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a b s t r a c t

A resonator with perforated intruding inlet (PII) is a superior silencer element, since the use of perforated
inlet extensions can dramatically improve the acoustic performance. In this work, both a one-
dimensional (1D) and a two-dimensional (2D) transfer matrix methods are developed to predict the
transmission loss of the resonator without considering the mean flow. Based on the two groups of com-
parisons with tests, it is found out that the applicability of 1D method is limited by the resonator geom-
etry even when the frequency is below the cut-off value of plane wave. Whereas the 2D approach is much
more accurate while predicting the transmission losses within entire frequency range. Subsequently, five
groups of resonators are chosen to determine the effects of structure parameters to transmission loss
based on the 2D approach. The resonant frequency decreases and more resonant peaks appear when
the length of inlet extension increases. A higher perforation rate leads to a shift of resonant peak towards
higher frequencies. Besides, better acoustic performance could be obtained with the perforation being
properly designed. Reducing the inlet/outlet radius can obviously improve the transmission loss without
changing the frequency of resonant peak. The theories and conclusions in this study can be used for the
design and optimization of resonators in various engineering applications.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, research on traditional silencers (expansion chamber
muffler [1], quarter wavelength tube [2], concentric perforated res-
onator [3], etc.) has been continuously addressed. However, the
research on resonators with perforated intruding inlets (PII) which
could distinctly improve the acoustic performance has been
neglected. As a promising kind of silencer element, a resonator
with PII has the advantages of a compact structure and a desirable
sound attenuation performance especially at mid and high fre-
quencies [4]. Compared to the extended-tube resonator, additional
perforations can effectively adjust and probably widen the fre-
quency range of sound attenuation. Considering the design and
engineering application of resonators with PII, it is significant to
develop analytical approaches applied in the prediction for the
transmission loss (TL).

The transfer matrix method [5] (TMM) based on plane wave
theory is to obtain the four-pole parameters of a resonator, which
are used to determine the TL. Chiu [6] used a one-dimensional (1D)
TMM to calculate the TL of a muffler with perforated intruding
inlet. In addition, with the effect of higher order modes excluded,
the 1D approach is limited to the cut-off frequencies of plane wave
[7]. Finite element method (FEM) takes more geometry details and
three-dimensional effects into account [8], hence it can predict the
acoustic performance more precisely. However, the model design
and calculation process are time-consuming. It is also inconvenient
to optimize the structure parameters if the acoustic performance is
not satisfying. Therefore, apart from the 1D TMM, it is also neces-
sary to develop a theoretical method, which is simultaneously
accurate and efficient to calculate the TL of resonators with PII.

A two-dimensional (2D) method is applicable to calculate the TL
for axisymmetric resonators. Selamet [9,10] predicted the TLs of
both a single-chamber and a dual-chamber circular expansion
muffler with extended inlet/outlet using a 2D weighted-
integration method. However, the acoustic continuity equations
to be solved in the approach will be complicated when many
chambers are connected, since the transfer matrixes of the silencer
elements are not considered and all continuity equations must be
solved at one time. In recent years, the 2D approach was mostly
applied to dissipative mufflers with single chambers [10–12]. Until
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Nomenclature

Sn modal amplitudes in region S (A, B, C, D, E)
c sound speed in air
hd diameter of the perforations
ht thickness of the inner tube
d1 diameter of the inlet tube
d2 diameter of the outlet tube
Do diameter of the chambers
f frequency
J0, J1 Bessel functions of the first kind of order 0 and 1
k0 sound wave number in air
kx,S,n axial wave number in region S (A, B, C, D, E)
kr,S,n radial wave number in region S (A, B, C, D, E)
li length of inlet extension
lm length of perforation area
lo length of expansion chamber

L total length of resonator chamber
P acoustic pressure
r1 radius of the inlet tube
r2 radius of the outlet tube
R radius of the chambers
T transfer matrix
U particle velocity
v air viscosity
x, x1, x2, x3 axial coordinates
Y0, Y1 Bessel functions of the second kind of order 0 and 1
a end correction coefficient
f perforation impedance
r porosity
q air density
£S

n(r) eigenfunctions in region S (A, B, C, D, E)
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now, an effective 2D analytical method for TL calculation of res-
onators with PII has not been developed yet. Besides, the transfer
matrix of the resonator, which is commonly used in the TL predic-
tion of multi-chamber silencers [14], has not been derived through
2D approach.

