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The attitude passive stability design during inclination cranking is developed using a rigid solar sail 
model. The criterion shows that the solar sail can be stabilized by designing the structure parameters and 
the spin rate. An oscillation–attitude–orbit dynamical model by hybrid method is employed to quantify 
the flexibility effect on the passive station keeping. The simulation results indicate that the oscillation has 
an obvious impact on the attitude and orbit. The oscillation effect is reduced as the spin rate increases, 
which means a larger spin rate is required to stable the attitude for a flexible solar sail than the rigid one. 
For some certain spin rates, the passive stability criterion obtained from the rigid model may become 
invalid. The comparative simulations are implemented to explain this phenomenon by noting the fact 
that the flexible structural parameter and the solar radiation pressure torque due to sail vibration are 
different from the rigid one.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Solar sail is a spacecraft with a large reflective sail membrane 
propelled by the solar radiation pressure. This propulsion concept 
has been verified by the successful demonstration missions, such 
as IKAROS and NanoSail-D. Due to the endless pressure and strong 
attitude–orbit coupling, the solar sail is considered to enable some 
new space missions that are difficult for conventional spacecraft, 
such as the Geostorm Warning Mission [1], GeoSail [2] and aster-
oid exploration missions [3]. The solar polar sail mission [4] was 
proposed by NASA for investigating the cycle of the sun. How-
ever, the high orbit inclination means consuming too much fuel 
for regular spacecraft. Solar sail is a feasible option to achieve a 
high-inclination heliocentric orbit by inclination cranking. As the 
propulsion varies in proportion to the inverse square solar dis-
tance, the solar sail is usually transferred to a small circle radius 
for inclination cranking, then the other orbital elements are ad-
justed to the object value [5]. Due to the characteristic acceleration 
of solar sail, the attitude should be kept fixed on half of the orbit 
and a slew maneuver be implemented over each orbit during in-
clination cranking [6].

Abundant of works discussed the attitude control of solar sail, 
where the control strategy can be classified as the active control 
and passive control. The passive control of solar sail, which means 
no extra control forces except for the solar radiation pressure, was 
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first investigated by McInnes [7]. Most previous literatures focused 
on the rigid solar sail model, but the oscillation of the sail is 
rarely studied in the passive design. Gong [8,9] discussed the pas-
sive attitude control of three-axis stabilized solar sail relying on 
the specific shape of the rigid sail. The successful IKAROS mission 
reignited people’s interests to study the spinning solar sail. Mi-
masu et al. [10] used the solar radiation pressure to control the 
orientation of a spinning solar sail via adjusting its spin rate. Gong 
[11] investigated the spin-stabilized design using a rigid model for 
displaced solar orbit. In fact, for the spinning solar sail with a large 
flexible membrane deployed by the central force, the flexibility of 
the sail may have adverse impact to the attitude control, which 
has become one of the major challenges for attitude control de-
sign.

Many flexible models for attitude control were proposed in the 
previous literatures. Smith [12] distributed the sail mass into the 
support booms, and the vibration of the booms is analyzed by the 
mode superposition method. Nakano [13] investigated the stabil-
ity of a spinning solar sail containing a huge flexible membrane 
using a free-oscillation analytical model. To be finer, the finite ele-
ment model developed by the nonlinear FE model can be used to 
simulate the deformation of the gossamer sail [14–16]. However, 
the efficiency of the software is usually too low to meet the real-
time control require. Likins [17,18] proposed the hybrid coordinate 
concept to study the coupling effect of the structure oscillation. 
The elastic deformation of flexible part is described in the floating 
frame, which can be simplified by modal reduction. Taleghani et 
al. developed two square sail models using both the MSC/NASTRAN 
and ABAQUS finite element programs, including geometrically non-
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Nomenclature

μ Gravitational constant of the sun . . . . . . . . . . . . . N m2/kg
AU Average distance between sun and 

earth . . . . . . . . . . . . . . . . . . . . . . . . . . 1 AU = 1.496 × 1011 m
m Mass of the solar sail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
ρ The density of the sail membrane . . . . . . . . . . . . . . kg/m3

h The thickness of the sail membrane . . . . . . . . . . . . . . . . m
It Rotational inertia along the xc or yc axis of the mass 

center reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . kg m2

Is Rotational inertia along spin axis . . . . . . . . . . . . . . . kg m2

Ist The ratio of Is and It

A Area of the sail membrane . . . . . . . . . . . . . . . . . . . . . . . . . m2

psun The solar radiation pressure exerted on the sail 
membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa

ps/pn1/pn2 The SRP coefficients of the sail membrane
Cspe/Cdif /Cabs The specular/diffusion/absorption coefficients of 

the sail membrane . . . . . . . . . . . . . . . . . . . . . . 0.72/0.12/0.16
B f Lambertian coefficient of the sail front . . . . . . . . . . . 0.79
κ thermal emissivity of the sail front . . . . . . . . . . . . . . . 0.05
S0 the solar constant . . . . . . . . . . . . . . . . . . . . . . . . . 1357 W/m2

c the speed of light . . . . . . . . . . . . . . . . . . . . 2.998 × 108 m/s
n Unit vector along the sail normal
s Unit vector along the sun-sail line
r Position vector of the sail with respect to the sun
φ,α,ψ Euler angles from the orbital frame to the 

rotation-free frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
Λ [φ, α, ψ]T

ωx,ωy,ωz Angular velocity describing the rotation velocity 
from the orbital frame to rotation-free frame . . . rad/s

