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Present study deals with the free vibration analysis of skew plates made from functionally graded carbon 
nanotube reinforced composites. Carbon nanotubes as reinforcements are distributed across the thickness 
of the plate. Distribution pattern may be uniform or functionally graded. The developed formulation from 
a Cartesian coordinate system is transformed to an oblique coordinate system to satisfy the boundary 
conditions. The virtual strain and kinetic energies of the plate are obtained using the first order shear 
deformation plate theory. Ritz method whose shape functions are developed according to the Gram–
Schmidt process is implemented to construct an eigenvalue problem associated to the natural frequencies 
of the plate. The developed solution method is general and may be used for arbitrary boundary conditions 
of the plate. Results are compared for isotropic homogeneous and composite laminated plates in skew 
shape with the available data in the open literature. Afterwards numerical results are provided for skew 
plates reinforced with carbon nanotubes. It is shown that volume fraction of carbon nanotubes and their 
distribution pattern are both influential of natural frequencies of the carbon nanotube reinforced plates. 
Generally, the higher the volume fraction of carbon nanotubes, the higher the natural frequencies of the 
skew plate.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Due to their exceptional mechanical properties, carbon nan-
otubes (CNTs) are known as an excellent candidate to reinforce the 
composites. CNTs have higher elasticity modulus in comparison to 
the polymeric and metallic matrices which results in a composite 
with enhanced stiffnesses. Therefore, volume fraction of CNTs is an 
important factor on structural response of composites reinforces 
with CNTs.

Another factor which may affect the global and local struc-
tural response of a composite media reinforced with CNTs is their 
distribution pattern. Distribution of CNTs in a matrix may be uni-
form or functionally graded according to a prescribed function. An 
overview of the available works on the mechanical and thermal 
properties of a composite media is provided by Liew et al. [1].

As shown by Shen [2], mechanical response of a rectangular 
plate may be enhanced with the introduction of a prescribed func-
tionally graded pattern for the CNTs. Shen [2] exhibited that, bend-
ing moments of the plate may be alleviated significantly with the 
introduction of functionally graded CNTs where the top and bot-
tom surfaces of the plate are enriched with the maximum volume 
fraction of CNT and the midsurface is free of CNT. Following this 
research, various investigators analysed the structural behaviour 
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of CNT reinforced composites in various shapes. An overview of 
the available works on the vibration of plates made of function-
ally graded carbon nanotube reinforced composites (FG-CNTRC) is 
provided in the next paragraphs.

Based on the first order shear deformation plate theory and 
finite elements formulation, natural frequencies of an FG-CNTRC 
plate are obtained by Zhu et al. [3]. Free vibration of rectangular 
plates [4] and skew plates [5] are investigated by Zhang et al. using 
the element free methods. In two other studies, also, Zhang et al. 
[6,7] examined the free vibration characteristics of elastically re-
strained rectangular plates and plates which are simply supported 
in two opposite edges. For rectangular plates which are resting on 
elastic foundation, Zhang et al. [8] investigated the free vibration 
characteristics using an element free moving least squares Ritz for-
mulation. For rectangular laminated plates with general boundary 
conditions and composed of FG-CNTRC layers, Lei et al. [9] in-
vestigated the free vibration characteristics using an element free 
method. Free vibration behaviour of FG-CNTRC plates in an arbi-
trary quadrilateral shape is investigated by Malekzadeh and Zarei 
[10] based on a two-dimensional generalised differential quadra-
ture method. Malekzadeh and Heydarpour [11] developed a mixed 
solution method based on Navier and Layerwise formulations to 
investigate the free vibration characteristics of sandwich rectan-
gular plates containing the FG-CNTRC layers. Due to the adoption 
of Navier solution method, plates which are simply supported all 
around may be analysed only. A higher order shear deformation 
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plate theory is used by Natarajan et al. [12] to investigate the 
free vibration of rectangular plates. Based on a two step pertur-
bation technique, Wang and Shen [13,14] investigated the linear 
and nonlinear free vibration characteristics of FG-CNTRC plates and 
sandwich plates with FG-CNTRC face sheets. The provided solution 
method in these researches, may be used only for plates which are 
simply supported in flexure all around, while movable or immov-
able in normal to edges directions. Mirzaei and Kiani [15] applied 
the Chebyshev–Ritz method to the dynamic motion equations of 
the perforated plate to investigate the free vibration characteris-
tics of moderately thick FG-CNTRC rectangular plate with a centric 
rectangular cut-out. Wang et al. [16] developed a semi-analytical 
solution to study the free vibration of thin rectangular FG-CNTRC 
plates using the classical plate theory formulation. Based on the 
conventional Ritz method accompanied with the Lagrangian mul-
tipliers technique, Kiani [17] investigated the free vibration char-
acteristics of FG-CNTRC plates located on point supports. The so-
lution method of this research is general and may be used for 
arbitrary number and position of point supports. Garcia-Macias et 
al. [18] analysed the free vibration and bending behaviour of FG-
CNTRC skew plates. An efficient four-noded skew element with a 
total of twenty degrees of freedom is defined.

Similarly to free vibration behaviour of FG-CNTRC plates, forced 
vibration also has been the subject of many studies in the past 
years. However in comparison to free vibration, less attention 
is devoted to forced vibration. Dynamic response of rectangular 
plates made of FG-CNTRC plates subjected to dynamic loading 
is studied by Lei et al. [19] using a mesh free method. Wang 
and Shen [20] examined the geometrically nonlinear dynamic re-
sponse of an FG-CNTRC rectangular plate under the action of lat-
eral pressure. In this research, von-Kármán type of geometrical 
non-linearity is included into the formulation and plate is oper-
ating at various thermal environments. A two step perturbation 
technique suitable for plates with all edges simply supported is 
developed which may be used for both axially movable and im-
movable plates. Malekzadeh et al. [21] investigated the dynamic 
response of rectangular plate made of FG-CNTRC subjected to the 
action of a single moving mass. Finite element formulation is pro-
posed to solve the motion equations of the plate suitable for arbi-
trary edge supports.