The objective of the present work is to investigate the acoustic
modeling of a resonator with PII, which has the advantages of a
compact structure and a superior acoustic performance. Firstly,
referring to an existing study, a 1D TMM without considering the
mean flow is derived. In order to predict the acoustic performance
more precisely, a 2D analytical method using direct integration is
developed to calculate the pressure magnitudes for incident and
reflected waves in the resonator, which are subsequently used to
determine the four pole parameters of the transfer matrix. The
applicability of the two TMMs is discussed in details through the
comparisons to FEM and tests. To further study the characteristics
of the resonator with PII, five groups of resonators are selected to
evaluate the effects of structure parameters to the TL based on
the 2D approach, including the length of perforated/non-
perforated inlet extension, perforation rate and inlet/outlet radius.

2. Analytical methods

2.1. One-dimensional transfer matrix method

A resonator with PII consists of four kinds of acoustic propaga-
tion sections as shown in Fig. 1, including

(1) Straight tube, namely from point 1 to point 2 and from point
6 to point 7.

(2) Concentric perforated tube, namely from point 2, 3 to point
4, 5.
Fig. 1. The configuration and acoustic points of a resonator with PII.
(3) Sudden expansion at the open-ended inlet, namely from
point 4, 5 to point 6.

(4) Sudden retraction at the outlet, namely from point 7 to
point 8.

The total chamber length L is divided into an extended inlet of
length li, a perforated tube of length lm, and an expansion chamber
of length lo. Diameters of the inlet, outlet, and outer chamber are d,
do, and Do. The 1D TMM is to calculate the total transfer matrix of
the resonator through multiplying transfer matrixes of every con-
nected acoustic sections. The transfer matrixes for the straight
tubes can be expressed as

pð1Þ
qcuð1Þ

� �
¼ cosðk0liÞ j sinðk0liÞ

j sinðk0liÞ cosðk0liÞ

� �
pð2Þ
qcuð2Þ

� �
¼ ½T1� pð2Þ

qcuð2Þ

� �
ð1Þ

pð6Þ
qcuð6Þ

� �
¼ cosðk0loÞ j sinðk0loÞ

j sinðk0loÞ cosðk0loÞ

� �
pð7Þ
qcuð7Þ

� �
¼ ½T4� pð7Þ

qcuð7Þ
� �

ð2Þ
where p is the sound pressure; q is the air density; c is the sound
speed in air; u is the particle velocity; k0 = 2p/f is the sound wave
number in air; f is the sound frequency. For the perforated region,
the wave propagation functions in the inner tube and outer cham-
ber are [15]

@2pi
@x2 � 4jk0

dn � k20
� �

pi þ 4jk0
dn po ¼ 0

@2po
@x2 � 4jdk0

ðD2
o�d2Þn � k20

� �
po þ 4jdk0

ðD2
o�d2Þnpi ¼ 0

8><
>: ð3Þ

where pi, po, ui and uo are respectively the sound pressure and par-
ticle velocity of the inner tube and outer chamber; n (see Appendix
A) is the acoustical impedance of the perforated tube. Eq. (3) can be
written as a state function

p0
i

p0
o

pi

po

2
6664

3
7775

0

¼ ½T�

p0
i

p0
o

pi

po

2
6664

3
7775 ð4Þ

The related solution can then be written as

p0
i

p0
o

pi

po

2
6664

3
7775 ¼ ½w�½C1ek1x;C2ek2x;C3ek3x;C4ek4x�T ð5Þ



Fig. 2. The configuration and acoustic sections of a resonator with PII.
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[w] is the eigen matrix formed by four sets of eigen vectors of
[T]. Given that

jqckui ¼ �p0
i

jqckuo ¼ �p0
o

�
ð6Þ

Substituting Eq. (6) into (5) yields

pi

po

qcui

qcuo

2
6664

3
7775 ¼ ½D1ðxÞ4�4�

C1

C2

C3

C4

8>>><
>>>:

9>>>=
>>>;

ð7Þ

Substituting x = 0 and x = lm into Eq. (7) and doing arrangement
yield

p2

p3

qcu2

qcu3

2
6664

3
7775 ¼ ½T2�

p4

p5

qcu4

qcu5

2
6664

3
7775 ð8Þ

The continuity equations between point 4, 5 and 6 without con-
sidering the mean flow can be described as [16]

p4 ¼ p6

qcu4S1 þ qcu5S2 ¼ qcu6S3
S1p4 þ S2p5 ¼ S3p6

8><
>: ð9Þ

where S1 = pd2/4 is the area of the inner tube at the inlet; S2 = p
(Do

2 � d2)/4 is the area of the outer chamber at the inlet; S3 = p
Do

2/4 is the area of the whole chamber. Considering the boundary
condition at point 3, which is

qcu3=p3 ¼ �j tanðk0liÞ ¼ a ð10Þ
Assuming that

t ¼ ða � ½T2�21 � ½T2�41; a � ½T2�22 � ½T2�42; a � ½T2�23 � ½T2�43;
a � ½T2�24 � ½T2�44Þ ð11Þ
Substituting Eq. (10) into Eq. (8) and combing Eq. (11) yield

t � ðp4;p5;qcu4;qcu5ÞT ¼ 0 ð12Þ
Using Eqs. (9) and (12), the relationship between point 4, 5, and

