least the interface should be written
in an easy to use script language. This is also addressed by using
Python.

4. A microphone array measurement may produce huge amounts
of data. For example, an array of 64 microphones with the out-
put signals sampled at a rate of 102.4 kHz and digitized as 32 bit
floating point number produces 25 MByte of data per second.
For a measurement duration of some minutes this already
amounts to some Gigabytes. Consequently, the software should
be able to handle input data of such size. Because the data could
possibly not fit into the main memory, the software design
should be capable to work out-of-core. All algorithms are there-
fore implemented to sequentially process chunks of the data
only that fit into the main memory.

5. Depending on the algorithm and data, the computations neces-
sary can be costly and take a lot of time. It should therefore be
possible to use efficient and fast implementations of the time-
consuming part of the algorithms and to work on multiple cores
in parallel. Besides the use of relatively slow Python for the
majority of the code, core parts of the algorithms are imple-
mented in C++ and optimized for speed. Parallelism is realized
using OpenMP.

6. Also because of the necessary computational effort, it is sensible
to allow the reuse of intermediate and final results. A caching
mechanism is therefore implemented that provides the
persistence of results between individual runs and makes it
unnecessary to repeat computations that were already done
before.

7. Computations not necessary for the final result should be
avoided because of the computational effort. To this end, a lazy
evaluation paradigm was used that triggers a computation or
data fetching process only when the result is actually needed.

8. Because some intended applications require frequent user
interaction, the software should support the access to a graph-
ical user interface. This requires to provide all information
through the interface that is necessary to edit any parameters
in a graphical user interface. Acoular makes use of the
Enthought Traits library [16], that allows to define a graphical
user interface for each object by simply specifying the type of
the editable attributes.

The basic design principle of Acoular is to implement all micro-
phone array methods based on a set of common building blocks.
For each of these building blocks, a common interface is defined
using a base class to define its interface. Then, different algorithms
or sub-methods are implemented in subclasses derived from the
base class. This design principle is also known as Strategy pattern
[17]. The main classes and their relations are shown in Fig. 2. Some
of these classes are abstract classes that do not implement actual
algorithms, but only the interface.

A class derived from SamplesGenerator implements a mecha-
nism to provide the sampled microphone data time histories. This
mechanism uses the Iterator strategy [17] to be able to deal with
huge, practically infinite time histories. The SamplesGenerator
interface exhibits a Python generator representing an external iter-
ator that produces blocks of data with a limited number of samples
at a time. Current implementations of SamplesGenerator do either
process stored data from measurements or data that is produced
by Acoular itself. For the latter, Acoular contains a facility to simu-
late multiple sound source scenarios not detailed here for the sake
of brevity.

Possible clients for the generator in the SamplesGenerator
interface are instances of a subclass of TimeInOut or of the class
PowerSpectra and its subclasses. TimeInOut defines an interface



Fig. 2. UML class diagram showing the relation of main Acoular classes.
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for a class that implements any form of processing the microphone
signals in time domain. While it acts as a client consuming the data
provided by a SamplesGenerator instance, it also provides the
same generator interface as SamplesGenerator. This way, it is pos-
sible to chain a number of instances of TimeInOut subclasses to
realize different subsequent operations on the data. Besides filter-
ing, squaring and averaging, Acoular also implements time domain
beamforming using a subclass derived from TimeInOut. Fig. 3
shows an example for a chain of TimeInOut objects performing
Delay-and-Sum Beamforming, frequency filtering, power calcula-
tion and block-wise averaging to compute a time-dependent
acoustic mapping or ‘acoustic movie’. More classes are available
that implement not only (2), but also (3) as well as time dependent
steering vectors.

The class PowerSpectra and its subclasses compute the cross
spectral matrix G. Objects of this type have to consume the com-
plete multichannel time history that is provided by a SamplesGen-
erator instance before the result is available. This result is then
used by an instance of BeamformerBase or a subclass to compute
the resulting map of sound sources using a variant of (5), a decon-
volution method or an inverse method solving (6).