Above literature search reveals that, in comparison to rectangu-
lar plates, less attention is devoted to skew plates which is due 
to the more complex geometry. The present research examines 
the free vibration behaviour of moderately thick plates made of 
FG-CNTRC. First order shear deformation plate theory is used as 
the basic assumption to construct the kinetic and strain energies 
of the plate. The rectangular coordinate system is transformed to 
an oblique system which makes it easier to apply the boundary 
conditions of any type. Ritz minimization procedure is applied to 
the energies of the plate to establish the eigenvalue problem suit-
able for arbitrary in-plane and out-of-plane boundary conditions 
of the skew plate. To increase the convergence of the problem, the 
basis shape functions are approximated using the Gram–Schmidt 
orthogonal shape functions. The developed formulation is general 
and may be used for arbitrary combinations of boundary con-
ditions. Numerical results of this study are compared with the 
available data in the open literature to assure the validity of the 
proposed formulation. Afterwards, parametric studies are given for 
FG-CNTRC skew plates.

2. Basic formulation

A skew plate with thickness h, edges a and b is considered. 
Orthogonal coordinate system is assigned to the corner of the mid-
surface of the plate. The assigned coordinate system, geometrical 
characteristics and schematic of the plate are shown in Fig. 1.
Fig. 1. Schematic, coordinate systems and geometrical characteristics of FG-CNTRC 
skew plate.

Table 1
Volume fraction of CNTs as a function of thick-
ness coordinate for various cases of CNTs dis-
tribution [23–25].

CNTs distribution V C N

UD CNTRC V ∗
C N

FG-V CNTRC V ∗
C N

(
1 + 2

z

h

)
FG-O CNTRC 2V ∗

C N

(
1 − 2

|z|
h

)
FG-X CNTRC 4V ∗

C N
|z|
h

Distribution of CNTs across the thickness of the plate may be 
uniform or functionally graded. When distribution of CNTs across 
the plate is functionally graded, it is usually referred to as func-
tionally graded carbon nanotube reinforced composite (FG-CNTRC) 
skew plate. From the mathematical point of view, various disper-
sion profiles may be considered for the CNTs across the thickness 
of the plate, however, linearly graded patterns of CNTs are more 
observed in the researches due to their consistency with the fabri-
cation processes [22]. As a result, three types of FG-CNTRC plates 
may be achieved which are known as FG-V, FG-X and FG-O. These 
three types along with the uniformly distributed (UD)-CNTRC skew 
plate are considered in the present research. Table 1 presents the 
distribution of volume fraction of CNT as a function of thickness 
coordinate in various CNTRC plates.

It is easy to check from Table 1 that, both uniform and func-
tionally graded patterns of CNTRC plates will have the same total 
volume fraction of CNTs which is denoted by V ∗

C N . Through such 
feature, the dynamic characteristics of UD- and FG-CNTRC may be 
compared with respect to each other. V ∗

C N may be obtained as a 
function of mass density of CNTs, ρC N , mass density of matrix ρm

and mass fraction of CNTs wC N as

V ∗
C N = wC N

wC N + ρC N/ρm − wC NρC N/ρm
(1)

Referring to Table 1 and comparing the distribution pattern of 
CNTs reveals that, in FG-X pattern, the top and bottom surfaces of 
the plate are enriched by the maximum volume fraction of CNTs 
whereas the mid-surface is free of CNTs. In FG-O, distribution pat-
tern is inverse. The top and bottom surfaces are free of CNTs and 
the mid-surface is enriched with the maximum volume fraction 
of CNTs. In type FG-V, the bottom surface is free of CNT and the 
top one is enriched with the maximum volume fraction of CNT. In 
UD type, unlike the other four FG types, volume fraction of CNT is 
constant at each surface of the plate.

Various methods are proposed to estimate the effective material 
properties of the CNTRC media. Among them, Mori–Tanaka scheme 
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[26] and the rule of mixtures [27] approach are more observed 
through the researches. Rule of mixtures approach is a simple and 
efficient approach to obtain the properties of the fibre reinforced 
composite media. However, due to the severe differences between 
the properties of polymeric matrix and CNTs, this approach fails in 
accurate estimation of properties. A refined rule of mixtures which 
consists of efficiency parameters is used extensively in analysis of 
FG-CNTRC beams [28–33], plates [34], panels [35] and shells [24,
25,36]. In the present study, also, this approach is used to estimate 
the overall mechanical properties of the composite media. In this 
approach auxiliary parameters are introduced into the rule of mix-
tures approach to match the data obtained by the rule of mixtures 
approach with those obtained by the molecular dynamics simula-
tions [23]. Accordingly, Young’s modulus and shear modulus of the 
composite media may be written as [23]

E11 = η1 V C N EC N
11 + Vm Em

η2

E22
= V C N

EC N
22

+ Vm

Em

η3

G12
= V C N

GC N
12

+ Vm

Gm
(2)

It is seen from Eq. (2) that, the refined rule of mixtures dif-
fers essentially from the conventional rule of mixtures approach in 
three efficiency parameters η j, j = 1, 2, 3 which are used to cap-
ture the size dependent properties of the CNTRC plate. In Eq. (2), 
EC N

11 , EC N
22 and GC N

12 are the Young modulus and shear modulus of 
SWCNTs, respectively. Furthermore, Em and Gm indicate the cor-
responding properties of the isotropic matrix. In Eq. (2) volume 
fraction of CNT and volume fraction of matrix are denoted by V C N

and Vm , respectively which should satisfy the condition

V C N + Vm = 1 (3)

As claimed by Shen [23], the effective Poisson ratio depends 
weakly on position and therefore takes the form

ν12 = V ∗
C NνC N

12 + Vmνm (4)

Conventional rule of mixtures is used generally to estimate the 
mass density of FG-CNTRC plates which dictates the dispersion 
profile of the mass density across the plate thickness as [13–15,
24,29,35]

ρ = V C NρC N + Vmρm (5)

where as mentioned earlier, ρC N and ρm are the mass density of 
the CNT and matrix constituents, respectively. It is observed that, 
all types of FG-CNTRC and UD-CNTRC will have the same value of 
mass fraction of CNT.