6 can be written as

1 0 0 0
0 0 S1 S2
S1 S2 0 0

t

2
6664

3
7775

p4

p5

qcu4

qcu5

2
6664

3
7775 ¼

1 0
0 S3
S3 0
0 0

2
6664

3
7775 p6

qcu6

� �
ð13Þ

Rearranging Eq. (13) yields

p4

p5

qcu4

qcu5

2
6664

3
7775 ¼ ½T3� p6

qcu6

� �
ð14Þ

The transfer matrix of the sudden retraction section from point
7–8 can be written as

p7

qcu7

� �
¼ 1 0

0 S4=S3

� �
p8

qcu8

� �
¼ ½T5� p8

qcu8

� �
ð15Þ

where S4 is the area of the outlet tube. Thus, the transfer matrix
from points 2, 3 to point 8 is

½To� ¼ ½T2�½T3�½T4�½T5� ð16Þ
where [To] is a 4 � 2 matrix, and the relationship between point 1
and 8 can be written as:
p1

qcu1

� �
¼ ½T1� To11 To12

To31 To31

� �
p8

qcu8

� �
¼ ½Tt� p8

qcu8

� �
ð17Þ

Thus, the TL of a resonator with PII is

TL1 ¼ 20log10
d
do

1
2
jTt11 þ Tt12 þ Tt21 þ Tt22j

� �
ð18Þ
2.2. Two-dimensional transfer matrix method

As shown in Fig. 2, a resonator with PII can be divided into five
sections: inlet A, extended inlet chamber B, perforated tube C,
expansion chamber D and outlet E. Radiuses of the inlet tube, out-
let tube and outer chamber are respectively r1, r2 and R.

The Helmholtz equation of sound wave in axisymmetric tube is
expressed as [5]

@2P
@r2 þ 1

r
@P
@r þ @2P

@x2 þ k20P ¼ 0
k0 ¼ x=c ¼ 2pf=c

(
ð19Þ

where P is the sound pressure; k0 is the wave number in air; f is the
sound frequency; c is the sound velocity in air; r is the distance to
the axis. Upon making use of the separation method of variables,
the sound pressure is assumed as

Pðr; xÞ ¼
X
n

RnðrÞXnðxÞ ð20Þ

Then, Eq. (19) can be divided into two independent wave
equations

d2XðxÞ
dx2

¼ �k2xXðxÞ
d2RðrÞ
dr2

þ 1
r

dRðrÞ
dr þ k2r RðrÞ ¼ 0

8<
: ð21Þ

Solutions of Eq. (21) is expressed as

XnðxÞ ¼ Sþn e
�jkx;S;nx þ S�n e

jkx;S;nx

RnðrÞ ¼ /n
SðrÞ

(
ð22Þ

Substituting Eq. (22) to Eq. (20) yields

PS ¼
X1
n¼0

ðSþn e�jkx;S;nxS þ S�n e
jkx;S;nxS Þ/n

SðrÞ ð23Þ

Combing the linear momentum equation, the axial particle
velocity is derived as

Ux;S ¼ j
qx

@PS

@x
¼ 1
qx

X1
n¼0

kx;S;nðSþn e�jkx;S;nxS � S�n e
jkx;S;nxS Þ/n

SðrÞ ð24Þ

where S stands for the five sections A, B, C, D, and E; Sn+, Sn� are the
nth modal amplitudes corresponding to positive and negative x
directions; £S

n(r) is the eigenfunction; kr,S,n is the nth radial wave
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number; kx,S,n is the nth axial wave number. For section A, D and E
with straight tubes, the eigenfunctions are [9]

/n
AðrÞ ¼ J0ðkr;A;nrÞ

/n
DðrÞ ¼ J0ðkr;D;nrÞ

/n
EðrÞ ¼ J0ðkr;E;nrÞ

8><
>: ð25Þ

For section B with a concentric annular tube, the eigenfunction
is

/n
BðrÞ ¼ J0ðkr;B;nrÞ � ½J1ðkr;B;nRÞ=Y1ðkr;B;nRÞ�Y0ðkr;B;nrÞ ð26Þ
For section C with concentric perforated tube, the eigenfunction

is [11]

