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Salient characteristics of a wireless communication system deploying a great number of antennas at the
base station (BS), namely a massive MIMO system, are investigated in this work. The asymptotic perfor-
mance of the linear zero-forcing precoding scheme is found, both in terms of signal-to-interference-plus-
noise ratio (SINR) and bit-error rate (BER), and shown to be equivalent to the matched-filter beamforming
performance. Furthermore, analysis of the massive MIMO system downlink is carried out from the view-
point of uncoded BER performance, including some realistic adverse effects, such as interference from
neighbouring cells, channel estimation errors due to background thermal noise, and pilot contamination.
The latter has been shown to be the only impairment that remains in the MIMO multicell system with
infinite number of BS antennas. For such scenario, we derive expressions for the asymptotic BER, i.e. in
the limit of infinite number of antennas at BS. A quite simple and efficient method for optimizing the
massive MIMO system performance under different optimization metrics is proposed, which consists
of simply distributing the pilot sequences among the users of the cell in an efficient manner. As a result,
a user rate gain of six times regarding the random strategy has been achieved for the downlink with uni-
tary reuse factor, while the user rate increases twice for reuse factor of three. These benefits are achieved
by only knowing the powers and the long-term fading coefficients of users in adjacent cells, for each pilot
sequence.

� 2016 Elsevier GmbH. All rights reserved.
1. Introduction

Multiple-input–multiple-output (MIMO) techniques constitute
one of the key features in most of recent telecommunications stan-
dards, such as WiFi, WiMAX, LTE [6]. In order to fully exploit the
benefits of MIMO systems, a new concept has been proposed by
increasing the number of base station (BS) antennas N to infinity
[9]. This massive MIMO systems are viewed as a potential technol-
ogy for physical layer in next telecommunications standards, such
as 5G [2]. A review of most important results recently dissemi-
nated in this theme can be found in [17].

It was shown in [9] that in a time division duplex (TDD) nonco-
operative multi-cell MIMO system, employing training pilots for
channel state information (CSI) acquisition in the uplink and an
infinite number of BS antennas, the effects of uncorrelated thermal
noise and fast fading are averaged out. Hence, the only factor that
remains limiting performance in the large MIMO scenario is inter-
cell interference, that when associated with the finite time avail-
able to send pilot sequences makes the estimated CSI at one BS
‘‘contaminated” by the CSI of users in adjacent cells, in the so-
called pilot contamination effect. This phenomenon results from
unavoidable reuse of reverse-link pilot sequences by terminals in
different cells. As a consequence of increasing the number of BS
antennas to infinity, the transmit power can be designed arbitrarily
small, since interference decreases in the same rate of the desired
signal power, i.e., signal-to-interference-plus-noise ratio (SINR) is
independent of transmit power [9].

Alternative strategies to achieve better CSI estimates exist, such
as (a) frequency division duplex (FDD) [3], in which pilots for CSI
acquisition are transmitted in downlink, and estimates are fed back
to BS in a feedback channel; and (b) network MIMO [7], where CSI
and information data of different coordinated cells are shared
among them in a backhaul link, creating a distributed antenna
array that serves the users altogether. However, both schemes
become unfeasible when N ! 1 [9], since lengths of forward pilot
sequences and capacity of backhaul links increase substantially
with N. Therefore, TDD has been assumed in this work without
CSI sharing among different cells.
mmun
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Operating with a large excess of BS antennas compared with the
number of terminals K is a challenging but desirable condition,
since some results from random matrix theory become applicable
[4]. It is known, for instance, that very tall/wide matrices tend to be
very well conditioned, since their singular values distribution
appears to be deterministic, showing a stable behavior (low vari-
ances) and a relatively narrow spread [14]. Besides, in the large
scale MIMO, the most simple reception/transmission techniques,
i.e., maximum ratio combining (MRC) deployed in the uplink and
the matched-filtering (MF) precoding used in the downlink,
become optimal [14].

An interesting investigation about precoding techniques of
single-cell multiuser MIMO systems downlink is carried out in
[16]. Specifically, authors compared MF precoding, also known as
conjugate beamforming, and zero-forcing (ZF) beamforming, with
respect to net spectral-efficiency and radiated energy-efficiency
in a simplified single-cell scenario. It is found that, for high
spectral-efficiency and low energy-efficiency, ZF outperforms MF,
while at low spectral-efficiency and high energy-efficiency the
opposite holds. A similar result is found for the uplink in [11],
where for low signal-to-noise ratio (SNR), the simple MRC receiver
outperforms the ZF receiver. On the other hand, when considering
the multi-cell environment, it is found in [14] that the asymptotic
SINR of MF outperforms ZF, although MF requires much more
antennas to approach the asymptotic condition.

A more rigorous expression for the achievable SINR of MF pre-
coding in massive MIMO systems, in comparison with that derived
in [9] and adopted in [14], has been obtained in [5]. Authors of lat-
ter showed that, for downlink, the effect of the transmit power
constraint at BS still accounts in the massive MIMO regime, as
opposed to what was assumed in [9]. Besides, authors of [5] discuss
an efficient technique for temporally distribute the uplink trans-
missions of pilot sequences, avoiding simultaneous transmissions
from adjacent cells and reducing interference as well, in conjunc-
tion with power allocation strategy. On the other hand, a precoding
technique that eliminates pilot contamination and leads to unlim-
ited gains with N ! 1 has been proposed in [1]. However, these
gains come at the expense of sharing the information data between
BSs, what can overload the backhaul signaling channel for high rate
systems, or high number of users per cell.