Ωs Spin angle velocity of solar sail . . . . . . . . . . . . . . . . . . rad/s
ΩsI The product of Ωs and Ist . . . . . . . . . . . . . . . . . . . . . . . . rad/s
ωo Orbital angular velocity of solar sail . . . . . . . . . . . . . rad/s
t Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
SRP Abbreviation, solar radiation pressure
cm Abbreviation, center mass of the solar sail
cp Abbreviation, center of solar radiation pressure
d The offset between cm and cp . . . . . . . . . . . . . . . . . . . . . . m
IRF Abbreviation, Inertial Reference Frame

ORF Abbreviation, Orbital Reference Frame
RFRF Abbreviation, Rotation-Free Reference Frame
BRF Abbreviation, Body Reference Frame
MCRF Abbreviation, Mass Center Reference Frame
λ Eigenvalue of the coefficient matrix of the linearized 

system
RO The global position vector of the origin O
rf The local position vector in the undeformed state
uf The local transversal displacement vector of any point 

in the membrane
x, y The x and y coordinates of any sail point in the BRF
x0, y0 A reference point on the middle surface with zero lon-

gitudinal displacement
z The z coordinate of the point in the membrane
w(x, y, t) The transversal deflection on the middle surface . m
Φ The mode shape matrix obtained via the finite ele-

ment model
q The modal coordinate matrix
n The number of modes applied for modal 

reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n = 3
δ The symbol of variation process
I 3 The 3 × 3 unit matrix
S0, S f The static moment matrix of the rigid or flexible solar 

sail
J 0, J f The rotational inertia matrix of the rigid or flexible so-

lar sail
F t, F r, F f The SRP propulsion, rotation torque, restoring force 

vector
F gt, F gr, F gf The propulsion, rotation torque, restoring force 

vector conducted by the gravitation
n_tot The total number of nodes in sail FE model
e_tot The total number of shell elements in sail FE model
( ˙ )( ¨ ) The first time and second derivative with respect to 

the IRF
(′)(′′) The first time and second derivative with respect to 

the BRF
( ˜ ) The cross product matrix of the vector
linear effects in the structural dynamics analysis [19]. Based on 
this work, Li et al. [20] developed a reduced dynamical model of 
a flexible sail with a hybrid coordinate method in the reference 
floating frame. The satisfactory accuracy and efficiency were veri-
fied using the nonlinear FE software ABAQUS/Explicit. The coupling 
of sail oscillation and attitude–orbit dynamics were considered in 
the reduced dynamical model.

The passive stability design of a flexible solar sail is studied in 
this paper. First, the attitude passive keeping strategy for a spin-
ning rigid solar sail in inclination cranking is developed, while 
the attitude slew maneuver is not discussed. Then, a reduced 
oscillation–attitude–orbit model is employed to quantify the oscil-
lation influence of the flexible sail on the attitude keeping and the 
orbit. The mechanism of the oscillation influence is investigated 
through comparative simulations.

2. Attitude passive stability design using rigid model

The rigid model means that the spin sail is employed into a no 
deformable plane under the centrifugal force. The attitude dynam-
ics uncoupled with orbit dynamics is served as the station stability 
design model in this section. Firstly, the five referred rectangular 
frames are presented, which are applicable to full text. Then the 
dynamics of solar sail is introduced. Based on the rigid model, the 
designed attitude equilibrium position and the analytical criterion 
of attitude passive stability are developed.

2.1. Reference frame definition and transition

For describing the orbit and attitude dynamics of solar sail, five 
right-hand rectangular frames are defined: the inertial reference 
frame O XY Z , the orbital reference frame oxo yozo, the body refer-
ence frame oxb ybzb, the mass center reference frame oxc yczc, the 
rotation-free reference frame oxrf yrfzrf. The details of the reference 
frames are shown in Table 1.

The ORF (Orbital Reference Frame) can be determined by the 
orbital position and velocity vector in IRF (Inertial Reference 
Frame).

Aio =
[

(r × ṙ) × r

|(r × ṙ) × r|
r × ṙ

|r × ṙ|
r

r

]
(1)

The RFRF (Rotation-Free Reference Frame) is obtained by three Eu-
ler angles (φ, α, ψ ) of a rotational sequence of R3(ψ) ← R1(α) ←
R3(φ) from the ORF.

Arfo = R3(ψ) · R1(α) · R3(φ) (2)

where R(·) is the standard transition matrix defined in reference 
literature [21] (listed below):
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Table 1
Definition of reference frames.

Name of reference frames Origin Frame axes

Inertial reference frame Mass center of sun O Z axis is perpendicular to the ecliptic plane, O X axis is in the ecliptic plane and 
points to the equinox

Orbital reference frame Geometric center of sail membrane ozo axis is along the line from sun to sail, oyo axis points to direction of the solar 
sail momentum around the sun

Body reference frame Geometric center of sail membrane oxb and oyb axes lie in the plane of sail membrane and coincide with the principal 
axis of inertia. The frame is also defined as the floating frame

Mass center reference frame Mass center of the whole solar sail the three axes are parallel to the body reference frame
Rotation-free reference frame Geometric center of sail membrane ozrf axis aligns with the body frame ozb axis, whereas oxrf and oyrf axes do not rotate 

with the spin of the body
R1(θ) =
⎡
⎣ 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎤
⎦