In flexural theories, various estimations are proposed to con-
jecture the displacement components across the plate thickness. 
Some theories such as classical, first order and third order plate 
theories ignore the thickness stretching and some others take into 
account the thickness stretching [37–39]. However further consid-
erations of these works reveal that, for functionally graded mate-
rials, divergence of natural frequencies based on first order shear 
deformation theory and these thickness stretchable theories is neg-
ligible. Therefore, in the present research, first order shear defor-
mation plate theory is employed. It is known that, through usage 
of first order shear deformation plate theory, vibration characteris-
tic of thin, moderately thick and even thick plates may be achieved 
accurately. According to the first order shear deformation plate 
theory, through the length, width and thickness displacement com-
ponents of the plate may be written in terms of those belong to 
the mid-surface and cross section rotations as
u (x, y, z, t) = u0 (x, y, t) + zϕx (x, y, t)

v (x, y, z, t) = v0 (x, y, t) + zϕy (x, y, t)

w (x, y, z, t) = w0 (x, y, t) (6)

Where in the above equation, displacement components u, v and 
w are associated to displacements along x, y and z directions, re-
spectively. Besides, a subscript 0 indicates the characteristics of the 
mid-surface. Transverse normal rotations about the x and y axes 
are denoted by ϕy and ϕx are, respectively.

According to the first order theory, in-plane strain components 
are linear functions of thickness coordinate whereas out-of-plane 
shear strain components are constant across the thickness. There-
fore one may write⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx

εyy

γxy

γxz

γyz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx0
εyy0
γxy0
γxz0
γyz0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ + z

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κxx

κyy

κxy

κxz

κyz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (7)

where, again the subscript 0 indicates the features of the mid-
surface. The components of the strain on the mid-surface of the 
plate may be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx0
εyy0
γxy0
γxz0
γyz0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0,x

v0,y

u0,y + v0,x

ϕx + w0,x

ϕy + w0,y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8)

and the components of change in curvature compatible with the 
first order shear deformation theory are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κxx

κyy

κxy

κxz

κyz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕx,x

ϕy,y

ϕx,y + ϕy,x

0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9)

where in the above equations and in the rest of this manuscript 
(),x and (),y denote the derivatives with respect to the x and y
directions, respectively.

Under linear elastic deformations of the FG-CNTRC skew plates 
and compatible with the plane-stress conditions, constitutive law 
for the plate takes the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σxx

σyy

τyz

τxz

τxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭=

⎡
⎢⎢⎢⎣

Q 11 Q 12 0 0 0
Q 12 Q 22 0 0 0

0 0 Q 44 0 0
0 0 0 Q 55 0
0 0 0 0 Q 66

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx

εyy

γyz

γxz

γxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (10)

where, in Eq. (10), Q ij (i, j = 1, 2, 4, 5, 6) are the reduced material 
stiffness coefficients compatible with the plane-stress conditions 
and are obtained in terms of the elasticity and shear modulus as 
well as the Poisson ratios as [24]

Q 11 = E11

1 − ν12ν21
, Q 22 = E22

1 − ν12ν21
, Q 12 = ν21 E11

1 − ν12ν21

Q 44 = G23, Q 55 = G13, Q 66 = G12 (11)

In order to satisfy the boundary conditions on the plate it 
is more appropriate to use the oblique coordinate system (x, y)

instead of the previously defined orthogonal coordinate system 
(x, y). From simply geometry the oblique coordinate is given by
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x = x − y tan(α)

y = y sec(α) (12)

The components of rotations in the oblique coordinates are ob-
tained as

ϕx(x, y, t) = ϕx(x, y, t) cos(α)

ϕy(x, y, t) = −ϕx(x, y, t) sin(α) + ϕy(x, y, t) (13)

And the partial derivatives are related by

(),x = (),x

(),y = −(),x tan(α) + (),y sec(α) (14)

In the oblique coordinate system the components of the mid-
surface strain field from Eq. (8) change to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx0
εyy0
γxy0
γxz0
γyz0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0,x
v0,y sec(α) − v0,x tan(α)

u0,y sec(α) − u0,x tan(α) + v0,x
ϕx cos(α) + w0,x

ϕy − ϕx sin(α) + w0,y sec(α) − w0,x tan(α)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

And the components of change of curvature from Eq. (9) with 
the aid of Eqs. (13) and (14) change to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κxx

κyy

κxy

κxz

κyz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =

⎧⎨
⎩

ϕx,x cos(α)
ϕy,y sec(α) + ϕx,x sec(α) tan(α) − ϕx,y tan(α) − ϕy,x tan(α)

ϕx,y + ϕy,x − 2ϕx,x sin(α)
0
0

⎫⎬
⎭

(16)

To obtain the motion equations of the skew plate, Hamilton’s 
principle may be used [40]. For the case of freely vibrating skew 
plate when external forces are absent, Hamilton’s principle takes 
the form [40]

t2∫
t1

δ(U − T )dt = 0

t = t1, t2 : δu0 = δv0 = δw0 = δϕx = δϕy = 0 (17)

where in Eq. (17), δU is the virtual strain energy of the skew plate 
in the oblique coordinate system which may be calculated as

δU =
a∫

0

b∫
0

+0.5h∫
−0.5h

(σxxδεxx + σyyδεyy + τxyδγxy

+ κτxzδγxz + κτyzδγyz)dzdydx (18)

In the above equations, κ is the shear correction factor. Evalua-
tion of the exact value of this factor is not straightforward since it 
depends on geometric characteristics, boundary conditions, mate-
rial type and loading conditions. Meanwhile through the open lit-
erature, the approximate values of κ = 1, κ = 5/6 and κ = π2/12
are used extensively even for composites and FGMs. In this re-
search, κ is set equal to κ = 5/(6 − νC N

12 Vm − νm V C N) which is 
used extensively by Liew and his co-authors in structural exami-
nation of FG-CNTRC beams, plates and shells [4,5].