An analysis of non-linear precoding techniques applied to the
downlink of a massive MIMO system is conducted in [10]. Authors
investigated the time domain vector perturbation (TDVP) scheme,
which has been shown previously to almost achieve the downlink
capacity of conventional MIMO channels. However, in the large-
system analysis, it was shown that linear precoding schemes out-
performs TDVP, in terms of increased sum rates, regardless of the
user scheduling method adopted. Thus, linear precoding tech-
niques has been investigated in our contribution. In [18], the pilot
contamination is tackled by dividing the users within each cell in
two groups, which are: the center users, and the edge users. As
the edge users would suffer from severe pilot contamination if
the same set of pilot sequences were reused by every cell, it is
assigned for each edge user an exclusive training sequence in a
cluster of L cells, while the center users reuse the same pilot’s
set. Although this so-called soft pilot reuse scheme effectively
reduces the pilot contamination, the cost of devoting orthogonal
pilots for every edge user may limit its practical appeal in TDD sys-
tems. Hence, we aim to reduce the pilot contamination in this
paper adopting the challenging but realistic scenario of full pilot
reuse among cells.

In this paper, we focus on the pilot distribution optimization
and its impact on the performance of multi-cellular massive MIMO
systems. The novelty and contributions of this paper are as follows:
Please cite this article in press as: Marinello JC, Abrão T. Pilot distribution optim
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(i) We derive an analytical expression for the downlink SINR
system under ZF precoding, considering the effect of power
constraint at BS. It is shown that the achieved SINR corre-
sponds to the same value achieved by MF, as opposed to
what is found in [14] neglecting the effects of the transmit
power constraint.

(ii) Different from previous works that have analysed the SINR
and the capacity of the massive MIMO system [9,5,14], we
investigate also its downlink uncoded bit-error rate (BER)
performance, which is another important figure of merit in
communication systems. An exact expression for the BER
of each user is derived, depending on the transmit power
of users and on the long-term fading coefficients.

(iii) We propose a novel and expedite method of optimizing the
massive MIMO downlink transmission under different met-
rics, based on our derived BER expression, and on the
asymptotic SINR expression of [5]. This method consists of
simply assigning the available training sequences among
the users within a cell in an efficient manner, by knowing
only the power and the long-term fading coefficients of
users in adjacent cells that reuse such pilot sequences. Dif-
ferent pilot allocation metrics enable us to minimize the
average BER, or maximize the average SINR, minimize the
maximal BER or even maximize the minimum SINR. The pro-
posed algorithms can lead to appreciable performance gains,
both in terms of data rate, as well as in terms of BER of a
massive MIMO system.

The paper is organized as follows. Beyond this introductory Sec-
tion, the system model is described in Section 2. Some asymptotic
limits of the massive MIMO system are revisited and extended in
Section 3. Our proposed methods of assigning the pilots among
the users within the cell in an efficient manner, namely the Pilot
Allocation (PA) schemes, are presented in Section 4. Representative
numerical results are discussed in Section 5, while Section 6 con-
cludes the paper.
1.1. Notations

Boldface lower and upper case symbols represent vectors and
matrices, respectively. IN denotes the identity matrix of size N,
while 1K and 0K are the unitary vector and null vector of length
K, respectively. The transpose and the Hermitian transpose opera-
tor are denoted by f�gT and f�gH , respectively, while diagð�Þ is the
diagonal matrix operator. jj � jj is the Euclidean norm of a vector.
We use CN ðm;VÞ to refer to a circular symmetric complex Gaus-
sian distribution with mean vector m and covariance matrix V.
Also, E½�� denotes the expectation operator, u½x� is the Heaviside
step function (u½x� ¼ 1 if x P 0;u½x� ¼ 0 otherwise), while dij is
the Kronecker delta function (dij ¼ 1 if i ¼ j and 0 otherwise).
2. System model

The adopted MIMO system is composed by L BSs, each equipped
with N transmit antennas, reusing the same spectrum and the
same set of K pilot signals. Since TDD is assumed, reciprocity holds,
and thus CSI is acquired by means of uplink training sequences.
During a channel coherence time interval, the symbol periods are
divided in uplink pilot transmissions, processing, downlink and
uplink data transmissions [5,18]. Using orthogonal pilot sequences,
the number of available sequences is equal to its length, K. Thus, K
is limited due to mobility of the users, which reduces the
coherence time of the channel. Orthogonal frequency-division
ization in multi-cellular large scale MIMO systems. Int J Electron Commun
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multiplexing (OFDM) is assumed in the same way as in [9]. The
channel coherence band is divided into Nsmooth subcarriers, and
each subcarrier is shared by K users. As discussed in [9], dividing
the channel coherence band by the subcarrier spacing,

Nsmooth ¼ 1� DtCP
DtCP

; ð1Þ

where DtCP is the fraction of the OFDM symbol duration devoted to
the cyclic prefix, typically about 7% in current standards. Note that
only one out of Nsmooth subcarriers is assigned to a certain user for
each coherence band; therefore, a total number of K � Nsmooth users
is allowed for each cell. We assume perfect orthogonality in the fre-
quency domain, such that interference is only due to the K users
sharing the same subcarrier. Hence, we define our model for a gen-
eric subcarrier, assuming flat fading environment in which the BS
communicates with K users equipped with single-antenna mobile
terminals (MTs). We denote the 1� N channel vector between the
‘th BS and the kth user of jth cell by g‘kj ¼

ffiffiffiffiffiffiffi
b‘kj

p
h‘kj, in which b‘kj

is the long-term fading power coefficient, that comprises path loss
and log-normal shadowing, and h‘kj is the short-term fading chan-
nel vector, that follows h‘kj � CNð0N; INÞ. The channel matrix H is
admitted constant over the entire frame and changes independently
from frame to frame (block fading channel assumption). Note that
b‘kj is assumed constant for all N BS antennas. For the kth user of
each cell in a given subcarrier, it is assigned the sequence
wk ¼ ½w1k w2k . . .wKk�

T
; wk 2 CK�1. It holds that jwi kj ¼ 1 and

jwH
k wk0 j ¼ Kdkk0 since the set of sequences is orthogonal.
In the training transmission phase, we have assumed synchro-

nization in the uplink pilot transmissions, since this situation char-
acterizes the worst case for inter-cellular interference [9]. Hence,
the N � K received signal at the ‘th BS is:

Y‘ ¼
XL
j¼1

GT
‘j

ffiffiffiffiffi
Cj

p
Wþ N; ð2Þ

where Cj ¼ diagðc1j c2j . . . cKjÞ, being ckj the uplink transmit power

of the kth user of jth cell, G‘j ¼ ½gT
‘1j g

T
‘2j . . . g

T
‘Kj�

T , such that the

K � N matrix G‘j ¼
ffiffiffiffiffiffi
B‘j

p
H‘j;B‘j ¼ diagðb‘1j b‘2j . . . b‘KjÞ;H‘j ¼

½hT
‘1j h

T
‘2j . . . h

T
‘Kj�

T
is of dimension K � N, W ¼ ½w1 w2 . . . wK �, and N is

a N � K additive white Gaussian noise (AWGN) matrix whose
entries have zero mean and unitary variance.

In order to generate the estimated CSI matrix bG‘ of their served
users, the ‘th BS correlates its received signal matrix with the
known pilot sequences:

bGT
‘ ¼ 1

K
Y‘W

H ¼
XL
j¼1

GT
‘j

ffiffiffiffiffi
Cj

p
þ N0; ð3Þ

where N0 2 CN�K is an equivalent AWGNmatrix with zero mean and
variance 1

K. Hence, the channel estimated by the ‘th BS is contami-
nated by the channel of users that use the same pilot sequence in
all other cells.

Information transmit symbols of the ‘th cell is denoted by the

K � 1 vector x‘ ¼ ½x1‘ x2‘ . . . xK‘�T , where xk‘ is the transmit symbol
to the kth user of the ‘th cell, and takes a value from the squared
quadrature amplitude modulation (M-QAM) alphabet, normalized
in order to preserve unitary average power. For analysis simplicity,
using matrix notation, the K � 1 complex-valued signal received by
users of the ‘th cell is written as:

r‘ ¼
XL
j¼1

Gj‘Pj

ffiffiffiffiffiffi
Uj

p
xj þ n‘; ð4Þ

where Uj ¼ diagð/1j /2j . . . /KjÞ, being /kj the downlink transmit
power devoted by the jth BS to its kth user, Pj denotes the complex
Please cite this article in press as: Marinello JC, Abrão T. Pilot distribution optim
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valued N � K precoding matrix of the jth BS, being each column pkj

the N � 1 precoding vector of the kth user. Finally, n‘ � CNð0K ; IKÞ
represents the AWGN vector observed at the K MTs of the ‘th cell.

Under the matched-filter beamforming technique, the vector pkj

is computed as [5]:

pmf
kj ¼

bgH
jk

jjbgH
jkjj

¼
bgH
jk

akj

ffiffiffiffi
N

p ; ð5Þ

in which akj ¼
jjbgH

jk
jjffiffiffi

N
p , and bgjk is the kth row of the matrix bGj. Note that

the normalization in (5) is necessary to satisfy the maximum trans-
mit power available at the BS.

In the same way, in the zero-forcing beamforming technique,
the vector pkj is computed as:

pzf
kj ¼

wjk

jjwjkjj
; ð6Þ

in which the vector wjk ¼ bGH
j ajk, and ajk is the kth column of

Aj ¼ bGj
bGH

j

h i�1
.

3. Asymptotic limits of massive MIMO

Most of the asymptotic limits for massive MIMO systems can be
build upon the following well known lemma:

Lemma 1. Let s1; s2 2 CN�1 be two independent complex-valued
vectors following a normal distribution, with zero mean and variance
r2. Then

lim
N!1

sH1 s2
N

¼a:s:0 and lim
N!1

sH1 s1
N

¼a:s:r2: ð7Þ

Since the channel vectors of different users can be seen as inde-
pendent random vectors, the above lemma is widely used for
deriving limits in the massive MIMO scenarios. It can be justified
since as the vector’s length grows, the inner products between
independent vectors grow at lesser rates than the inner products
of vectors with themselves.
3.1. Asymptotic limits of MF beamforming

From (3), it is proved in [5] that a2
kj ¼

a:s:PL
l¼1cklbjkl þ 1

K. Then
authors show that rk‘, i.e., the received signal at the kth user of
‘th cell, can be written as [5, Eq. (5)]:

rk‘ ¼
XL
l¼1

XK
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
/jlblk‘

q
hH
lk‘p

mf
jl xjl þ nk‘: ð8Þ

Based on (5) and Lemma 1, (8) can be simplified when N ! 1 as:

rk‘ ¼
XL
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
/klblk‘

p
hH
lk‘p

mf
kl xkl þ nk‘;

¼
XL
l¼1

1
akl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N/klck‘

p
blk‘xkl þ nk‘;

¼
ffiffiffiffiffiffiffiffiffiffi
Nck‘

p XL
l¼1

ffiffiffiffiffiffi
/kl

p
blk‘xkl
akl

þ nk‘: ð9Þ

Note that the AWGN of the estimated CSI in (3) vanishes in (9). This

occurs since it is independent of hH
lk‘, and thus its product as N ! 1

is averaged out according to Lemma 1.
From (9), it is straightforward to see the asymptotic downlink

SINR of the system as:
ization in multi-cellular large scale MIMO systems. Int J Electron Commun
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SINRdl
k‘ ¼ lim