/n
CðrÞ¼

J0ðkr;C;nrÞ;0< r< r1
C5fJ0ðkr;C;nrÞ� ½J1ðkr;C;nRÞ=Y1ðkr;C;nRÞ�Y0ðkr;C;nrÞg;r1 < r<R

�
ð27Þ

With

C5 ¼ J0ðkr;C;nr1Þ þ jfðkr;C;n=k0ÞJ1ðkr;C;nr1Þ
J0ðkr;C;nr1Þ � ½J1ðkr;C;nRÞ=Y1ðkr;C;nRÞ�Y0ðkr;C;nr1Þ ð28Þ

where J0 and J1 are the zeroth and first order Bessel function of the
first kind; Y0 and Y1 are the zeroth and first order Bessel function of
the second kind. The relation between radial and axial wave num-
bers can be expressed as

k2r;S;n þ k2x;S;n ¼ k20 ð29Þ
With kr,A,n, kr,B,n, kr,D,n, kr,E,n being the solutions of Eigen func-

tions satisfying

J1ðkr;A;nr1Þ ¼ 0 ð30Þ

J1ðkr;B;nr1Þ � ½J1ðkr;B;nRÞ=Y1ðkr;B;nRÞ�Y1ðkr;B;nr1Þ ¼ 0 ð31Þ

J1ðkr;A;nRÞ ¼ 0 ð32Þ

J1ðkr;E;nr2Þ ¼ 0 ð33Þ
The difference of the sound pressure across the perforated pipe

(r = r1) yields

PCI � PCO ¼ qcfUCI; ðr ¼ r1Þ ð34Þ
where f is the perforate acoustic impedance, which relates the
sound pressure of the inner and outer section through the perfora-
tion interface (see Appendix A). PCI and PCO are respectively the
sound pressure in the inner pipe and outer chamber of acoustic
region C. UCI is the particle velocity in the inner pipe. Combining
Eqs. (23), (24), (27) and (34), the boundary condition for the solu-
tion of kr,C,n can be derived as

J0ðkr;C;nr1Þ
J1ðkr;C;nr1Þ

þ jf
kr;C;n
k0

¼ J0ðkr;C;nr1ÞY1ðkr;C;nRÞ � Y0ðkr;C;nr1ÞJ1ðkr;C;nRÞ
J1ðkr;C;nr1ÞY1ðkr;C;nRÞ � Y1ðkr;C;nr1ÞJ1ðkr;C;nRÞ

ð35Þ
At the interfaces AC, BC, CD and DE, the sound pressure and par-

ticle velocity have the boundary conditions as follows

PAjx1¼0 ¼ PC jx1¼0; ð0 6 r 6 r1Þ ð36aÞ

PBjx1¼0 ¼ PC jx1¼0; ðr1 6 r 6 RÞ ð36bÞ

PDjx2¼0 ¼ PC jx1¼lm; ð0 6 r 6 RÞ ð36cÞ

PDjx2¼lo ¼ PEjx3¼0; ð0 6 r 6 r2Þ ð36dÞ

Ux;C

		
x1¼0 ¼

Ux;A

		
x1¼0; ð0 6 r 6 r1Þ

Ux;B

		
x1¼0; ðr1 6 r 6 RÞ

(
ð36eÞ
Ux;C

		
x1¼lm ¼ Ux;D

		
x2¼0; ð0 6 r 6 RÞ ð36fÞ

Ux;D

		
x2¼lo

¼ Ux;E

		
x3¼0; ð0 6 r 6 r2Þ
0; ðr2 < r < RÞ

(
ð36gÞ

With the sound pressure and particle velocity given by Eqs. (23)
and (24), Eq. (36) yields

XN
n¼0

ðAþ
n þ A�

n Þ/A;nðrÞ ¼
XN
n¼0

ðCþ
n þ C�

n Þ/C;nðrÞ; ð0 6 r 6 r1Þ ð37aÞ

XN
n¼0

ðBþ
n þ B�

n Þ/B;nðrÞ ¼
XN
n¼0

ðCþ
n þ C�

n Þ/C;nðrÞ; ðr1 6 r 6 RÞ ð37bÞ

XN
n¼0

ðDþ
n þD�

n Þ/D;nðrÞ¼
XN
n¼0

ðCþ
n e

�jkx;C;nlmþC�
n e

jkx;C;nlmÞ/C;nðrÞ;ð06 r6RÞ

ð37cÞ

XN
n¼0

ðDþ
n e

�jkx;D;nlo þD�
n e

jkx;D;nloÞ/D;nðrÞ ¼
XN
n¼0

ðEþ
n þ E�

n Þ/E;nðrÞ; ð06 r 6 r2Þ

ð37dÞ

XN
n¼0

kx;C;nðCþ
n � C�

n Þ/C;nðrÞ ¼

XN
n¼0

kx;A;nðAþ
n � A�

n Þ/A;nðrÞ; ð0 6 r 6 r1Þ

XN
n¼0

kx;B;nðBþ
n � B�

n Þ/B;nðrÞ; ðr1 6 r 6 RÞ

8>>>><
>>>>:

ð37eÞ

XN
n¼0

kx;C;nðCþ
n e

�jkx;C;nlm � C�
n e

jkx;C;nlmÞ/C;nðrÞ

¼
XN
n¼0

kx;D;nðDþ
n � D�

n Þ/D;nðrÞ; ð0 6 r 6 RÞ ð37fÞ

XN
n¼0

kx;D;nðDþ
n e

�jkx;D;nlo � D�
n e

jkx;D;nloÞ/D;nðrÞ

¼
XN
n¼0

kx;E;nðEþ
n � E�

n Þ/E;nðrÞ; ð0 6 r 6 r2Þ

0

8><
>: ð37gÞ

In order to solve Eq. (37), the infinite series of unknown ampli-
tudes need to be truncated to a suitable number. Multiplying both
sides of Eq. (37) by rdr gives

XN
n¼0

ðAþ
n þ A�

n Þ
Z rm;p1

0
/A;nðrÞrdr ¼

XN
n¼0

ðCþ
n þ C�

n Þ
Z rm;p1

0
/C;nðrÞrdr

ð38aÞ

XN
n¼0

ðBþ
n þ B�

n Þ
Z rm;p2

r1

/B;nðrÞrdr ¼
XN
n¼0

ðCþ
n þ C�

n Þ
Z rm;p2

r1

/C;nðrÞrdr

ð38bÞ

XN
n¼0

ðDþ
n þD�

n Þ
Z rm;p3

0
/D;nðrÞrdr¼

XN
n¼0

ðCþ
n e

�jkx;C;nlmþC�
n e

jkx;C;nlmÞ
Z rm;p3

0
/C;nðrÞrdr

ð38cÞ

XN
n¼0

ðEþ
n þE�

n Þ
Z rm;p4

0
/E;nðrÞrdr¼

XN
n¼0

ðDþ
n e

�jkx;D;nloþD�
n e

jkx;D;nloÞ
Z rm;p4

0
/D;nðrÞrdr

ð38dÞ
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XN
n¼0

kx;C;nðCþ
n �C�

n Þ
Z rm;U1

0
/C;nðrÞrdr

¼

XN
n¼0

kx;A;nðAþ
n �A�

n Þ
R rm;U1
0 /A;nðrÞrdr;ð06 rm;U1 6 r1Þ

XN
n¼0

kx;A;nðAþ
n �A�

n Þ
R r1
0 /A;nðrÞrdrþ

XN
n¼0

kx;B;nðBþ
n �B�

n Þ
R rm;U1
r1

/B;nðrÞrdr;ðr1 6 rm;U1 6RÞ

8>>>>><
>>>>>:

ð38eÞ

XN
n¼0

kx;C;nðCþ
n e

�jkx;C;nlm � C�
n e

jkx;C;nlmÞ
Z rm;U

0
/C;nðrÞrdr

¼
XN
n¼0

kx;D;nðDþ
n � D�

n Þ
Z rm;U

0
/D;nðrÞrdr ð38fÞ

XN
n¼0

kx;D;nðDþ
n e

�jkx;D;nlo � D�
n e

jkx;D;nloÞ
Z rm;U

0
/D;nðrÞrdr

¼

XN
n¼0

kx;E;nðEþ
n � E�

n Þ
R rm;U
0 /E;nðrÞrdr; ð0 6 rm;U 6 r2Þ

XN
n¼0

kx;E;nðEþ
n � E�

n Þ
R r2
0 /E;nðrÞrdr; ðr2 6 rm;U 6 RÞ

8>>>><
>>>>:

ð38gÞ

With

rm;P1 ¼ m
Nþ1 r1;m ¼ 1; . . . ;N þ 1

rm;P2 ¼ r1 þ m
Nþ1 ðR� r1Þ;m ¼ 1; . . . ;N þ 1

rm;P4 ¼ m
Nþ1 r2;m ¼ 1; . . . ;N þ 1

rm;P3 ¼ rm;U ¼ m
Nþ1R;m ¼ 1; . . . ;N þ 1

8>>><
>>>:

ð39Þ

The simplification of Eq. (38) can refer to Appendix B. Using the
rigid boundary conditions in section B at x = �li, the relation
between the positive and negative modal amplitudes is