Similarly, δT is the variation of kinetic energy of the skew plate 
which also may be written as

δT =
a∫

0

b∫
0

+0.5h∫
−0.5h

ρ(z) (u̇δu̇ + v̇δ v̇ + ẇδẇ)dzdydx (19)
3. Space approximation

Recalling Eqs. (18) and (19) and applying the Green–Gauss the-
orem to the Hamilton Equation (17) may result in the five coupled 
partial differential equations and the associated boundary condi-
tions. On the other hand, energy based techniques also may be 
used to solve the problem. Conventional Ritz method as a power-
ful tool is used in this study to obtain the matrix representation 
of the governing equations associated to the motion equations of a 
skew plate under free vibration regime. Beforehand, using the gen-
eral idea of separation of variables technique, each of the essential 
variables of the problem, i.e. u0, v0, w0, ϕx and ϕy may be written 
as

u0(x, y, t) =
Nx∑

i=0

N y∑
j=0

Uij(t)Nu
i (x)Nu

j (y)

v0(x, y, t) =
Nx∑

i=0

N y∑
j=0

V ij(t)N v
i (x)N v

j (y)

w0(x, y, t) =
Nx∑

i=0

N y∑
j=0

W ij(t)N w
i (x)N w

j (y)

ϕx(x, y, t) =
Nx∑

i=0

N y∑
j=0

Xij(t)Nx
i (x)Nx

j(y)

ϕy(x, y, t) =
Nx∑

i=0

N y∑
j=0

Yij(t)N y
i (x)N y

j (y) (20)

where in the above equations Nα
i (x), i = 0, 1, 2, ..., Nx , Nα

j (y), 
j = 0, 1, 2, ..., N y , α = u, v, w, x, y are the shape functions which 
have to be chosen according to the essential boundary condi-
tions. Various types of shape functions are used extensively by 
researchers. Polynomial shape functions, trigonometric and those 
developed based on Chebyshev polynomials are used extensively. 
Also another type of shape functions which are of interest in the 
open literature are those developed using the Gram–Schmidt pro-
cess. This process develops a set of orthogonal shape functions of 
various type. In the rest an overview of this process is provided.

4. Gram–Schmidt process

Given a function (polynomial) ξ0(s), an orthogonal set of func-
tions (polynomials) may be developed in an arbitrary interval 
c ≤ s ≤ d according to Gram–Schmidt process as follows

ξ1(s) = (s − ζ1)ξ0(s)

ξk(s) = (s − ζk)ξk−1(s) − ηkξk−2(s), k ≥ 2 (21)

where in the above equation, ζk and ηk are obtained as

ζk =
∫ d

c sq(s)ξ2
k−1(s)ds∫ d

c q(s)ξ2
k−1(s)ds

, k ≥ 1

ηk =
∫ d

c sq(s)ξk−1(s)ξk−2(s)ds∫ d
c q(s)ξ2

k−2(s)ds
, k ≥ 2 (22)

where in the above equations q(s) is the weight function. It is easy 
to check that, the developed set of functions ξk(s), k = 0, 1, 2, ...
according to the above process are orthogonal with respect to the 
weight function q(s) in the interval c ≤ s ≤ d. Equivalently the 
following property is established between the functions ξk(s), k =
0, 1, 2, ...
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Table 2
Convergence study on the first six flexural frequency parameters ω̂ = ωb2

√
ρh/D/π2 of CCCC skew plates with 

a/h = 1000, a/b = 1, α = 45◦ and ν = 0.3. D is the flexural rigidity.

Nx = N y ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6

4 7.1296 13.3617 19.0393 25.6579 1453.4504 1751.6810
6 6.6786 10.9260 16.1079 16.4327 24.7142 26.7992
8 6.6589 10.7968 15.0619 15.9948 20.2323 23.5748
10 6.6548 10.7956 15.0389 15.9504 19.9588 23.2818
12 6.6530 10.7936 15.0341 15.9410 19.9462 23.2647
14 6.6507 10.7901 15.0297 15.9343 19.9390 23.2568

Liew et al. [44] 6.6519 10.7898 15.0476 15.9342 19.9365 23.2526

Table 3
First six flexural natural frequency parameters ω̂ = ωb2

√
ρh/D/π2 of skew plates with a/h = 1000, a/b = 1, 

α = 30◦ and ν = 0.3. D is the flexural rigidity.

B.Cs. Source ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6

CCCC Present 4.6697 8.2677 10.6570 12.0860 16.7207 16.7545
Liew et al. [44] 4.6698 8.2677 10.6554 12.0825 16.7159 16.7496

SSSS Present 2.5310 5.3338 7.2858 8.4982 12.4454 12.4454
Liew et al. [44] 2.5294 5.3333 7.2821 8.4966 12.4442 12.4442

SCSC Present 3.7446 6.5118 9.4222 10.2125 13.9538 14.4610
Liew et al. [44] 3.7451 6.5119 9.4233 10.2112 13.9530 14.4581

FSFS Present 1.2310 1.7944 3.6500 5.0062 6.2131 6.6440
Liew et al. [44] 1.2310 1.7948 3.6504 5.0063 6.2150 6.6446

FCFC Present 2.7761 3.0955 5.0139 7.4904 8.2025 8.6340
Liew et al. [44] 2.7763 3.0952 5.0154 7.4898 8.2003 8.6350

CFFF Present 0.3982 0.9537 2.5629 2.6274 4.1881 5.1296
Liew et al. [44] 0.3983 0.9537 2.5631 2.6277 4.1887 5.1309
Table 4
First six flexural frequency parameter ω̂ = ωa2/h

√
ρ/E22/π2 of [90/0/90/0/90]

SSSS composite laminated skew plate with various skew angles. Side to thickness 
ratio is a/h = 1000 and aspect ratio is a/b = 1. Material properties are E11/E22 =
40, G12/E22 = G13/E22 = 0.6, G23/E22 = 0.5 and ν12 = 0.25.