N!1

Nck‘/k‘b
2
‘k‘=a2

k‘

Nck‘
PL

j¼1
j–‘

/kjb
2
jk‘=a2

kj

� �
þ 1

¼ /k‘b
2
‘k‘=a2

k‘PL
j¼1
j–‘

/kjb
2
jk‘=a2

kj

: ð10Þ

Note that this limit depends mainly on the long-term fading
coefficients bjki, which are related to the spatial distribution of
the users in the different cells.
3.2. Asymptotic limits of ZF beamforming

For the ZF beamforming, Eq. (8) becomes

rk‘ ¼
XL
l¼1

XK
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
/jlblk‘

q
hH
lk‘p

zf
jl xjl þ nk‘: ð11Þ

In order to find the asymptotic limits when employing the ZF

scheme, we begin analysing the matrix A‘ ¼ bG‘
bGH

‘

h i�1
. From (3),

we have that

A‘ ¼
XL
j¼1

ffiffiffiffiffiffiffiffiffiffiffi
CjB‘j

p
H‘j þ N0

 ! XL
l¼1

HH
‘l

ffiffiffiffiffiffiffiffiffiffi
ClB‘l

p
þ N0H

 !" #�1

ð12Þ

Note that from Lemma 1, we can neglect all the terms corre-
sponding to products of independent matrices, since in the limit
of N ! 1, they will not account. So, (12) simplifies to:

A‘ ¼
XL
j¼1

ffiffiffiffiffiffiffiffiffiffiffi
CjB‘j

p
H‘j

XL
l¼1

HH
‘l

ffiffiffiffiffiffiffiffiffiffi
ClB‘l

p
þ N0N0H

" #�1

¼
XL
j¼1

ffiffiffiffiffiffiffiffiffiffiffi
CjB‘j

p
H‘jH

H
‘j

ffiffiffiffiffiffiffiffiffiffiffi
CjB‘j

p
þ N0N0H

" #�1

¼ N
XL
j¼1

CjB‘j þ
1
K
IK

 !" #�1

¼ D‘½ ��1
: ð13Þ

It can be seen that the matrix D‘ is a diagonal matrix, in which the

kth term can be written as ½D‘�kk ¼ N
PL

j¼1ckjb‘kj þ 1
K

� �
. Thus, the

matrix A‘ will also be a diagonal matrix, and the kth term can be

written as ½A‘�kk ¼ 1=½D‘�kk. Hence, the vector wjk ¼ bGH
j ajk is simpli-

fied to wjk ¼ bgH
jk

1

N
PL

j¼1
ckjb‘kjþ1

K

� �, and Eq. (6) can be rewritten as

pzf
kj ¼

bgH
jk

1

N
PL

j¼1
ckjb‘kjþ1

K

� �
bgH
jk

1

N
PL

j¼1
ckjb‘kjþ1

K

� �
������

������
������

������
¼

bgH
jkbgH
jk

��� ������ ��� ¼ pmf
kj : ð14Þ

It is important to note that the convergence of the MF precoding
to the ZF scheme in the limit of N ! 1 is just achieved when con-
sidering the constraint of maximum transmit power available at
BS, i.e., normalizing the precoding vector. Otherwise, the asymp-
totic performances of such techniques will differ, as shown in
[14, Fig. 11]. Furthermore, this equality holds only for N very large.
For intermediate values, it is seen that the ZF scheme approaches
the asymptotic limit faster than the MF beamforming, as numeri-
cally demonstrated in Section 5.1. However, the MF technique is
quite less complex, and can be implemented in a decentralized
way since the precoding vector of each user is not dependent on
the estimated channels of other users, as opposed to ZF.
Please cite this article in press as: Marinello JC, Abrão T. Pilot distribution optim
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3.3. Asymptotic BER in downlink

We demonstrated that the MF and ZF schemes converge to the
same precoding vector when the number of BS antennas grows to
infinity. So, the results obtained in [5] for MF are also valid for ZF,
specially Eqs. (9) and (10). Analysing the received signal of the kth
user of the ‘th cell (9), we can also obtain some information about
the bit-error probability:

rk‘ ¼
ffiffiffiffiffiffiffiffiffiffi
Nck‘

p ffiffiffiffiffiffiffi
/k‘

p
b‘k‘xk‘
ak‘

þ
XL
l¼1
l–‘

ffiffiffiffiffiffi
/kl

p
blk‘xkl
akl

0@ 1Aþ nk‘: ð15Þ

Indeed, the effect of AWGN is averaged out when N ! 1. For nota-
tion simplicity, but with no loss of generality, we consider 4-QAM
modulation. Thus, the probability of error for this user can be writ-
ten as (16a) in the next page, where Prð�Þ is the probability of an
event. Hence, (16a) can be simplified as (16b), since both terms in
the sum have the same statistical behaviour. The errors will occur
whenever the interfering signal that reaches the user is greater than
its intended signal.

Pek‘ ¼
1
2
Pr R

ffiffiffiffiffiffiffi
/k‘

p
b‘k‘xk‘
ak‘

( )
< R

XL
l¼1
l–‘

ffiffiffiffiffiffi
/kl

p
blk‘xkl
akl

8<:
9=;

0@ 1A
þ 1
2
Pr I

ffiffiffiffiffiffiffi
/k‘

p
b‘k‘xk‘
ak‘

( )
< I

XL
l¼1
l–‘

ffiffiffiffiffiffi
/kl

p
blk‘xkl
akl

8<:
9=;

0@ 1A; ð16aÞ

¼ 1
2
Pr

ffiffiffiffiffiffiffi
/k‘

p
b‘k‘R xk‘f g
ak‘

<
XL
l¼1
l–‘

ffiffiffiffiffiffi
/kl

p
blk‘R xklf g
akl

0@ 1A
þ 1
2
Pr

ffiffiffiffiffiffiffi
/k‘

p
b‘k‘I xk‘f g
ak‘

<
XL
l¼1
l–‘

ffiffiffiffiffiffi
/kl

p
blk‘I xklf g
akl

0@ 1A;