R2(θ) =
⎡
⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦

R3(θ) =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦

The angular velocity of the RFRF respect to ORF can be described 
as

ω313

⎡
⎣ ωx

ωy

ωz

⎤
⎦=
⎡
⎣ sinα · sinψ cosψ 0

sinα · cosψ − sin ψ 0
cosα 0 1

⎤
⎦ ·
⎡
⎣ φ̇

α̇
ψ̇

⎤
⎦= AΛ · Λ̇

(3)

where the matrix of Euler angles

Λ = [φ α ψ]T (4)

Eq. (3) also indicates the differential equation of attitude Euler an-
gles⎡
⎣ φ̇

α̇
ψ̇

⎤
⎦=
⎡
⎢⎣

sin ψ
sin α

cos ψ
sin α 0

cosψ − sinψ 0
− cotα sinψ − cotα cosψ 1

⎤
⎥⎦ ·
⎡
⎣ ωx

ωy

ωz

⎤
⎦

= Aω · ω313 (5)

The BRF (Body Reference Frame) can be attained by spin rotation 
of RFRF

Abrf = R3(Ωs · t) =
⎡
⎣ cos(Ωst) sin(Ωst) 0

− sin(Ωst) cos(Ωst) 0
0 0 1

⎤
⎦ (6)

where Ωs is the spin angle velocity of solar sail.

2.2. Orbit and attitude dynamics of the rigid model

A two-body dynamics model is employed during the inclination 
cranking. The perturbation extra force exerted on the solar sail are 
limited to solar radiation pressure propulsion and solar radiation 
pressure torque.

The orbital dynamical equation in the IRF can be described as

r̈ = −μ

r3
r + F t

m
(7)

The attitude dynamical equation in the BRF can be given by

J cω̇b + ωb × J cωb = T b (8)

Eq. (8) is derived in MCRF (Mass Center Reference Frame). Noting 
that BRF is parallel to MCRF, the matrix form of the components 
in Eq. (8) can be written as
J c =
⎡
⎣ It

It

Is

⎤
⎦ , ωb =

⎡
⎢⎣

ωb
x

ωb
y

ωb
z

⎤
⎥⎦ , T b =

⎡
⎢⎣

T b
x

T b
y

T b
z

⎤
⎥⎦ , (9)

A general SRP (Solar Radiation Pressure) model [22,23] is applied 
and the force dF exerted on a small surface dA is expressed by

dF = psun · dA

psun = ps · (s · n) · s + pn1 · (s · n)2 · n + pn2 · (s · n) · n
(10)

The SRP coefficients in Eq. (10) are obtained by

pn1 = S0

c

(
1

AU

)2

(2Cspe),

pn2 = S0

c

(
1

AU

)2

(B f Cdif + κCabs), (11)

ps = S0

c

(
1

AU

)2

(Cabs + Cdif),

where Cspe, Cdif and Cabs are the specular, diffusion, and absorp-
tion coefficients of the sail membrane, respectively; B f and κ are 
the Lambertian coefficient and thermal emissivity of the sail front, 
respectively; S0, c and AU are the solar constant, the speed of light 
and the distance to the sun in astronomical units, respectively. The 
values of these parameters are listed in the nomenclatures.

The matrixes of vector s and n in the BRF are

sb = Abrf · Arfo · so = Abo ·
⎡
⎣ 0

0
1

⎤
⎦ , nb =

⎡
⎣ 0

0
1

⎤
⎦ (12)

Substitute Eq. (12) into Eq. (10) and integrate at the whole sail 
membrane. The total SRP propulsion and torque with respect to 
mass center in the BRF can be given by

F b =
[

ps A · cosα · (cosΩst · sin ψ sinα + sinΩst · cosψ · sinα)

ps A · cosα · (− sin Ωst · sin ψ sinα + cosΩst · cosψ · sinα)

ps · cos2 α + pn1 · cos2 α + pn2 · cosα

]

(13)

T b = T o − ρb
C × F b

=
[

ps A · cosα · d · (− sin Ωst · sinψ sinα + cosΩst · cos ψ · sinα)

−ps A · cosα · d · (cos Ωst · sin ψ sinα + sin Ωst · cos ψ · sinα)

0

]

(14)

where ρb
C is the position matrix of mass center in the BRF and it 

is assumed as the following form

ρb
C =
⎡
⎣ 0

0
d

⎤
⎦ (15)

T o is the total SRP torque with respect to origin of the BRF
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T o =
⎡
⎣ 0

0
0

⎤
⎦ (16)

The matrix of solar sail’s angular velocity in the BRF can be de-
scribed as

ωb Abrf ·
⎛
⎝Arfo ·

⎡
⎣ 0

ωo
0

⎤
⎦+
⎡
⎣ ωx

ωy

ωz

⎤
⎦+
⎡
⎣ 0

0
Ωs

⎤
⎦
⎞
⎠ (17)

Then the projection of attitude equation in the BRF can be ob-
tained by substituting Eqs. (9), (13), (14) and (17) into Eq. (8). 
During the inclination cranking, the angular velocity ωx , ωy and 
ωo are small. If it is assumed that the nonlinear items about ωx , 
ωy and ωo can be eliminated, the attitude dynamical equation in 
the BRF can be simplified into the form[

It · ω̇x

It · ω̇y

]

=

⎡
⎢⎢⎣

−ps A · sinα · cosα · sinψ · d
+ IsΩs(ωo cosψ · sinφ + ωo sinψ · cosφ · cosα + ωx)

ps A · sinα · cosα · cosψ · d
+ IsΩs(ωo sinψ · sinφ − ωo cosψ · cosφ · cosα − ωy)

⎤
⎥⎥⎦

(18)

It is noted that the z-component in attitude equation is de-
coupled from the other two. For the spin solar sail the x and y
components of the attitude dynamics are preferred, as shown in 
Eq. (18). This equation is used to design the stable attitude equi-
librium position in the paper, and it is called in this paper the 
design model of passive station keeping.