ω̂1 α = 0 α = 30◦ α = 45◦

Present Wang [45] Present Wang [45] Present Wang [45]

ω̂1 1.9140 1.9141 2.8286 2.8248 4.4919 4.4786
ω̂2 3.9744 3.9745 5.1917 5.1891 7.1174 7.1121
ω̂3 6.6559 6.6567 8.4828 8.4836 10.4496 10.4512
ω̂4 7.6559 7.6564 9.2616 9.2574 14.0985 14.1024
ω̂5 8.1504 8.1511 12.1151 12.1070 14.7980 14.7797
ω̂6 10.6237 10.6249 12.1295 12.1301 17.9521 17.9628

d∫
c

q(s)ξn(s)ξm(s)ds = amn (23)

where amn is nonzero when m and n are identical. Otherwise, amn

is equal to zero.

5. Fundamental shape function

The process mentioned in the previous section may be used to 
generate the shape functions in both x and y directions for each 
of the essential variables u0, v0, w0, ϕx and ϕy . In the present re-
search the weight function is chosen as q(x) = q(y) = 1 and the 
problem domain is 0 ≤ x ≤ a and 0 ≤ y ≤ b. As seen from the re-
cursive Eq. (21), the complete set of orthogonal shape functions 
depends of the choice of the first one, ξ0(s). This function should 
be chosen according to the essential boundary conditions of the 
problem. For a skew plate, three types of boundary conditions are 
used extensively. A clamped (C) edge in which both of the rota-
tions and three components of the displacements are equal to zero 
at the edge. A free edge (F) where none of the rotations and dis-
placements are equal to zero at the edge. And finally a simply 
supported (S) one, in which lateral and tangential displacement 
and the tangential slope are restrained at the support. As an ex-
ample of choosing the fundamental shape function for each of the 
essential variables consider a plate which is simply supported at 
x = 0, clamped at x = a, free at y = b and simply supported at 
y = 0. Therefore the fundamental shape functions for such plate 
may be considered as

Nu
0 (x) = 1 − x

a
, Nu

0 (y) = y

b

N v
0 (x) = x

a

(
1 − x

a

)
, N v

0 (y) = 1

N w
0 (x) = x

a

(
1 − x

a

)
, N w

0 (y) = y

b

Nx
0(x) = 1 − x

a
, Nx

0(y) = y

b

N y
0 (x) = x

a

(
1 − x

a

)
, N y

0 (y) = 1 (24)

With the introduction of the above functions and the simul-
taneous aid of Eqs. (21) and (22), the complete set of orthogonal 
shape functions may be achieved. Afterwards the motion equations 
describing the dynamic response of a skew plate under free vibra-
tion motion takes the form

MẌ + KX = 0 (25)

where as usual M is the mass matrix and K is the stiffness matrix. 
Besides, X is the unknown displacement vector comprising the un-
knowns Uij, V ij, W ij, Xij and Yij where i = 0, 1, 2, ...Nx and j =
0, 1, 2, ..., N y . For a freely vibrating skew plate, X = X̂ sin(ωt + α)

where ω is the natural frequency. Consequently, Eq. (25) alters to(
K − ω2M

)
X̂ = 0 (26)

The above equation should be treated as a standard eigenvalue 
problem to obtain the frequencies.
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Table 5
First six natural frequency parameters ω̂ = ωb2

√
ρmh/Dm/π2 for skew plates with CCCC boundary conditions. 

Geometrical characteristics of the plate are a/b = 1 and b/h = 20.

α V ∗
C N Type ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6

30◦ 0.12 UD 9.0583 11.7968 16.8446 18.4411 20.7125 22.5152
FG-X 9.6602 12.4074 17.5573 19.2855 21.5554 23.3963
FG-O 7.9610 10.8772 15.9129 16.8411 19.3541 21.2748
FG-V 8.4951 11.4120 16.5463 17.6404 20.1338 22.0743

0.17 UD 11.4123 15.0207 21.5717 23.4079 26.4269 28.8189
FG-X 12.3012 16.0088 22.8119 24.6875 27.7964 30.3308
FG-O 9.9266 13.7295 20.1952 21.2054 24.5179 27.0092
FG-V 10.6672 14.5466 21.2215 22.3422 25.7146 28.2752

0.28 UD 12.6627 16.2668 23.0436 25.5011 28.4573 30.8028
FG-X 13.7830 17.8621 25.3503 27.2345 30.6717 33.5410
FG-O 11.2550 14.8361 21.3919 23.7192 26.6464 28.8476
FG-V 12.1026 16.0115 23.0154 24.9197 28.2274 30.6832

45◦ 0.12 UD 10.2574 14.6655 20.6211 20.6301 25.7779 26.5480
FG-X 10.8706 15.3507 21.4855 21.4925 26.6815 27.5437
FG-O 9.2285 13.6982 19.1727 19.3654 24.6218 25.0891
FG-V 9.7632 14.2984 19.9719 20.1377 25.4415 25.9911

0.17 UD 12.9865 18.7299 26.2869 26.3612 33.0683 33.9720
FG-X 13.9237 19.8764 27.6600 27.8182 34.6762 35.6684
FG-O 11.5794 17.3423 24.2539 24.5488 31.3546 31.8628
FG-V 12.3501 18.2796 25.4515 25.7399 32.7181 33.2505

0.28 UD 14.2484 20.1398 28.2663 28.3871 35.1731 36.3295
FG-X 15.5727 22.1298 30.5102 30.8215 38.2574 39.3400
FG-O 12.8198 18.5517 26.3314 26.5460 33.1899 34.1695
FG-V 13.8087 19.9432 27.9644 28.0509 35.3815 35.9552