¼ Pr

ffiffiffiffiffiffiffi
/k‘

p
b‘k‘R xk‘f g
ak‘

<
XL
l¼1
l–‘

ffiffiffiffiffiffi
/kl

p
blk‘R xklf g
akl

0@ 1A: ð16bÞ

In order to determine the exact value of the probability in (16b), we
must analyse every possible combination of interfering signals.
Thus, the result can be written as

Pek‘ ¼
1

2L�1

X2L�1

j¼1

u
XL
l¼1
l–‘

ffiffiffiffiffiffi
/kl

p
blk‘bjl

akl

0@ 1A�
ffiffiffiffiffiffiffi
/k‘

p
b‘k‘

ak‘

24 35 ð17Þ

where bjl is the j; lth element of the 2L�1 � L matrix
B ¼ ½B0

1:‘�1;12L�1 ;B0
‘:L�1�, in which B0 contains every possible combi-

nation of f�1gL�1. Although we restricted our investigation for 4-
QAM modulation, similar analysis can be conducted for M > 4 by
appropriately defining the decision bounds for rk‘ in (15).

The expression in (17) gives the exact BER of the kth user of the
‘th cell, as a function of the powers and the long-term fading coef-
ficients of users in adjacent cells sharing the same training
sequence. Thus it can be adopted as a performance optimization
metric, in the same way as defined in Eq. (10). One possible
approach is invoking a power allocation algorithm, as done in [5]
with respect to (10). In this paper, we prefer a more simple strat-
egy, that consists of simply optimizing the assignment of pilot
sequences to users, by knowing the interference experienced by
each sequence. We call this procedure of pilot allocation scheme.

4. Pilot allocation schemes

Eq. (15) shows that the received signal for a given user in the
downlink of a massive MIMO system presents interference from
another users in adjacent cells that share the same pilot sequence.
ization in multi-cellular large scale MIMO systems. Int J Electron Commun
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Besides, from this received signal in the limit of N ! 1, the asymp-
totic expressions for SINR, Eq. (10), and for BER, Eq. (17), have been
derived. At first glance, it may appear that the interference term in
(15) does not depend on which user in ‘th cell is assigned the kth

pilot sequence. However, reminding that a2
kl ¼

a:s:PL
j¼1ckjblkj þ 1

K, one
can see it is not true.

Thus, varying to which user is assigned the kth pilot sequence
according its long-term fading coefficient can enhance the SINR,
Eq. (10), and/or1 decrease the probability of error, Eq. (17). This fact
allows us the formulation of alternative optimization criteria, as
described in the sequel.

Initially, we define the matrix C, of size K!� K , containing every
possible combination of pilot sequences to the users, i.e., cij says
that, in the ith combination, the jth pilot sequence is allocated to
the cijth user. Then we define four pilot allocation criterion aiming
to optimise BER or SINR figure of metric. The four criteria are
described in the following.
4.1. MinBER-based pilot allocation metric

In the first pilot allocation scheme, we search the best
pilot distribution in the sense of minimizing the mean BER among
users of the ‘th cell, leading to the MinBER pilot allocation
scheme:

imb ¼ arg min
i

1
K

XK
k¼1

Pecik‘; ð18Þ

in which

Pecik‘ ¼
1

2L�1 �
X2L�1

j¼1

u
XL
l¼1
l–‘

ffiffiffiffiffiffi
/kl

p
blk‘bjl

aðiÞ
kl

0@ 1A�
ffiffiffiffiffiffiffiffiffi
/cik‘

p
b‘cik‘

aðiÞ
cik‘

24 35
corresponds to the BER of the cikth user of ‘th cell when the kth pilot

sequence is assigned to him. Note that the superscript in aðiÞ
kl and

aðiÞ
cik‘

evidences that these terms depend on the ith pilot distribution,

since ðaðiÞ
kl Þ

2
¼ ccik‘blcik‘

þ
PL

j¼1
j–‘

ckjblkj þ 1
K, and ðaðiÞ

cik‘
Þ
2
¼ ccik‘b‘cik‘

þPL
j¼1
j–‘

ckjb‘kj þ 1
K, where we have put in evidence the terms related to

the cikth user of the ‘th cell. The pilot allocation procedure is eval-
uated in a decentralized way; therefore, the assignment of pilots
can be modified only for users of the ‘th cell when it is carrying
out this procedure. Although the strictly optimal solution would
test every possible pilot combination among the K � L users, its com-
plexity would be prohibitive. Thus, the solution obtained in the
decentralized way is preferable, and it can be shown that it con-
verges to a Nash equilibrium after performing some times by each
cell. Note that this problem can be viewed as a finite potential game,
since: (a) it exists a global potential function that maps every strat-
egy to some real value according its efficiency; (b) the set of strate-
gies is of finite dimension [12]. In this case, each cell is a player, the
potential function would be the average BER of the whole system in
that subcarrier, i.e., the average of (17) evaluated for the K � L users,
and the strategy is the pilot allocation in that cell. Since each player
chooses its strategy following a selfish best response dynamics, the
convergence of the game to a Nash equilibrium is assured in [12,
Theorem 19.12], [15, Proposition 2.2]. Besides, the decentralized
solution can achieve appreciable gains in performance, as demon-
strated in the next Section.
1 Maximizing the SINR not necessarily minimizes the BER in the limit of N ! 1, as
can be seen from expressions (10) and (17), and discussed in Section 5.2.
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4.2. MaxSINR-based pilot allocation metric

In the same way, in the second pilot allocation scheme, we
define the pilot distribution that maximizes the mean SINR in
the downlink of the ‘th cell, namely MaxSINR pilot allocation
scheme:

ims ¼ arg max
i

1
K

XK
k¼1

SINRdl
cik‘

; ð19Þ

in which

SINRdl
cik‘

¼
/cik‘

b2
‘cik‘

=ðaðiÞ
cik‘

Þ
2

PL
j¼1
j–‘

/kjb
2
jk‘=ða

ðiÞ
kj Þ

2 ð20Þ

is the downlink SINR of the cikth user of ‘th cell when the kth pilot
sequence is assigned to him.