Bþ
n ¼ B�

n e
�2jkx;B;nli ð40Þ

In 2D analytical method, waves in the inlet/outlet can be
assumed as planar, which means an acoustic transfer matrix can
be acquired between the inlet and outlet

PA

qcUA

� �
¼ T11 T12

T21 T22

� �
PE

qcUE

� �
ð41Þ

In order to determine the four-pole parameters of the transfer
matrix, the incoming wave of the inlet is assumed as planar with
A0

+ = 1; A+
1,2. . .N = 0. Eq. (38) should be solved twice under two dif-

ferent outlet conditions

(1) Total reflection end with E�0,1. . .N = E+0,1. . .N.
(2) Anechoic end with E�0,1. . .N = 0.

Eq. (38) gives 7(N + 1) relations for 7(N + 1) unknowns. For cal-
culation convenience, assuming

X¼ ½A�
0 . . .A

�
N ;B

�
0 . . .B

�
N ;C

þ
0 . . .C

þ
N ;C

�
0 . . .C

�
N ;D

þ
0 . . .D

þ
N ;D

�
0 . . .D

�
N ;E

þ
0 . . .E

þ
N �

ð42Þ
Eq. (38) can be written as linear equations aX = b. Then the solu-

tions can be obtained as X = a�1b. With the first outlet condition, it
can be determined that

Tm11 ¼ pA

pE
¼ 1þ A�

0

2Eþ
0

				
E�0;1;...N¼Eþ0;1;...N

ð43Þ

Tm21 ¼ qcUA

pE
¼ 1� A�

0

2Eþ
0

				
E�0;1;...N¼Eþ0;1;...N

ð44Þ

With the second outlet condition, it can be derived that
Tm12 ¼ pA

qcUE
¼ 1þ A�

0

Eþ
0

				
E�0;1;...N¼0

� Tm11 ð45Þ

Tm22 ¼ qcUA

qcUE
¼ 1� A�

0

Eþ
0

				
E�0;1;...N¼0

� Tm21 ð46Þ

Considering the extended inlet/outlet, the total transfer matrix
can be written as

½TT� ¼ cosðk0liÞ j sinðk0liÞ
j sinðk0liÞ cosðk0liÞ

� �
Tm11 Tm12

Tm21 Tm22

� �
ð47Þ

The TL of the resonator can be determined as

TL2 ¼ 20log10
r1
r2

1
2
jTT11 þ TT12 þ TT21 þ TT22j

� �
ð48Þ

To solve the above equations, the infinite series of amplitudes
need to be truncated to a suitable number. For the frequency range
and geometry discussed in this study, the result is sufficiently
accurate when N > 5 so that N = 6 is used in the remainder of the
study.

3. Experimental validation and comparison

The two-load technique is applied in the TL measurement by
means of an impedance tube, as shown in Fig. 3. The tests were car-
ried out in the semi-anechoic room at Tongji University. The test
facility consists of a LMS SCADAS III 306 data acquisition system,
a full frequency band loudspeaker and four microphones. The sam-
pling frequency in the test was 16,384 Hz. Based on the require-
ments for the outlet, the first condition of the outlet is an open
end, and the other condition is an end, which is filled up with insu-
lation cotton [3]. In order to determine the accuracies of the TMMs,
two resonators which respectively has a chamber length of 90 mm
and 50 mm are selected. The diameters of the chamber and inner
tube are chosen according to usual engineering applications. For
the configurations, the present study considers D0 = 90 mm for
the chamber diameter, d = d0 = 45 mm for the inlet/outlet ducts,
hd = 3 mm; ht = 2 mm; r = 12.68% for parameters of the
perforation.

For the resonator with long chamber, Fig. 4(a) compares the test
results with TLs calculated by 1D TMM, 2D TMM, and FEM. The
acoustic FEM simulation is implemented through a commercial
simulation software LMS.virtual.lab, and the element numbers of
the hexahedral meshes are respectively 53205 and 35805. The
results of 1D and 2D TMM are respectively calculated by Eqs.
(18) and (48). It can be seen that, although the 1D approach may
be useful for an approximate estimation of the TL, there is still a
minor frequency deviation between the calculation result of 1D
TMM and test. Whereas TL calculated by 2D TMM matches well
with that of FEM, and shows a good agreement with the test result.
The amplitude discrepancy between prediction and test is assessed
in relation to the inaccuracy of perforation impedance model and
imperfection of the test set-up.