60◦ 0.12 UD 14.3441 21.2986 28.0159 29.1989 34.8581 38.5037
FG-X 15.0132 22.1782 29.0559 30.1434 35.9802 39.6530
FG-O 13.4143 20.0716 26.4956 28.0687 33.1799 37.1003
FG-V 13.9850 20.8122 27.3636 28.9034 34.1054 38.0633

0.17 UD 18.3160 27.2434 35.8500 37.4982 44.6560 49.4709
FG-X 19.4256 28.7330 37.6159 39.2064 46.5953 51.5734
FG-O 16.9959 25.4765 33.6661 35.8098 42.2355 47.3648
FG-V 17.8807 26.5760 34.8634 37.1915 43.4171 48.7724

0.28 UD 19.7023 29.1797 38.3444 39.7714 47.6200 52.4028
FG-X 21.6149 31.8309 41.4634 43.1621 51.1081 56.6188
FG-O 18.1597 27.2138 36.1059 37.7446 45.3288 50.0296
FG-V 19.4751 28.4503 34.6722 34.6941 36.8723 39.7587
6. Numerical results and discussion

The procedure outline in the previous sections in used to study 
the free vibration response of FG-CNTRC skew plates. The devel-
oped solution method is general and may be used for arbitrary 
types of in-plane and out-of-plane boundary conditions.

In the rest of this manuscript, the following convention is estab-
lished for boundary conditions. For instance, an SCFC skew plate, 
indicates a plate which is simply supported at x = 0, clamped at 
y = 0, clamped at y = b, and free at x = a. Unless otherwise stated, 
Poly (methyl methacrylate), referred to as PMMA, is selected for 
the matrix with material properties Em = 2.5 GPa, νm = 0.34 and 
ρm = 1150 kg/m3. (10,10) armchair SWCNT (tube length 9.26 nm, 
tube radius 0.68 nm and tube thickness = 0.067 nm) is chosen 
as the reinforcements. Elasticity modulus, shear modulus, Poisson’s 
ratio and mass density of SWCNT are evaluated at reference tem-
perature by Shen and Xiang [41] and are EC N

11 = 5.6466 TPa, EC N
22 =

7.0800 TPa, G12 = 1.9445 TPa, ν = 0.175 and ρ = 1400 kg/m3.
Han and Elliott [42] performed a molecular dynamics simula-

tion to obtain the mechanical properties of nanocomposites rein-
forced with SWCNT. However in their analysis the effective thick-
ness of CNT is assumed to be at least 0.34 nm. The thickness 
of CNT as reported should be at most 0.142 nm [43]. There-
fore molecular dynamics simulation of Han and Elliott [42] is re-
examined [23]. The so-called efficiency parameters, as stated ear-
lier, are chosen to match the data obtained by the modified rule 
of mixtures of the present study and the re-examined molecular 
dynamics simulation results. For three different volume fractions 
of CNTs, these parameters are as: η1 = 0.137 and η2 = 1.022 for 
V ∗

C N = 0.12. η1 = 0.142 and η2 = 1.626 for V ∗
C N = 0.17. η1 = 0.141

and η2 = 1.585 for V ∗
C N = 0.28. For each case, the efficiency pa-

rameter η3 is equal to 0.7η2. The shear modulus G13 is taken equal 
to G12 whereas G23 is taken equal to 1.2G12 [23].

6.1. Convergence and comparison studies

In this section, convergence and comparison studies are pro-
vided. At first a convergence study is given for the natural frequen-
cies of a completely clamped isotropic homogeneous skew plate. 
Dimensions of the plate for the sake of comparison are a/b = 1, 
a/h = 1000 and α = 45◦ . Results of this study are obtained accord-
ing to the present Ritz formulation for various number of shape 
functions and compared with those obtained by Liew et al. [44]
which are obtained according to the first order shear deformation 
plate theory. Comparison is provided in Table 2. It is seen that, 
the first six frequency parameters are converged and are in excel-
lent agreement with those of Liew et al. [44] after adoption of 14 
shape functions in each direction of the plate for each of the es-
sential variables. Therefore, in the subsequent results the number 
of shape functions is chosen as Nx = N y = 14.

The next comparison study, provided in Table 3 compares the 
first six frequency parameters of skew plates made of an isotropic 
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Table 6
First six natural frequency parameters ω̂ = ωb2

√
ρmh/Dm/π2 for skew plates with V ∗

C N = 0.17, α = 45◦ and 
various boundary conditions. Geometrical characteristics of the plate are a/b = 1 and b/h = 20.