2.3. Design criterion for passive station keeping

In the inclination cranking, the orientation of solar sail only re-
quires to be changed twice over each orbital loop. In other words, 
the Euler angle φ in this paper needs to be changed between 0 
and π rad. During the half orbital loop, the attitude orientation is 
kept fixed. The required constant attitude Euler angles Λ0 (α = α0, 
ψ = ψ0, φ = 0 or π ) over half loop can be designed as the attitude 
equilibrium point. The condition for the equilibrium is

ω̇x = 0, ω̇y = 0, ωx = 0, ωy = 0 (19)

United with the design model Eq. (18), the condition when the 
attitude position is an equilibrium point becomes

d =
{ IsΩs·ωo

ps A·sin α0
(φ = 0)

− IsΩs·ωo
ps A·sin α0

(φ = π)
(20)

The condition indicates that attitude equilibrium position is rele-
vant to the structural parameters Is and A, pressure parameter ps , 
the cm/cp (Abbreviation, cm: center mass of the solar sail; cp: cen-
ter of solar radiation pressure) offset d and spin velocity Ωs. The 
required attitude position can be obtained by changing the offset 
or spin velocity, except for altering the solar sail’s inherent param-
eters. The large maneuver of Euler angle φ over one loop can be 
achieved by two means: reverse the spin velocity or the cm/cp off-
set. The method of adjusting the offset is employed in this paper as 
the payload only need to move along the spin axis, while reversing 
the spin orientation is difficult for the large membrane. If the at-
titude equilibrium position is given, the required cm/cp offset can 
be determined by the left parameters in Eq. (20). To be specific, 
the larger the sail area is, the required cm/cp offset is larger as 
the ratio of rotational inertia and area size becomes bigger. A large 
spin rate also needs a large offset to obtain the equilibrium point. 
On the other hand, if different orbits for inclination cranking are 
considered the further from the sun the larger offset is required 
for the balance.

Only the stable attitude equilibrium can guarantee the station 
keeping in a passive way. A linear stability method is adopted to 
analyze the stability of the equilibrium point. The method requires 
the linearized equation from the original system. It is achieved by 
linearizing the perturbation equation around the equilibrium po-
sition. The stability result is obtained by analyzing the linearized 
system rather than the complicated original system. It should be 
noted that the linear analysis only provides necessary conditions 
for stability and sufficient conditions for instability.

The original attitude equation (18) and (5) can be rewritten 
as

Ẋ = f (X)

X = [ωx ωy ΛT]T (21)

The attitude equilibrium point can be rewritten as

X0 = [0 0 ΛT
0

]T
(22)

The linearized perturbation equation around X0 is

δ Ẋ = Aδ · δX (23)

where the coefficient matrix of the linearized system

Aδ =
[

δ f

δωx

δ f

δωy

δ f

δΛ

]∣∣∣∣
X=X0

(24)

The stability of the equilibrium point requires that the real part 
of eigenvalues of Aδ is not positive. The characteristic polynomial 
of Aδ is

λ · [λ4 − (a32 · a23 + a52 · a25 + a21 · a12 + a14)λ
2

+ a32 · a23 · a14 + a52 · a14 · a25
]= 0 (25)

where the constant coefficients are

a12 = −ΩsI, a21 = ΩsI, a32 = 1

sinα0
, a23 = ΩsIωo

a25 = 0, a52 = − cosα0

sinα0
, a14 = ΩsIωo cos2 α0

sinα0
(26)

Base on the stability polynomial theory, it is possible to make 
the system marginally stable, whereas it cannot be asymptotic 
stable [24]. The following criteria must be satisfied for marginal 
stability⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ω2
sI − ΩsI · ωo

sinα0
− ΩsI · ωo · sin2 α0

sinα0
≥ 0

(
Ω2

sI −
ΩsI · ωo

sinα0
− ΩsI · ωo · sin2 α0

sinα0

)2

− 4 · Ω2
sIω

2
o cos2 α0

sin2 α0
≥ 0

(27)

After the simplification, the criterion can be rewritten as⎧⎨
⎩

d < 0 (if Ωs > 0)

d ≥ It · ω2
o · (1 + cosα0)

2

ps · A · sin2 α0
(if Ωs < 0)

(28)

The criterion indicates that the stability of the attitude equilibrium 
position is relevant to the spin orientation or the cm/cp offset side. 
The required passive station keeping can be designed by selecting 
proper cm/cp offset based on the stability criterion.

The stability of the equilibrium is validated via numerical sim-
ulation using the dynamics (7), (5) and (18). The case of a circular 
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Table 2
The relevant parameters in the design model simulation.

Parameters Value

Sail area size (A) 3200 m2

Mass of the solar sail (m) 200 kg
Rotational inertia (It/Is) 1900/3800 kg m2

SRP coefficients (ps/pn1/pn2) 3.17 × 10−5/1.63 × 10−4/1.164 × 10−5 Pa
Attitude equilibrium (Λ0) φ0 = 0◦ or 180◦/α0 = −35.5◦/ψ0 = 0◦

Fig. 1. Attitude response corresponding to case 1 and case 2.