All methods that compute acoustic source maps in either time
or frequency domain need some additional information. First, the
propagation model necessary to compute smn and amn in (1) is
provided by the class Environment. Sound propagation in
quiescent media, uniform and arbitrary flow is handled by
subclasses. Second, the coordinates of the microphones are
provided by the class MicGeom or specialized subclasses of it.
Third, the Grid class provides the coordinates of all points or
possible sound sources that should be considered in the source
map. Subclasses are available for rectangular two- and three-
dimensional grids.

Some methods do need additional information, such as the tra-
jectory in case of moving sources. This information is also provided
using specialized classes not detailed here. Table 1 shows an over-
view of all classes available in Acoular and a short description of
their functionality.
Fig. 3. Example for a chain of objects that are instances of TimeInOut subclasses, w
4. Examples

4.1. Three monopole sound sources

The first example uses a planar 64-microphone array with an
aperture of 38 cm (see Fig. 4) to analyze the sound produced by
three monopole sources with different strengths (Table 2). The
input data for the analysis are the (synthesized) sampled time his-
tories for the sound pressure at all microphone locations, stored in
an HDF5 [18] file. In order to do the analysis and produce a source
map of the three sources, the time histories have to be read and
used to compute the cross spectral matrix. Afterwards, beamform-
ing is to be applied to produce results on a previously defined grid.
The location of the microphones also needs to be known. As
explained before, all necessary information for the computation
is provided by instances of the classes (objects) defined in Acoular.

The following Python script assembles the objects needed to
perform beamforming in the frequency domain for the example
case:

1 import acoular as ac

2 ts = ac. TimeSamples( name = ’three_sources.h5’ )
3 ps = ac. PowerSpectra( time_data = ts, block_size = 128,

window = ’Hanning’, overlap = ’50%’ )
4 mg = ac. MicGeom( from_file = ’array_64.xml’ )
5 rg = ac. RectGrid( x_min = �0.2, x_max = 0.2, y_min = �0.2,

y_max = 0.2, z = 0.3, increment = 0.01 )

6 bb = ac. BeamformerBase( freq_data = ps, mpos = mg,

grid = rg, c = 343.0 )

Here, after importing Acoular into Python, the source of the
input data is specified by instantiating a TimeSamples object and
giving the name of the HDF5 file. Then, the parameters for the cal-
culation of the cross spectral matrix are set by creating a
PowerSpectra object that also knows about the previously defined
TimeSamples object as a source of the microphone time histories.
orking on multichannel time histories that may have thousands of channels.



Table 1
Classes in Acoular, indentation indicates subclasses.

Class Description

SamplesGenerator Base class for any signal generating block
TimeSamples Container for time data in ⁄.h5 format
MaskedTimeSamples . . .with sample and channel masking

facilities
PointSource Defines a fixed point source with an

arbitrary signal
MovingPointSource . . .for a source moving along a given

trajectory
TimeInOut Base class for any time domain signal

processing block
Mixer Mixes the signals from several sources
TimePower Calculates time-depended power of the

signal
TimeAverage Calculates time-depended average of the

signal
TimeReverse Calculates the time-reversed signal of a

source
FiltFiltOctave Octave or third-octave filter with zero

phase delay
FiltOctave Octave or third-octave filter (non-zero

phase delay)
TimeCache Caches time signal in cache file
WriteWAV Saves time signal as mono/stereo/multi-

channel ⁄.wav
WriteH5 Saves time signal as ⁄.h5 file
BeamformerTime Basic time domain beamformer
BeamformerTimeTraj Time domain beamformer for moving grid
BeamformerTimeSq Time domain beamformer with possible

autopower removal
BeamformerTimeSqTraj . . .for moving grid

IntegratorSectorTime Integrator in the time domain
PowerSpectra Provides the cross spectral matrix of

multichannel time data
EigSpectra Provides the eigendecomposition of cross

spectral matrix
BeamformerBase Basic beamforming in the frequency

domain
BeamformerFunctional Functional beamforming
BeamformerCapon Beamforming using the Capon