4.3. MiniMaxBER-based pilot allocation metric

Both optimization schemes, e.g. (18) and (20), find the pilot dis-
tribution by optimizing the mean value of some performance crite-
rion. However, the ‘‘average” approach may be not completely
adequate in modern communications systems, since it may lead
to a great improvement in performance for a few users, while pro-
viding low quality of service (QoS) to those users poorly located,
typically in the edge of the cell. Hence, we also look for pilot allo-
cation schemes that ensure improvement in QoS for every user
within the ‘th cell. The MinimaxBER pilot allocation scheme is
defined as:

immb ¼ arg min
i

max
k

Pecik‘; ð21Þ

which minimizes the worst BER within the cell.

4.4. MaxMinSINR-based pilot allocation metric

On the other hand, the MaxminSINR pilot allocation criterion
constitutes an alternative way to optimally allocate pilots in
multi-celular massive MIMO systems. The MaxminSINR pilot allo-
cation scheme can be defined from the following optimization
problem:

imms ¼ arg max
i

min
k

SINRdl
cik‘

; ð22Þ

which finds the pilots’ set that maximizes the lowest SINR among
the users of the cell.

4.5. Pilot allocation algorithm and its complexity

In the analysis of the pilot allocation strategies for multi-
cellular massive MIMO we have assumed the asymptotic condi-
tion, i.e, when N ! 1. Hence, the complexity of implementation
of these pilot allocation algorithms will be independent of the
number of antennas N. Algorithm 1 describes the general pilot allo-
cation procedure, defining its inputs, outputs, and main steps. After
its computation, the ‘th cell assigns the kth pilot sequence to the
cioptkth user. Note that each cell should be able to find the optimal
pilot combination set among its covered users following one of
these four criteria given respectively by Eq. (18), (19), (21), (22),
in a decentralized way, reducing the overall computational com-
plexity of the massive MIMO system.

Indeed, the computational complexity for the SINR-based pilot
allocation procedures results OðK! � K � L2Þ, since operation of lines
4 and 6 demands 2Lþ 1 flops (floating point operations) each
one, and will be evaluated K! � K � L times. On the other hand, the
ization in multi-cellular large scale MIMO systems. Int J Electron Commun
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BER-based pilot allocation schemes result in a computational com-
plexity of OðK! � K � L � 2L�1Þ, since evaluation of Eq. (18) or (21) in
line 10 becomes prevalent, i.e. of OðK � L � 2L�1Þ, and should be eval-
uated for the K! pilot combinations. Such complexities may appear
excessive. However, bearing in mind that K must assume low val-
ues in practical scenarios,2 as well as the number L of cells within a
cluster, one can conclude that the complexity of pilot allocation pro-
cedures is not prohibitive. As described in [9], there is no appeal to
consider higher values of K in practical mobile TDD massive MIMO
scenarios, since great part of the coherence time interval would be
spent acquiring CSI from the moving terminals. Besides, once the
optimization is complete, it remains valid for a relatively large
time-interval, since the scheme depends only on the transmit pow-
ers and long-term fading coefficients of the users. Even for specific
scenarios in which K may assume higher values, i.e., with reduced
mobility such as pedestrian scenarios, the exhaustive search
approach can be replaced by some low-complexity heuristic method,
and the optimization remains valid.

Algorithm 1 Pilot allocation procedure

Input: Bjl;Uj;Cj;8j; l ¼ 1;2; . . . L.

1: Generate matrix C, of size K!� K;
2: for each combination i ¼ 1;2; . . . ;K! do
3: for each pilot sequence k ¼ 1;2; . . . ;K do

4: Evaluate aðiÞ
cik‘

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ccik‘b‘cik‘ þ

PL
j¼1
j–‘

ckjb‘kj þ 1
K

r
;

5: for each cell l ¼ 1;2; . . . ; L; l–‘ do

6: Evaluate aðiÞ
kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ccik‘blcik‘ þ

PL
j¼1
j–‘

ckjblkj þ 1
K

r
;

7: end for
8: end for
9: end for
10: Find iopt 2 i ¼ 1;2; . . . ;K!, corresponding to the optimal

combination in C according some metric: (18), (19), (21),
(22);

Output: iopt .
5. Numerical results

Aiming to demonstrate the effectiveness of the proposed pilot
allocation methods for multi-cellular massive MIMO systems, we
provide in this Section performance results for both BER and SINR
downlink metrics. The asymptotic condition (N ! 1) for the num-
ber of BS antennas has been assumed, except for the convergence
analysis for increasing N depicted in Fig. 2. We have adopted a
multi-cell scenario with hexagonal cells of radius 1600 m, where
K ¼ 4 users are uniformly distributed in its interior, except in a cir-
cle of 100m radius around the cell centered BS. Besides, only the
first ring of interfering cells has been considered, both for fre-
quency reuse factors (RF) of one and three. We have assumed a
similar TDD protocol of that in [5], in which the coherence interval
is composed of 11 symbol periods: 4 for sending uplink training
sequences, 1 for processing, 4 and 2 for downlink and uplink data
transmission, respectively. As discussed in [8], in order to maxi-
2 K represents the length of the training sequences, which is equal to the number of
users sharing one of Nsmooth subcarriers in each coherence band. Nsmooth, as given in
(1), is desired to be high for an efficient OFDM communication; for example,
Nsmooth ¼ 14 for DtCP ¼ 7%. On the other hand, K is limited by the coherence time, due
to the user’s mobility, by the efficiency of the TDD scheme, which cannot spend much
time with pilots, and by the subcarrier spacing. For example, in [9], for a cell serving
42 users, K ¼ 3 and Nsmooth ¼ 14.
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mize the net throughput for a TDD protocol, it is beneficial to ded-
icate the same time with pilots and data transmissions. If more
time is spent with pilots, more users can be served, but its rates
decrease substantially due to the excessive overhead, and vice-
versa. The system uses a carrier frequency of 1.9 GHz and a fre-
quency band of 20 MHz.