Fig. 2. The trajectory path of solar sail in the IRF over one loop.

orbit of 0.2 AU for inclination cranking is considered here. In the 
simulation, the variation of the orbital angular velocity and SRP 
coefficients is taken into account. Classic orbit elements are ap-
plied to describe the orbit of solar sail. The initial orbit value is: 
semi-major axis is 0.2 AU, eccentricity is zero, RAAN is zero, peri-
apsis angle is −90◦ , true anomaly is zero. Table 2 gives the other 
parameters in simulation.

It is known from the criterion (28) not all equilibrium po-
sitions are stable. To validate this stability criterion, two per-
turbation cases around attitude equilibrium point are compared. 
Case 1 represents the equilibrium position is designed based on 
the attitude equilibrium condition (20) and stability criterion (28), 
whereas case 2 does not meet criterion (28). The spin angle ve-
locity in case 1 is set to Ωs = −3 × 10−2 rad/s while the case 2 
is set to Ωs = −3 × 10−6 rad/s. The corresponding cm/cp off-
sets are 0.45 cm and 4.5 × 10−5 cm. The same perturbation 
δΛ = [0.05 0.05 0]T is exerted on the two cases. The attitude Eu-
ler angles responses over one orbital loop corresponding to the 
two cases are shown in Fig. 1. It can be seen that the response of 
case 1 is stable around the equilibrium while the attitude angle α
of case 2 is far away the equilibrium station after seven or eight 
days.

Fig. 2 gives the trajectory path of solar sail and Fig. 3 gives the 
profiles of the classical orbital elements during one loop when the 
initial attitude is set to Λ0. In the simulation, the large maneuver 
after half loop is assumed to be finished instantly. It can be seen 
that the inclination of the orbit increases continuously as expected. 
The distance of the sun-sail increases during half loop and then it 
is reduced to almost its initial value.
Fig. 3. The profiles of the classical orbital elements over one loop.

3. The passive station keeping of a flexible solar sail

Section 2 studies the station keeping of a rigid solar sail con-
sidering the orbit and attitude separately. However, the main char-
acteristics of solar sail is that the sail is very flexible compared to 
regular spacecraft. Many differences exist between the rigid and 
flexible model. For example, except for the flexibility impact on 
structural parameter, the deformation of the solar sail will influ-
ence the unique propulsion—the SRP force. Many works have been 
done in studying the influence of structural vibrations [12–19]. 
Based on the prior studies of a finite-element (FE) model, Li et 
al. [20,21] developed a reduced dynamical model of a flexible sail 
with a hybrid coordinate method in the reference floating frame, 
and the satisfactory accuracy and efficiency were verified using the 
nonlinear FE software ABAQUS/Explicit. This high-fidelity model of 
a flexible solar sail is adopted in this paper to investigate the im-
pact of sail vibration on the passive stability design of solar sail. 
As a further work of the high-fidelity model, the change of to-
tal SRP force on account of the sail deformation is considered in 
this paper and it is approximately calculated using the FE-based 
method. The outline of this section (section 3) is as follows. Firstly, 
the reduced dynamical model of a flexible solar sail is introduced. 
Then, some comparative studies are presented to analyze the orbit 
and attitude of a flexible solar sail. The comparative simulations 
focus on the influence of attitude–orbit coupling and the influ-
ence of oscillation–orbit–attitude coupling. In addition, two steps 
are divided in the study of the oscillation–orbit–attitude coupling 
analysis to analyze the impact of the structural parameters and 
the SRP force produced by sail deformation respectively. Finally, 
attempt to stabilize the station of a flexible solar sail is provided.

3.1. Dynamical model of flexible solar sail

3.1.1. Reduced model and formulations
The oscillation–attitude–orbit dynamical equation in vector 

form can be written as [20,21]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mR̈O − S f × ω̇ +
∫
V

u′′
f dm + Q ft = F t + F gt

S f × R̈O + J f · ω̇ +
∫
V

(rf + uf) × u′′
f dm + Q fr = F r + F gr

C T
t · R̈O + C T

r · ω̇ +
∫
V

ΦT
NL · u′′

f dm + K fq + Q ff = F f + F gf

(29)

where
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S f =
∫
V

(rf + uf)dm (30)

J f =
∫
V

[
(rf + uf) · (rf + uf)I 3 − (rf + uf)(rf + uf)

]
dm (31)

ΦNL =

⎛
⎜⎜⎝

−z δΦ
δx − qT · ∫ x

x0

δΦT

δx
δΦ
δx dx

−z δΦ
δy − qT · ∫ y

y0

δΦT

δy
δΦ
δy dy

Φ

⎞
⎟⎟⎠ (32)

C t =
∫
V

ΦNLdm (33)

C r =
∫
V

(rf + uf) × ΦNLdm (34)

Q ft = ω × (ω × S f) + 2ω ×
∫
V

u′
fdm (35)

Q fr = ω × ( J f · ω) + 2
∫
V

(rf + uf) × (ω × u′
f

)
dm (36)

Q ff =
∫
V

ΦT
NL · [ω × ω × (rf + uf)2ω × u′

f

]
dm (37)

F t =
∫
A

psundA (38)

F t =
∫
A

(rf + uf) × psundA (39)

F f =
∫
A

ΦT
NL · psundA (40)

F gt = −mμ

R3
O

RO − μ

R3
O

S f + 3μ

R5
O

∫
V

(
(rf + uf) · RO

)
Rdm (41)

F gr = − μ

R3
O

S f × RO + 3μ

R5
O

∫
V

(rf + uf) × ((rf + uf) · RO
)

ROdm

(42)

F gf = − μ

R3
O

C T
t RO − μ

R3
O

∫
V

ΦT
NL · (rf + uf)dm

+ 3μ

R5
O

∫
V

ΦT
NL

(
(rf + uf) · RO

)
Rdm (43)

The physical meaning of the above variables, the operation of 
( ˙ )( ¨ ) (′)(′′), can refer to the NOMENCLATURE at the beginning 
of the paper.