As for the resonator with short chamber, there is an obvious
mismatch between the result of 1D approach and test as shown
in Fig. 4(b). The primary reason is that a resonator with PII is sim-
ilar to an extended-tube resonator. The end correction of inlet
extension needs to be considered for 1D approach [17]. In the case
of perforated inlet, such a general correlation is hard to be
obtained, since there is no coupling between the quarter wave
effect of the extension and the duct-cavity resonance of the perfo-
rated tube [18]. Kang and Ji [19] also found out that an approxi-
mate expression for the acoustic length correction of duct
extension is not applicable to short chambers as the radial waves
cannot be decayed sufficiently. In comparison, the 2D TMM is able



Fig. 3. Sketch of the TL test, (a) the test scheme, (b) the test set-up: 1. data acquisition system; 2. power amplifier; 3. loudspeaker; 4. impedance tube; 5. resonator; 6.
Microphones.
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Fig. 4. TL comparison of resonators with PII (a) TL of the resonator with long chamber, li = 20 mm, lm = 30 mm, lo = 40 mm and (b) TL of the resonator with short chamber,
li = 25 mm, lm = 15 mm, lo = 10 mm.
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to calculate the TL precisely without considering the end correc-
tions or the cut-off frequencies of resonator chambers. Besides, it
is much more timesaving than FEM. Hence, the 2D TMM derived
here is validated to be very accurate and efficient in calculating
the TLs of resonators with PII.

4. Effects of structure parameters on TL

To further study the characteristics of the resonator with PII,
five groups of geometries are selected to analyze the effect of struc-
ture parameters to the acoustic performance based on the 2D
TMM. As shown in Table 1, referring to the resonator geometry dis-
cussed above, group 1–5 respectively has a varying parameter,
which totally has 30 data points with a same interval. The
expression [M:N] stands for a lower limit of M and a upper limit
Table 1
Groups of resonators with PII.

Group r1 (mm) r2 (mm)

1 22.5 22.5
2 22.5 22.5
3 22.5 22.5
4 [16.5:30] 22.5
5 22.5 [16.5:30]
of N. The corresponding interval is (N �M)/(30 � 1). The frequency
step size for calculation is 10 Hz. The acoustic performance is
expressed by three TL targets in the frequency range of 0–
4000 Hz: the frequency of first resonant peak (Target A), the ampli-
tude of highest dome (Target B) and the bandwidth (Target C) that
the TL exceeds 20 dB which is commonly used to evaluate whether
a resonator can effectively attenuate noises. Other parameters are
the same with that of the resonators with PII in Section 3.

4.1. Effect of inlet extension and perforation tube

Fig. 5 shows the effect of the inlet extensions to the three acous-
tic targets through calculating TLs in group 1. As the length of inlet
extension increases from 5 mm to 50 mm, the first resonance peak
moves to a lower frequency range and the frequency deviation
li (mm) lm (mm) r (%)

[5:50] 20 4
20 [5:50] 4
10 20 [1:10]
10 20 4
10 20 4
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reaches 1700 Hz. The reason is that the extended inlet can be seen
as a quarter-wavelength tube whose resonant frequency is low-
ered when the tube gets longer. The maximum amplitude and
the sound attenuation bandwidth decrease until they reach the
minimum of 35 dB and 100 Hz while the length of inlet extension
is 20 mm. This is resulted from the resonant frequency shift of the
inlet tube, which makes the dome shift from a basic TL peak to a
trough of the expansion chamber. Subsequently, these two target
values are increased because the resonance dome of the inlet starts
moving from the TL trough to another peak of the expansion cham-
ber. The sound attenuation bandwidth sharply increases to 680 Hz
and maintains a high value when the length of inlet exceeds
40 mm, while the maximum TL amplitude becomes stable. It is
because that for a quarter-wavelength tube, the frequency interval
between two resonant peaks is narrowed with the length of tube
increasing. Hence, the TL exhibits more superposition of domes
as illustrated in Fig. 6. The perforated tube has a similar feature
40 60
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of extended inlet so that as the length of perforated tube increases,
the acoustic targets have the same change trends with that of the
inlet extension. However, in Fig. 7, the first peak only reduces by
850 Hz due to the perforations although the length of perforated
tube in group 2 has a same varying interval as that of the inlet
extension in group 1.
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Fig. 9. TL of resonators with different perforation rate.
4.2. Effect of perforation rate