Furthermore, the coherence time of 500 microseconds has been
adopted, which could accommodate any terminal moving slower
than 80 meters/second (associating the coherence time with the
interval required by a terminal to move no more than 1/4 wave-
length [9, Sec.VII-D]). The log-normal shadowing has been mod-
elled with a standard deviation of 8dB, and the path loss term

d�k
‘kj with decay exponent equal to k ¼ 3:8, and d‘kj denoting the dis-

tance between the ‘th BS to kth mobile user of jth cell. Besides, we
have considered 4-QAM modulation, a SNR target of 10 dB and an
equal power allocation policy for all users, valid both for downlink3

and uplink. The constraint of maximum transmit power available at
BS is satisfied by the precoding schemes in our formulation, as rep-
resented in expressions (5) and (6), in which the precoding vectors
are normalized. It is important to note that the numerical results
in this Section (except part of Fig. 2) were obtained from the analyt-
ical expressions derived in Section 3, averaged from the evaluation of
at least 105 independent trials for the user’s location.

Fig. 1 depicts a single realization of the multi-cell scenario
adopted in our numerical simulations, for frequency reuse factors
of one and three. Notice that for clarity purpose, only users sharing
the same frequency band, i.e., interfering with each other, have
been represented. Indeed, one can see that interfering users are
much closer with smaller reuse factors. In our numerical results
presented in the sequel, only the performance metrics of users
positioned inside the central cell were computed, since these users
experience a more realistic condition of interference.

5.1. Performance convergence of precoding techniques

Considering both MF and ZF precoding techniques, Fig. 2 depicts
the asymptotic convergence4 (as the number of BS antennas
increases) for both BER and SINR performance metrics to the bounds
defined in (17) and (10), respectively. The curves present mean val-
ues of each performance metric, taken among the users of the cell.
One can note that the SINR of the ZF precoding scheme indeed con-
verges to the same bound of Eq. (10), which was derived in [5] as the
asymptotic SINR of MF beamforming. This occurs since we have con-
sidered the constraint of maximum transmit power available at BS,
as opposed to [14]. These numerical results also show that MF needs
at least one order of magnitude more BS antennas than ZF to reach
that bound. Furthermore, the performance of both schemes are also
analysed from the perspective of BER, validating Eq. (17) as the
asymptotic BER that such techniques are able to achieve when
N ! 1. Indeed, in terms of BER, the performances of both tech-
niques rapidly approach the asymptotic limit, being necessary
� 104 BS antennas for both precoding techniques reaching the
bound.

5.2. Performance of pilot allocation schemes

In this subsection, we investigate the performance of the four
pilot allocation schemes proposed in Section 4, in terms of mean
values, as well as in terms of distribution among users. The simu-
3 Despite of the average equal power allocation policy, the instantaneous power for
users in downlink may differ due to the precoding scheme.

4 Notice that in Fig. 2 simulation and analysis results have been compared, since
performances of the techniques for increasing N are computed with independent
realizations of small-scale fading, AWGN, and long-term fading, and they converge to
the analytical bounds dependent only on the long-term fading.
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lation results presented here were averaged over 100,000 spatial
realizations.

Fig. 3 shows the cumulative distribution function (CDF) as a
function of the BER of the users, regarding different pilot allocation
techniques. For reference of comparison, it is also depicted the very
large MIMO performance with no optimization in the distribution
of pilot sequences, i.e., with random allocation strategy. An inter-
esting behavior on the BER distribution among users in the massive
MIMO system can be observed from these numerical results. One
can note that a significant portion of users communicates to BS
with no errors, i.e., BER = 0. This occurs because, for these users,
even the strongest interference that can reach them is lower than
their intended signal, and thus the probability of error is null. On
the other hand, the other small portion of users, that are not free
Please cite this article in press as: Marinello JC, Abrão T. Pilot distribution optim
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of errors, presents excessive values of BER. This disparity becomes
more noticeable for unitary frequency reuse factor, in which the
portion of users that presents excessive error rates is � 10%, while
for reuse factor of three it is about 1% for a BER P 0:2.

Furthermore, it shows that the pilot allocation schemes are able
to significantly decrease the fraction of users with excessive BER’s.
As shown in Tables 1 and 2, the fraction of users with BER P 0:1
reduces from 23.63% to 14.92%, for frequency reuse factor of
one, and from 3.47% to 1.06%, for frequency reuse factor of three,
when deploying the MinBER approach.

Fig. 4 shows the fraction of users above a given SINR, for fre-
quency reuse factors of one and three. It can be seen that increas-
ing the frequency reuse factor has the effect of significantly
improving the SINR of the users, as if the curve was shifted right
ization in multi-cellular large scale MIMO systems. Int J Electron Commun
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Table 1
Performance of pilot allocation schemes for frequency-reuse factor of one.

PA scheme Mean BER (%) Users BER = 0 (%) Users BERP 0.1 (%) Mean user rate (Mbps) 95%-likely user rate (Mbps)

Random 9:84 75:41 23:63 48:50 0:1344
MinBER 5:48 83:98 14:92 55:54 0:4471
MaxSINR 6:85 80:85 17:78 56:59 0:4611
MinimaxBER 5:52 83:68 15:21 55:48 0:4609
MaxminSINR 6:17 82:45 16:28 52:62 0:7937

Table 2
Performance of pilot allocation Schemes for frequency-reuse factor of three.