3.1.2. Finite element modeling
A FE model conducted by ABAQUS is adopted to calculate the 

modal integral constants in Eq. (29). The model is composed of a 
hub, and a large square membrane, as shown in Fig. 4.

The two parts in the model are illustrated in detail as follows.

• Hub part: The shape of the hub is assumed to be a cylinder 
with a height of 1 m, the mass of 500 kg. Deformable solid 
part is used for the hub model in ABAQUS and 544 elements 
are divided. It is noted that the rigidity of the hub is not con-
sidered. So rigid constraint is applied to the hub, that is, the 
Fig. 4. FE model of the solar sail.

Fig. 5. The first three non-rigid modes of the solar sail at spin angle velocity 0.1 rad 
per second.

Table 3
The natural frequencies corresponding to different spin rate.

Spin angular 
velocity

First-order 
frequency
(Hz)

Second-order 
frequency
(Hz)

Third-order 
frequency
(Hz)

−0.03 0.0147564 0.02417 0.02417
−0.1 0.0491842 0.0824752 0.0824752
−0.3 0.14751 0.24737 0.24738
−0.8 0.39331 0.65980 0.65985
−1.2 0.58961 2.0114 2.1624

hub is considered a rigid body. The motion of the hub is trans-
ferred to the sail membrane by setting the kinematic coupling 
constraint in the software.

• Sail membrane part: The sail membrane is a square film with 
a hole in the center. The film is of 2.50 μm in thickness with 
metallic coatings. Density = 1572 kg/m3; Young’s Modulus =
2.48 GPa; Poisson’s ratio = 0.34. The distance from the center 
to the tip is 40 m. The sail part is divided into 3014 S3R shell 
elements.

Centrifugal force is exerted on the membrane to get the re-
quired modes. A modal analysis step is created to generate the fre-
quencies and mode shapes of the solar sail. As an example, when 
the spin angle velocity is −0.1 rad/s, the preceding three non-rigid 
modes at the corresponding frequency are shown in Fig. 5. In the 
latter simulations, different spin rates are considered and their nat-
ural frequencies and modes are different too, which are listed in 
Table 3. It is verified from the generated data file in ABAQUS that 
the effective mass of the preceding three modes contributes 95% in 
the total mass along the norm direction. Based on the FE theory, 
the foreshortened modes can reflect the dynamic characteristic ef-
fectively.
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3.2. Comparative studies

3.2.1. Attitude–orbit dynamics of rigid model
Rather than the attitude and orbit dynamics separately (called 

design dynamical model), the attitude–orbit dynamics model is ap-
plied to study the attitude–orbit coupling impact in the passive 
station keeping of a rigid spinning solar. The attitude–orbit dy-
namics can be obtained by eliminating the items related to the 
vibration in Eq. (29){

mR̈O − S0 × ω̇ = F t + F gt − ω × (ω × S0)

S0 × R̈O + J 0 · ω̇ = F r + F gr − ω × ( J 0 · ω)
(44)

Eq. (44) can be written in the BRF as follows[
m · I 3 − S̃

b
0

S̃
b
0 J b

0

]
·
[

R̈
b
O

ω̇b

]
=
[

F b
t + F b

gt − ωb × (ωb × Sb
0)

F b
r + F b

gr − ωb × ( J b
0 · ωb)

]
(45)

where

Sb
0 = m · ρb

C (46)

J b
0 = J c + m · [d2 · I 3 − ρb

C · (ρb
C

)T ]
(47)

F b
t = F b (48)

F b
r = T o (49)

The angular acceleration can be replaced by the twice differential 
of Euler angles

ω̇b = Abrf · AΛ · Λ̈ + Abrf · dω1 + dω2 (50)

where

Λ̈ = [ φ̈ α̈ ψ̈
]T

(51)

dω1 =
⎡
⎣ cosα · sinψ · α̇ + sinα · cosψ · ψ̇ − sin ψ · ψ̇ 0

cosα · cosψ · α̇ − sinα · sinψ · ψ̇ − cosψ · ψ̇ 0
− sinα · α̇ 0 0

⎤
⎦

·
⎡
⎣ φ̇

α̇
ψ̇

⎤
⎦ (52)

dω2 = Ωs

·

⎡
⎢⎢⎢⎢⎢⎣

− sin Ωst · (cosψ · sinφ · ωo + sin ψ · cosα · cosφ · ωo + ωx)

+ cos Ωst · (− sin ψ · sin φ · ωo + cosψ · cosα · cosφ · ωo + ωy)

− cos Ωst · (cosψ · sinφ · ωo + sin ψ · cosα · cosφ · ωo + ωx)

− sin Ωst · (− sin ψ · sin φ · ωo + cosψ · cosα · cosφ · ωo + ωy)

0

⎤
⎥⎥⎥⎥⎥⎦

(53)

Substitute Eqs. (50)–(53) into (45) and the attitude–orbit dynamics 
in the BRF can be rewritten as⎡
⎣m · I 3 − S̃

b
0 · Abrf · AΛ

S̃
b
0 J b

0 · Abrf · AΛ

⎤
⎦ ·
[

R̈
b
O

Λ̈

]

=
[

F b
t + F b

gt − ωb × (ωb × Sb
0)