(Mininimum Variance) algorithm
BeamformerEig Beamforming using eigenvalue and

eigenvector techniques
BeamformerMusic Beamforming using the MUSIC algorithm

BeamformerClean CLEAN deconvolution
BeamformerDamas DAMAS deconvolution
BeamformerOrth Orthogonal beamforming deconvolution
BeamformerCleansc CLEAN-SC deconvolution
BeamformerCMF Covariance Matrix Fitting

PointSpreadFunction Point spread function for CLEAN and
DAMAS

Environment A simple acoustic environment without
flow

UniformFlowEnvironment An acoustic environment with uniform
flow

GeneralFlowEnvironment An acoustic environment with a generic
flow field

FlowField An abstract base class for a spatial flow
field

OpenJet Analytical approximation of the flow field
of an open jet

MicGeom Provides coordinates of microphones in
the array

Grid Base class for grid geometries
RectGrid Provides a cartesian 2D grid for the

beamforming results
RectGrid3D Provides a cartesian 3D grid for the

beamforming results
Calib Container for calibration data in ⁄.xml

format
SignalGenerator Virtual base class for a simple one-channel

signal generator
WNoiseGenerator White noise signal generator
SineGenerator Sine signal generator with adjustable

frequency and phase
Trajectory Describes a trajectory from sampled points

Fig. 4. Layout of the 64 microphones in the array.

Table 2
Location relative to the array center and strength of the three sources given as rms
sound pressure in the array center.

Source Location Rms sound pressure

1 (�0.1, �0.1, 0.3) m 1 Pa
2 (0.15, 0, 0.3) m 0.7 Pa
3 (0, 0.1, 0.3) m 0.5 Pa
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Both the microphone locations as well as the extent and the reso-
lution of the grid of possible source positions are defined by instan-
tiating a MicGeom and a RectGrid object, respectively. Then, the
kind of analysis is chosen to be basic beamforming by creating a
BeamformerBase object, and the speed of sound is given along with
the previously defined PowerSpectra, MicGeom and RectGrid
objects. Consequently, the BeamformerBase object has all the
information needed for the computation. However, up to here, no
actual computation is performed. The processing starts only when
a result is really needed. In this example the map for the 8 kHz
third-octave band is requested by the next line where a member
function of the BeamformerBase object is called that returns the
result for the 8 kHz third-octave band computed from all FFT lines
within that band:

7 pm = bb.synthetic( 8000, 3 )

With this and without any further explicit command, the fetch-
ing of input data from the HDF5 file is triggered, followed by the
computation of the cross spectral matrix and the subsequent com-
putation of the acoustic source map. With the help of a Python
plotting library such as Matplotlib [19] the result stored in the vari-
able pm can be used to produce Fig. 5. For the sake of brevity, the
respective lines in the script are omitted here (there is no
Acoular-specific code). Fig. 5 shows an acoustic source map with
the three different sources, blurred due to the imperfection of
the spatial beamforming filter.

If now the same analysis shall be performed for different input
data, it is not necessary to repeat all the above steps and define a
new object. Instead, only the input file name in the TimeSamples
object has to be changed. So, it takes only



Fig. 5. Acoustic source map of three different sources from the example.
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8 ts.name = ’two_sources.h5’
9 pm = bb.synthetic( 8000, 3 )

to trigger the fetching and subsequent processing of that data. In
this example, a different input data file is given that contains the
time histories when only the first two sources from Table 2 are
active. The resulting image then shows only two sources (Fig. 6).

The first time the script is executed, the input data is processed
and the computations are actually performed. Both the intermedi-
ate (cross spectral matrix) and the final result (acoustic source
map) are saved to a persistent hard disk cache. On subsequent runs
of the script, only the results that are needed are read from that
cache, and computations are not repeated. While this saves only
some seconds in this specific example, for more realistic scenarios
someminutes to many hours of unnecessary computation time can
be saved.

Finally, if a basic graphical user interaction is required, a special
method can be called on each Acoular object, resulting in a simple
graphical user interface that allows to edit the data attributes of
that object. If, for example, one wants to edit the BeamformerBase
object that was instantiated on line 6 of the example script, it suf-
fices to put the command
Fig. 6. Acoustic source map of two different sources.
10 bb.configure_traits()

to get the interface shown in Fig. 7. The appearance and layout of
individual elements of that graphical user interface can be cus-
tomized and the feature can also be used as a part of a more com-
plex application software.