B.Cs. Type ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6

FFFF UD 1.7636 5.4514 6.3159 10.7226 13.8896 14.0269
FG-X 1.8730 5.8528 6.7388 11.7280 15.3134 15.5988

FSFS UD 2.3079 2.7308 8.2994 9.5016 12.4923 12.6919
FG-X 2.4459 2.9059 8.9682 10.0600 12.5827 12.7878

CFFF UD 2.3773 2.7899 6.0480 8.5095 11.2202 11.9149
FG-X 2.8184 3.2002 6.5704 8.5693 12.2300 13.1720

CCFF UD 2.4970 4.8398 10.9934 11.4707 11.9964 15.8960
FG-X 2.9312 5.3033 11.5560 11.8834 13.2891 17.1274

FCFC UD 4.8613 5.5816 12.4191 13.2226 17.2725 19.2883
FG-X 5.1349 5.9713 13.3685 13.9516 19.1691 19.6810

SFSF UD 6.3471 7.2211 10.6490 17.1753 20.4088 20.5056
FG-X 7.3860 8.2251 11.6574 18.4773 20.6508 22.3821

SSSF UD 6.6219 9.2224 10.2552 15.2407 20.5560 23.2678
FG-X 7.6475 10.2068 10.3279 16.4122 22.5210 24.1566

SCSF UD 6.7274 10.1301 10.2554 17.0292 20.6460 24.0183
FG-X 7.7500 10.3281 11.1252 18.2793 22.6161 25.9162

SSSS UD 7.9698 13.2784 20.5135 21.3031 22.2306 24.2303
FG-X 8.9573 14.3516 20.6590 22.8072 24.1829 24.4337

SCSS UD 9.1644 10.2555 16.0195 22.9656 24.1608 30.2926
FG-X 10.1448 10.3282 17.1667 24.9225 25.8037 30.9830

SCSC UD 9.5106 16.8645 20.5138 23.2036 24.9848 31.3500
FG-X 10.4995 18.0591 20.6593 25.1488 26.6760 33.1816

CFCF UD 10.9295 11.2611 13.4108 18.7423 23.7364 23.9021
FG-X 11.8317 12.1688 14.3659 19.9358 24.2030 25.0527

CCCF UD 11.0838 13.2095 18.7370 23.8167 26.3403 26.8482
FG-X 11.9890 14.1549 19.9079 25.1517 27.7913 28.2863

CCCC UD 12.9865 18.7299 26.2869 26.3612 33.0683 33.9720
FG-X 13.9237 19.8764 27.6600 27.8182 34.6762 35.6684
homogeneous material where skew angle is α = 30◦ . Only flexural 
modes are considered in the analysis of Liew et al. [44] and for the 
sake of comparison, the same is done is the present research by 
dropping out the in-plane displacement components. Results are 
compared with the results of Liew et al. [44] which are also ob-
tained according to the first order shear deformation plate theory. 
Various cases of boundary conditions are considered for the edges 
of the plate. As seen results are in excellent agreement with the 
available data in the open literature.

The next comparison study is devoted to first six frequencies of 
composite laminated skew plates. It is known that, in cross-ply 
lamination scheme, the stiffness components A16, A26, B16, B26,

D16 and D26 are absent and therefore presented formulation also 
may be used for frequency analysis of cross-ply composite skew 
plates. Three different skew angles are taken into consideration 
and stacking sequence is [90/0/90/0/90]. Since the stacking se-
quence is symmetric, in-plane and out-of-plane vibrations are sep-
arate. For the sake of comparison only flexural frequencies are 
evaluated. Plates are assumed to be thin for the sake of compari-
son. The aspect ratio is a/b = 1. Results of our study are compared 
with those of Wang [45]. Comparison is carried out in Table 4. It 
is observed that, our results are in excellent agreement with those 
of Wang [45] which guarantees the accuracy and efficiency of the 
proposed method.

6.2. Parametric studies

After validating the proposed formulation and solution method, 
parametric studies are given in this section to study the natural 
frequencies of FG-CNTRC skew plates with various boundary con-
ditions. In whole of this section frequency parameter is defined as 
ω̂ = ωb2

√
ρmh/Dm/π2.

Table 5 presents the first six frequency parameters of FG-CNTRC 
skew plates where geometrical characteristics of the plate are 
a/b = 1 and b/h = 20. In this table, three different volume frac-
tions of CNTs, three different skew angles and four different cases 
of CNT dispersion profiles are considered. Numerical results of this 
table are provided for a plate which is clamped all around. As 
seen from the tabulated results in this table, enrichment of the 
polymeric matrix with more carbon nanotube results in higher fre-
quencies of the plate. Therefore, plates with higher CNT volume 
fraction have higher frequencies. Among the four cases of CNT dis-
persion pattern across the plate thickness, FG-X pattern results in 
higher frequencies and FG-O pattern results in lower frequencies. 
It is also should be mentioned that, in FG-X, FG-O and UD types, 
flexural modes are independent from the in-plane modes since the 
properties of the plate are graded symmetrically with respect to 
the plate mid-surface. In such conditions, the extensional-bending 
couplings are absent. On the other hand, for FG-V skew plates 
where distribution of CNT across the plate is not symmetric, flex-
ural and in-plane vibrations are coupled and therefore for accurate 
vibration analysis, in-plane displacement components and out-of-
plane displacement components should be taken into account to-
gether. It is observed that with increasing the skew angle of the 
plate, frequencies also increase. This is due to the fact that, plate 
area decreases as the defined skew angle increases. Because of the 
reduction in area, the stiffness of the plate increases, leading to the 
frequency enhancement.
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Table 7
First six natural frequency parameters ω̂ = ωb2

√
ρmh/Dm/π2 for skew plates with CCCC boundary conditions and various side to thickness ratios. Characteristics of the plate 

are a/b = 1 and V ∗
C N = 0.17.