To further study the effect of perforations, resonators with var-
ious perforation rates in group 3 are investigated and the changes
of the acoustic targets are shown in Fig. 8. Apparently, the resonant
peak moves to higher frequency range as the perforation rate
increases. The maximum TL amplitude reduces by 4 dB, which is
nearly negligible when the perforation rate increases to 10%,
whereas the sound attenuation bandwidth rises by 200 Hz. It is
because that a perforated element can be seen as a sort of Helm-
holtz resonator. The perforation holes are the neck, which connects
the inner tube and resonant chamber. Therefore, the resonant fre-
quency becomes higher as the cross-section area of the neck is
enlarged by raising the perforation rate, and the resonance peak
of the perforations is superposed on the base dome of expansion
chamber, hence the sound attenuation bandwidth is widen, as
shown in Fig. 9. When the perforation rate exceeds 10%, the max-
imum amplitude continues to drop slowly, while the bandwidth
remains steady. Actually, reducing the length of inlet extension
can lead to a similar result. However, the use of perforated tube
can effectively lower the pressure drop of the resonator, which
makes the resonator with PII a fine substitute for extended-tube
resonator. By properly designing the perforation rate, an excellent
acoustic attenuation performance can be obtained especially at
mid and high frequencies.
4.3. Effect of inlet/outlet radius

As for the resonator with PII, the diameters of the inlet and out-
let are unrelated so that they can be adjusted separately. Figs. 10
and 11 respectively show the effect of the inlet and outlet radiuses
to the TL. Changing the radiuses has almost no effect on the fre-
quency of first dome. However, the maximum TL amplitude
increases and the sound attenuation bandwidth is obviously widen
when the inlet or outlet radius becomes smaller. In fact, the effects
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Fig. 8. Effects of the perforation rate, (a) effect to Targe
are similar to that of a simple expansion muffler. Decreasing the
radius of inlet/outlet tube leads to an increase of expansion ratio,
causing a higher TL peak and a wider sound attenuation band-
width. The resonant frequency barely shifts because it is only influ-
enced by the chamber length. It is also noted that, the variation of
inlet radius has greater effects on Target B and Target C than that of
outlet radius. The primary reason is that the perforated tube is con-
nected to the inlet so that reducing inlet radius provides a bigger
resonant chamber space for the perforation, which will also
improve the acoustic performance. This certain feature can be uti-
lized in the design and optimization of multi-chamber silencers
conjugated with PII.
5. Conclusions

In this paper, both 1D and 2D approaches are applied to predict
the acoustic performance of a resonator with PII. Based on a previ-
ous mathematical model, a 1D TMMwithout considering the mean
flow is derived. However, through two groups of comparisons with
tests, it is concluded that the applicability of 1D TMM is limited by
the resonator geometry even when the frequency is below the cut-
off value of plane wave. Obvious deviations will occur if the cham-
ber length becomes short, and additional end corrections may be
necessary. In comparison, TLs calculated by the 2D TMM, which
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is as timesaving as 1D approach match well with that of FEM, and
show a good agreement with the tests. Hence, the 2D approach
developed in this study is validated to be very accurate and effec-
tive in calculating the TLs of resonators with PII.

In order to investigate the characteristics of the resonator with
PII, three acoustic targets are defined to evaluate the effects of
structure parameters to the TL of a resonator with PII based on
the 2D approach. Through five groups of calculations, it is shown
that the number of resonant peaks increases and the frequencies
decrease as the length of perforated or non-perforated inlet exten-
sion is increased. As the perforation rate becomes higher, the res-
onant peaks shift to a higher frequency range and better acoustic
performance could be obtained if the perforation is designed prop-
erly. The decrease of inlet/outlet radius provides higher TL ampli-
tudes without influencing resonant frequencies. The theoretical
methods and conclusions in this paper can be applied to the acous-
tic analysis and structure optimization for multi-chamber res-
onators conjugated with PII.
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Appendix A

The perforation impedance model applied in this study follows
Ji’s empirical expression as [20]

f ¼ ð1=rÞðR0 þ jX0Þ ðA:1Þ
With

R0 ¼ ð1þ ht=hdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k0v=qc

p
X0 ¼ k0ðht þ ahdÞ

(
ðA:2Þ
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where v is the kinetic viscosity of air; and a is the end correction
coefficient of holes, expressed as

a ¼
0:85 1� 2:34 r

p

� �0:5h i
; 0 < r

p

� �0:5 6 0:25

0:668 1� 1:9 r
p

� �0:5h i
; 0:25 < r

p

� �0:5 6 0:5

8><
>: ðA:3Þ
Appendix B

The integrals of Eqs. (37a)–(37g) can be analytically determined
in light of [13]

For the zeroth-order Bessel function of the first kind,Z r0

0
J0ðkrÞr dr ¼ r20=2 k ¼ 0

J1ðkr0Þr0=k k–0

(
ðB:1Þ

For the zeroth-order Bessel function of the second kind,Z r0

0
Y0ðkrÞr dr ¼ r0Y1ðkr0Þ=kþ 2=ðpk2Þ ðB:2Þ
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