4.2. One rotating sound source

The second example is concerned with a moving sound source.
The setup is similar to the first example, but this time the data to
be analyzed is from a sound source moving on a circular trajectory
in front of the array, as it would be the case for rotating machinery.
The rotational speed is known to be 10 s�1 and the time history
data in this example covers just one revolution (0.1 s). If the array
input data is to be analyzed in the time domain, a chain of objects
needs to be assembled similar to what is shown in Fig. 3. In order
to do so, the source of the input data, the microphone locations,
and the grid of possible source positions are given similar to the
first example:

1 import acoular as ac

2 ts = ac.TimeSamples( name = ’rotating_source.h5’ )
3 mg = ac.MicGeom( from_file = ’array_64.xml’ )
4 rg = ac.RectGrid( x_min = �0.2, x_max = 0.2, y_min = �0.2,

y_max = 0.2, z = 0.3, increment = 0.01 )

The chain of processing objects is then set up:

5 fi = ac.FiltFiltOctave(source = ts, band = 8000,

fraction = ’Third octave’)
6 bt = ac.BeamformerTimeSq(source = fi, grid = rg, mpos = mg,

r_diag = True, c = 343.0)

7 avgt = ac.TimeAverage(source = bt,

naverage = ts.sample_freq⁄0.1/4)
8 cacht = ac.TimeCache(source = avgt)

After the TimeSamples object as the first element, a zero-delay
third-octave frequency filter (FiltFiltOctave class) is used as the
second element. It filters out the frequency range of interest in
all microphone channels before the time-domain beamformer
(BeamformerTimeSq) as third element in the chain processes them
and computes the squared time histories for all grid points. After
that, the data is averaged over a time that is equivalent to one
fourth of a revolution of the source by the TimeAverage object.
All objects classes are derived from the TimeInOut class and have
thus a common interface that includes the source attribute which
points to the preceding object in the chain.

The TimeCache object as the last element here does no actual
processing, but transparently saves the data on disk. This allows
the data to be recovered without repeated processing if the script
is run without changes to any of the preceding elements in the pro-
cessing chain. However, due to the lazy evaluation paradigm
implemented in Acoular no processing at all is done unless results
are actually requested. This would be the case if the resulting
source maps are to be plotted by iterating over the output of
cacht:

9 for res in cacht.result(1):

10 . . .(code for plotting the results)



Fig. 7. Graphical user interface fo
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While again the plotting commands are omitted here, the plot is
given in Fig. 8. It shows an image of the point source smeared along
the quadrant sections of its circular trajectory.

If the actual trajectory of the source is known (which is possible
in this example by monitoring the rotational speed), then the
Beamforming filter coefficients can be changed accordingly with
time. This has the effect of virtually rotating the grid of possible
source positions with the source. The circular trajectory is defined
by 20 points that are passed by the source within one revolution of
0.1 s duration:

11 tr = ac.Trajectory()

12 for t in linspace(0, 0.1, 20):

13 phi = 10⁄t⁄2⁄pi
14 tr.points[t] = (0.1⁄cos(phi), 0.1⁄sin(phi), 0)
The Trajectory object uses spline interpolation to estimate the

position at any instant needed. Finally, the BeamformerTimeSq object
from script line 6 has to be replaced with one of the type Beam-
formerTimeSqTraj. Because it acts as a data source for the TimeAver-
age object, the source attribute of avgt also has to be updated:

15 bs = ac.BeamformerTimeSqTraj(source = fi, grid = rg,

mpos = mg, trajectory = tr,

rvec = array((0,0,1.0)))

16 avgt.source = bs

The same procedure as before can now be used to produce the
virtually rotating source map (see Fig. 9). As expected, this does not
show any difference between the four quadrants, because it

r a BeamformerBase object.



Fig. 8. Acoustic source map for a rotating source for time intervals equivalent one fourth of a revolution, analyzed with fixed beamformer filter coefficients.
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uses the co-ordinate system relative to the source and not the
array.