F b
r + F b

gr − ωb × ( J b
0 · ωb)

]

−
[

− S̃
b
0

J b
0

]
· (Abrf · dω1 · dω2) (54)

Eq. (54) can be integrated directly to get the orbit information in 
the IRF and the attitude response in the ORF.
3.2.2. Oscillation–attitude–orbit dynamics of a flexible model
The oscillation–attitude–orbit dynamics can be obtained by pro-

jecting the vector equations (29) into the BRF, which is⎛
⎜⎜⎝

mI 3 − S̃
b
f C b

t

S̃
b
f J b

f C b
r

(C b
t )

T (C b
r )

T M f

⎞
⎟⎟⎠
⎛
⎜⎝ R̈

b
O

ω̇b

q̈

⎞
⎟⎠

+
⎛
⎝ 03×3 03×3 03×n

03×3 03×3 03×n

0n×3 0n×3 K f

⎞
⎠
⎛
⎝ Rb

O
Λ
q

⎞
⎠=
⎛
⎝ F t + F gt − Q ft

F r + F gr − Q fr
F f + F gf − Q ff

⎞
⎠ (55)

where the normalized mass matrix is

M f =
∫
V

ΦT Φdm = In (56)

the modal stiffness matrix is

K f = diag
(
Ω2

1 ,Ω2
2 , . . . ,Ω2

n

)
(57)

where Ωi (i = 1, 2, . . . , n) is the ith-order modal angular frequency.
Substitute Eqs. (50)–(53) into (55), and the oscillation–attitude–

orbit dynamical equations can be rewritten as⎛
⎜⎜⎝

mtot I 3 − S̃
b
f · Abrf · AΛ C b

t

S̃
b
f J b

f · Abrf · AΛ C b
r

(C b
t )

T (C b
r ) · Abrf · AΛ M f

⎞
⎟⎟⎠
⎛
⎝ R̈

b
O

Λ̈
q̈

⎞
⎠

+
⎛
⎝03×3 03×3 03×n

03×3 03×3 03×n

0n×3 0n×3 K f

⎞
⎠
⎛
⎝ Rb

O
Λ
q

⎞
⎠

=
⎛
⎝ F t + F gt − Q ft

F r + F gr − Q fr
F f + F gf − Q ff

⎞
⎠−
⎛
⎜⎝ − S̃

b
f

J b
f

(C b
r )

T

⎞
⎟⎠ · (Abrf · dω1 + dω2)

(58)

The orbit profile, attitude response with respect to the ORF and 
the vibration can be obtained by integrating Eq. (58) directly. It 
should be noted that two models are provided for the SRP force in 
Eq. (58) in the paper, as shown in Eqs. (59) and (67).

3.2.3. Total SRP force experienced by the deformed sail
In most prior studies of flexible solar sail with a plane mem-

brane, the deformation is usually ignored to calculate the SRP 
force [17–21]. There are two main reasons for the simplified pro-
cess. One is that the deformation is much smaller compared to 
the area size and the sail is approximately still a plane. The other 
reason is that the real-time shape of the sail is usually difficult 
to describe in an analytical way. However, the vibration of the 
sail membrane will make the sail non-planar and influence the 
SRP force inevitably. To investigate the impact of the SRP due to 
the oscillation, two SRP models are presented respectively. One is 
based on the plane assumption same as the prior work, which is 
called SRP model-1. The other SRP model is calculated based on 
the FE method, which is called SRP model-2 in this paper. The SRP 
of model-1 is related to the sail attitude and distance from sun, 
whereas SRP of model-2 is related to the sail oscillation apart from 
the attitude and distance.

The same as the rigid model, the SRP model-1 is represented as

F (1)
t = F b

F (1)
r = T o
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Fig. 6. A small surface of the sail membrane.

F (1)

f =
∫
V

ΦT
NLdF t = −F (1)

t (1) · C T
x · q − F (1)

t (2) · C T
y · q

Aρh

+ (
∫

V Φdm)T · F (1)
t (3)

ρh

(59)

where the F (1)
t (1), F (1)

t (2) and F (1)
t (3) are respectively the first, 

second and third element of F (1)
t .

The SRP model-2 is developed approximately by summing the 
SRP force exerted on every small plane surface of the sail. The 
small surface is exactly the S3R shell element of the sail mem-
brane, which is shown in Fig. 6. In the small surface, ‘i, j, m’ are 
the three node numbers of the S3R element ‘p’. From the FE 
model, the totality of the shell nodes and elements are respectively 
n_tot = 1581 and e_tot = 3014.

Considering the tensile deformation is ignored, the area of the 
shell element can be described in the BRF as

A(p) = 1

2

[
(y j − ym) · (−xm + xi) − (ym − yi) · (−x j + xm)

]
(60)

where xi , yi are the x and y coordinates of node i in the BRF.
The unit normal vector of the small surface can be represented 

approximately in the BRF as

n(p)

b = ri j × rim

|ri j × rim| (61)

where

ri j = r j − ri =
⎡
⎣ x( j) − x(i)

y( j) − y(i)
u( j) − u(i)

⎤
⎦ (62)

where u(·) is the real-time transversal displacement of the shell 
node, and the rim is obtained in a similar way.