PA scheme Mean BER (%) Users BER = 0 (%) Users BERP 0.1 (%) Mean user rate (Mbps) 95%-likely user rate (Mbps)

Random 1:41 96:33 3:47 29:07 4.79
MinBER 0:36 98:83 1:06 32:84 8.82
MaxSINR 0:66 98:01 1:86 32:91 8.81
MinimaxBER 0:37 98:82 1:06 32:84 8.82
MaxminSINR 0:39 98:78 1:09 31:68 11.15
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Fig. 3. Cumulative distribution function for the BER of the users, for different pilot allocation schemes.
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� 18 dB, without noticeable changes on its format and slope. One
can see that the MaxSINR technique has the ability of improving
the SINR of the best located users, increasing � 4 dB of SINR for
the best 20% of the users. On the other hand, the MaxminSINR
scheme increases � 10 dB of SINR for the 95% level, i.e., it benefits
the less favorably located users.

Finally, Fig. 5 depicts the fraction of users above a given data
rate, for frequency reuse factors of one and three, regarding the
different proposed pilot allocation schemes. Notice that the
downlink data rate Rk‘ of the kth user in the ‘th cell can be defined
as:

Rk‘ ¼
bw
rf

� �
D
T

� �
log2 1þ SINRdl

k‘

� �
; ð23Þ

where bw is the system total bandwidth, rf is the reuse factor, D is
the number of symbol periods spent sending downlink data, and T
is the total number of symbol periods within a channel coherence
time.

Examining the curves, one can conclude that the slope of curves
for reuse factor three is greater than the slope of unitary reuse fac-
Please cite this article in press as: Marinello JC, Abrão T. Pilot distribution optim
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tor curves. This fact means that the distribution for unitary reuse
factor is much more irregular, unequal, in the sense that some
users have very high rates while others have low QoS. On the other
hand, for reuse factor of three, this distribution is much more uni-
form, guaranteeing simultaneously an improved QoS for much
more users.

As shown in Table 1, 95% of users communicates with rates
greater than 0.1344 Mbps with random pilot distribution, while
when employing the MaxminSINR PA scheme the 95%-likely rate
per user increases to 0.7937 Mbps. This means that a gain of 6
times can be achieved for unitary frequency reuse factor, while
providing a mean rate of 52.62 Mbps per user. Furthermore, if
the minimum assured performance per terminal is a more impor-
tant concern, then the MaxminSINR scheme can be employed in
conjunction with a frequency reuse factor of three. As described
in Table 2, the 95%-likely rate passes from 4.79 Mbps to
11.15 Mbps, a gain greater than 6 Mbps. Note that the mean rate,
however, decreases, since the gain in SINR for the best located
users does not offset the loss due to reduction in bandwidth, given
the logarithmic increase of rate according SINR gains. Larger reuse
ization in multi-cellular large scale MIMO systems. Int J Electron Commun
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factors are more beneficial for poor located users, since the loga-
rithm is in its linear region, as discussed in [9].

Comparing both Tables, we note that the assured QoS, in terms
of 95%-likely rate, can pass from 0.1344 Mbps, with unitary reuse
factor and random pilot allocation, to 11.15 Mbps, for the Maxmin-
SINR scheme and reuse factor of three. Thus, gains of �85 times
can be achieved combining both RF and PA techniques, with appro-
priate conditions. Besides, the mean BER reduces from 9.84% to
0.39%, and the portion of users communicating in the absence of
errors increases from 75.41% to 98.78%. These benefits are
achieved by simply assigning the pilot sequences to the users
within the cell in a more efficient way, in conjunction with a large
frequency reuse factor, and remain valid whenever the long-term
fading coefficients stay unchanged.
Please cite this article in press as: Marinello JC, Abrão T. Pilot distribution optim
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6. Conclusion

In this work we have characterized the asymptotic performance
of the massive MIMO system downlink under the point of view of
the BER performance. We have demonstrated that both MF and ZF
precoding schemes result in the same signal as N ! 1, and thus
the results of [5] are also valid for the ZF beamforming. Then, we
derived the exact asymptotic expression of the BER of a given user,
based on the long-term fading coefficients and the power levels of
other users. In the same way as the asymptotic SINR expression
found in [5], the BER expression derived also depends only on
the users in neighboring cells that reuse the same pilot sequence.

Furthermore, we have proposed efficient forms of assigning
these pilots to the users within the cell, by optimizing several per-
ization in multi-cellular large scale MIMO systems. Int J Electron Commun
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formance metrics, including the asymptotic BER or alternatively
the maximization of SINR found herein. The significant gains
achieved by these pilot allocation techniques were demonstrated
numerically. For instance, we have showed that a gain of 6 times
regarding the random strategy can be achieved for the downlink
rate with unitary reuse factor, while the data rate is increased from
4.79 Mbps to 11.15 Mbps for reuse factor of three. When combin-
ing the MaxminSINR technique with an appropriated reuse factor,
we showed that the massive MIMO system are able to operate with
a 95%-likely downlink rate of 11.15 Mbps, providing a communi-
cation free of errors for 98.78% of the users, guaranteeing the reli-
ability of the system.

All of these benefits are achieved in a quite simple and expedi-
tious way, by just knowing the powers and the long-term fading
coefficients of users in adjacent cells, for each pilot sequence. Since
these informations do not scale with the number of BS antennas,
and remains constant within a long time and frequency interval,
the implementation of the proposed pilot training sequence
assignment method in massive MIMO system is surely feasible.
Besides, even greater gains might be achieved by combining the
proposed schemes with power allocation and time-shifting tech-
niques [5,13], which is the continuity of this work.
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