4.3. Further examples

Acoular has already been in use prior to its publication as open
source software. Therefore, further examples of its applicationwere
alreadypublished. For example, some thousandmeasurements in an
aeroacousticwind tunnelwereautomatically processedandentered
Fig. 9. Acoustic source map for a rotating source for time intervals equivalent one four
rotate the map along with the source.
into a large database,whichwas used for research on the sound gen-
eration at porous airfoils [20]. Another example concerns the appli-
cation for the experimental estimation of the sound generation by
different bird species in flight, where Acoular was combined with
a Python-based software to track the three-dimensional trajectory
of the flight from multiple camera images [5]. A last example to be
mentioned is the application in an industrial-scale context, were
the library was used for large scale three-dimensional mapping of
sound sources at a pantograph of a high speed train [21].
th of a revolution, analyzed with time-dependent beamformer filter coefficients to
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5. Extending

As an example for a possible extension of Acoular to new pro-
cessing algorithms, the functional beamforming algorithm of
Dougherty [22] shall be discussed. It is a method working in the
frequency domain and it uses

p2
m ¼ hH

mG
ð1cÞhm

� �c
ð7Þ

instead of (5) to provide a result with less ambiguous side lobes in
the source map. The matrix root in (7) has to be computed from the
eigen-decomposition of G.

To implement this method, a subclass of the BeamformerBase
has to be defined. In this FunctionalBeamformer class, one extra
data member representing c has to be defined using the mecha-
nism provided by the Traits package. A second data member
(freq_data) has to be redefined to accommodate objects that pro-
vide eigenvalues and eigenvectors of the cross-spectral matrix
instead of only the cross-spectral matrix. Finally, the only function
that needs to be redefined is the function that performs the actual
computation:

1 class BeamformerFunctional(BeamformerBase):

2
3 gamma = Float(1, desc = ”functional exponent”)
4
5 freq_data = Trait(EigSpectra, desc = ”freq data object”)
6
7 def calc(self, ac, fr):
8 kj = 2j⁄pi⁄self.freq_data.fftfreq()/self.c
9 numchannels = int (self.freq_data.numchannels)

10 e = zeros((numchannels), ’D’)
11 h = empty((1, self.grid.size), ’d’)
12 beamfunc = self.get_beamfunc(’_os’)
13 for i in self.freq_data.indices:
14 if not fr[i]:
15 eva = array(self.freq_data.eva [ i ] [ newaxis ],

dtype = ’float64’)⁄⁄(1.0/self.gamma)
16 eve = array(self.freq_data.eve [ i ] [ newaxis ],

dtype = ’complex128’)
17 kji = kj[i, newaxis]

18 beamfunc(e, h, self.r0, self.rm, kji, eva, eve, 0,

numchannels)

19 ac[i] = h⁄⁄self.gamma

20 fr[i] = True

In this function, lines 8–12 initialize variables necessary for the
computation. The loop in lines 15–20 iterates over all frequencies
that need to be considered. In line 15 and 16 the eigenvalue roots
and eigenvectors are stored, while in line 17 the correct wavenum-
ber for the frequency is provided. The vector-matrix-vector calcu-
lation from (7) is performed in line 18 by a call to a fast C++ routine
that is provided by Acoular and also used for other processing
methods. While all other data members and methods such as those
responsible for the graphical user interface, the caching algorithm
and further processing do not need to be redefined, the actual
implementation of functional beamforming in Acoular contains
many lines of comments that were stripped off here for the sake
of brevity.
6. Conclusive summary

The open source Python library Acoular implements various
methods for microphone array signal processing. Published under
the terms of the new BSD license, it is aimed at applications in
acoustic testing where sources of sound need to be characterized
and mapped. It covers both time-domain and frequency-domain
operation and can be applied to stationary and moving sound
sources. Due to the consequent object-oriented approach, the
library can be easily extended to incorporate new processing algo-
rithms or methods. Intelligent caching of the results and the paral-
lelized implementation of core routines in C++ make the library
efficient and applicable to large, industrial-scale problems. Acoular
supports both scripting and a graphical user interface so that the
library can easily be integrated with other libraries available for
data handling, visualization and scientific computing.
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