α b/h Type ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6

0◦ 100 UD 15.6206 17.6535 22.6646 31.1104 41.0435 42.1920
FG-X 18.7294 20.6357 25.5149 34.0312 46.0554 48.8590

20 UD 10.7650 13.0862 18.2481 22.3434 23.7065 25.9533
FG-X 11.6378 14.0031 19.3343 23.5866 24.9799 27.3335

10 UD 6.8629 9.4126 12.9177 14.0013 14.5263 16.0096
FG-X 7.1091 9.7837 13.2948 14.5490 14.9830 16.1604

15◦ 100 UD 15.7352 18.0683 23.6095 32.6953 41.2120 42.5879
FG-X 18.8356 21.0372 26.4740 35.7079 48.4204 49.0133

20 UD 10.8919 13.4983 19.0238 22.5429 24.2298 26.5307
FG-X 11.7672 14.4291 20.1444 23.7925 25.5218 27.9408

10 UD 7.0041 9.7708 13.1393 14.2270 15.3449 16.6085
FG-X 7.2574 10.1556 13.5259 14.7403 15.8679 16.7653

30◦ 100 UD 16.2142 19.6857 27.0574 38.1048 41.9546 44.3336
FG-X 19.2847 22.6293 30.0368 41.5850 49.6886 51.8767

20 UD 11.4123 15.0207 21.5717 23.4079 26.4269 28.8189
FG-X 12.3012 16.0088 22.8119 24.6875 27.7964 30.3308

10 UD 7.5543 10.9862 14.0701 15.2874 17.8404 18.5976
FG-X 7.8338 11.4117 14.4951 15.8070 18.4475 18.7740

45◦ 100 UD 17.7656 24.1464 35.2777 44.3183 49.2694 50.1981
FG-X 20.7785 27.1752 38.8685 51.7803 54.4633 57.4944

20 UD 12.9865 18.7299 26.2869 26.3612 33.0683 33.9720
FG-X 13.9237 19.8764 27.6600 27.8182 34.6762 35.6684

10 UD 9.0390 13.4607 16.9083 17.7452 21.9874 22.6272
FG-X 9.3782 13.9444 17.4347 18.2980 22.5835 23.0152

60◦ 100 UD 23.7514 36.8564 53.0979 55.8751 71.3202 73.7827
FG-X 26.7982 40.8002 59.0269 63.0920 79.3177 81.1861

20 UD 18.3160 27.2434 35.8500 37.4982 44.6560 49.4709
FG-X 19.4256 28.7330 37.6159 39.2064 46.5953 51.5734

10 UD 13.2309 18.5795 23.1690 25.2704 27.6134 31.5316
FG-X 13.6857 19.1497 23.7768 25.9851 28.2393 32.2393
Since among the three different functionally graded patterns of 
CNT volume fraction, FG-X pattern results in higher frequencies, in 
the subsequent results only FG-X type is considered.

A comparison on the effect of boundary conditions of the plate 
on the natural frequencies of the FG-CNTRC plates is presented in 
Table 6. Plates with aspect ratio a/b = 1, side to thickness ratio 
b/h = 20 and CNT volume fraction V ∗

C N = 0.17 are considered. Var-
ious combinations of free, simply supported and clamped edges are 
considered. As expected, plates with all edges free have the low-
est frequencies and those which are clamped all around have the 
highest frequencies. It is seen that, when one edge of the plate 
changes form free to simply supported or from simply supported 
to clamped, frequencies of the plate enhance. This trend is due to 
the increase in the local flexural rigidity of the plate with stiffening 
the edge support. Similar to the conclusion of the previous table, 
for all of the studied cases, FG-X pattern results in higher frequen-
cies in comparison to UD pattern when all of the other geometrical 
characteristics are kept constant. This is due to the higher flexural 
stiffness of an FG-X pattern in comparison to UD pattern.

The effect of thickness is investigated in the next table. Table 7
provides the first six frequencies of skew plates which are clamped 
all around. Five skew angles are considered and both UD and FG-X 
plates are considered. In each case, a thin (a/h = 100), a moder-
ately thick (a/h = 20) and a thick (a/h = 10) plate are considered. 
Results confirm the fact that frequencies of FG-X plate are higher 
than those of UD plate. Increasing the skew angle of the plate 
results in higher frequencies which is expected. Furthermore, the 
influence of thickness is observant since the non-dimensional fre-
quency parameter varies essentially with respect to thickness ratio.

Fig. 2 depicts the variation of first three frequencies of skew 
plates with respect to skew angle. Aspect ratio a/b = 1, side to 
thickness ratio a/h = 20 and CNT volume fraction V ∗

C N = 0.12 are 
pre-assumed. Distribution of CNT across the plate thickness is as-
sumed to be uniform. It is seen that for all of the studied cases of 
boundary conditions, which are CCCF, CFCF, SCSC, SCSS, SFSF and 
SSSS, increasing the skew angle enhances the frequencies of the 
plate.

Fig. 3 aims to investigate the influence of aspect ratio on the 
first three frequencies of FG-CNTRC plates with various combina-
tions of boundary conditions. In this figure, CNTs are distributed 
according to the FG-X pattern across the thickness. Furthermore, 
geometrical characteristics are α = 45◦ , a/h = 20, V ∗

C N = 0.12. Ob-
viously, when b and h are constant, with increasing a, frequencies 
of the plate decrease. This trend happens almost for all of the 
boundary conditions.

7. Conclusion

Free vibration response of carbon nanotube reinforced compos-
ite plates in a skew shape is investigated in the present research. 
Distribution of reinforcement through the thickness of the matrix 
may be uniform or functionally graded. Properties of the compos-
ite media are estimated according to a modified rule of mixtures 
approach with introduction of efficiency parameters. The compo-
nents of displacement field are transformed from an orthogonal 
coordinate system to an oblique one. The total strain and kinetic 
energies of the skew plate are obtained. The conventional Ritz 
formulation is used to deduce the matrix representation of the 
equations of motion associated to the free vibration motion. Shape 
functions are estimated according to the orthogonal polynomials 
developed according to the Gram–Schmidt process. The resulting 
eigenvalue problem is established. Comparison and convergence 
studies are carried out to assure the correctness and efficiency of 
the proposed method. Afterwards parametric studies are given to 
obtain the frequencies of carbon nanotube reinforced skew plates. 
It is shown that, increasing the volume fraction of carbon nan-
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Fig. 2. Variation of first three frequencies of UD-CNTRC skew plates with respect to skew angle for plates with a/b = 1, b/h = 20, V ∗
C N = 0.12 and various types of boundary 

conditions.
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Fig. 3. Variation of first three frequencies of FG-X CNTRC skew plates with respect to aspect ratio for plates with α = 45◦ , b/h = 20, V ∗
C N = 0.12 and various types of 

boundary conditions.
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otubes increases the frequencies of the plate. Furthermore, through 
a proper functionally graded distribution of carbon nanotubes, fre-
quencies of the plate may be controlled. In all of the cases, FG-X 
pattern has higher frequencies in comparison to UD pattern and 
UD pattern has higher frequencies in comparison to FG-O pattern. 
Similar to isotropic homogeneous, composite laminated and func-
tionally graded skew plates, increasing the skew angle enhances 
the frequencies of the plate when of the all other geometrical and 
material properties are kept constant.
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