The total SRP propulsion calculated by summation is written as

F (2)
t =

e_tot∑
p=1

A(p) · P (p)

b (63)

where P (p)

b is the solar radiation pressure exerted on the small 
surface, and it can be written as

P (p)

b = [ps · (sb · n(p)

b

) · sb + pn1 · (sb · n(p)

b

)2 · n(p)

b

+ pn2 · (sb · n(p)

b

) · n(p)

b

] (64)

The total SRP torque calculated based on the FE method is written 
as

F (2)
r =

e_tot∑
p=1

A(p) · (rp × P (p)

b

)
(65)

where rp is the arithmetic mean value of the node coordinate ma-
trix in the ‘p’ element.

The total SRP restoring force in this method can be represented 
as
Fig. 7. The attitude response using the two models with an initial perturbation.

F (2)

f = −F (1)
t (1) · C T

x · q − F (1)
t (2) · C T

y · q

Aρh

+
e_tot∑
p=1

A(p) · P (p)

b (3) · ΦT(p)

(66)

where P (p)

b (3) is the third element of P (p)

b as shown in Eq. (64), 
ΦT(p) are the arithmetic mean value of the modes of the three 
nodes in ‘p’ element.

In summary, the SRP model-2 can be written as

F (2)
t =

e_tot∑
p=1

A(p) · P (p)

b

F (2)
r =

e_tot∑
p=1

A(p) · (rp × P (p)

b

)

F (2)

f = −F (1)
t (1) · C T

x · q − F (1)
t (2) · C T

y · q

Aρh

+
e_tot∑
p=1

A(p) · P (p)

b (3) · ΦT(p)

(67)

3.2.4. Comparison between the attitude–orbit model and the design 
model

The simulation results using the attitude–orbit model and the 
former design model are presented to analyze the coupling impact 
in inclination cranking. The initial value of the orbit and the re-
quired attitude equilibrium are identical to the design model simu-
lation case. The initial attitude perturbation δΛ = [0.05 0.05 0]T is 
exerted on the simulation to test the passive station keeping. The 
spin angle velocity is set to −0.03 rad/s, and the corresponding 
cm/cp offset is 0.9 cm. The other parameters are shown in Table 4.

On the one half loops, the attitude response and the orbit pro-
file simulated by the two models respectively are shown in Fig. 7
and Fig. 8. It can be seen that similar stable attitude and orbit re-
sults are obtain by the design model and attitude–orbit coupling 
model. The similarity indicates that the attitude–orbit coupling in-
fluence is tiny in the inclination cranking. In other words, the sim-
ple dynamical model, rather than the coupling model, is applied 
to design the passive stability of solar sail is reasonable. With fur-
ther simulation, it can be found that many small quantities exist 
in the attitude–orbit coupling Eq. (54). The coupling equation can 
be simplified by abandoning these smaller items, which becomes

R̈
b
O ≈ F b

t

m
− μ

R3
O

RO

S̃
b
0 · R̈

b
O + J b

0 · ω̇b + ωb × ( J b
0 · ωb
)≈ T o − μ

R3
SO × RO

(68)
O
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Table 4
Parameters in the attitude–orbit model simulation.

Parameters Values

Membrane area—A 3200 m2

Total mass—m 515.18 kg
Rotational inertial—It/Is 7720.19/3902.00 kg m2

SRP coefficients with 0.2 AU from the sun—ps/pn1/pn2 3.17 × 10−5/1.63 × 10−4/1.164 × 10−5 Pa
Fig. 8. The orbit elements profile using the two models.

Fig. 9. The attitude responses of two models.

It can be seen that the simplified attitude–orbit coupling equa-
tion (68) are almost identical to the design dynamical model ex-
cept for the little difference of rotational inertia. Thus, the simu-
lated results by the two models are almost identical.

3.2.5. Comparison between attitude–orbit model and 
oscillation–attitude–orbit model under the SRP model-1

In this section, the plane assumption (refer to Eq. (59)) is ap-
plied in the flexible solar sail model to investigate the oscillation 
impact. The impact of the SRP difference caused by deformation 
will be studied in section 3.2.6. The attitude–orbit model (54) and 
the oscillation–attitude–orbit model (58) are used for simulation. 
The spin angle velocity is set to −0.3 rad/s, and the correspond-
ing cm/cp offset is 9 cm. The initial value of the orbit and the 
required attitude equilibrium are identical to the design model 
simulation case. The initial value of the attitude is the equilibrium. 
The attitude responses of the attitude–orbit model and oscillation–
attitude–orbit model over half loops are shown in Fig. 9. The sim-
ulation indicates that the vibration has an effect on the solar sail 
attitude, even with the SRP model-1. This is mainly because the 
static and inertia moments of a flexible solar sail is slightly differ-
ent from the rigid one, while the static moment is closely related 
to the designed equilibrium point. When the spin rate is 0.3 rad/s, 
the deviation amplitude of the Euler angles from the equilibrium 
position is 0.01 rad during the inclination cranking without large 
maneuver, which is supposed to be acceptable in the engineering. 
Fig. 10. The orbit elements profile of the two models.

Fig. 11. The attitude response of oscillation–attitude–orbit dynamics under srp 
model-1 with the spin angular v0.1 rad per second.

Fig. 12. The attitude response of SRP model-1 and model-2.

The orbit elements profile of the two models with this spin rate is 
shown in Fig. 10, which shows that the difference of the two mod-
els is tiny. After further simulation, it can be found that the impact 
of the oscillation on the attitude increases as the spin rate is re-
duced, and the impact decreases when the spin rate rises. The rea-
son is that the lower spin rate means a larger flexibility for the no 
support spinning solar sail and a weaker ability to keep the orien-
tation. For example, when the spin rate is reduced to 0.1 rad/s the 
attitude deviation amplitude is quite large, as is shown in Fig. 11.

3.2.6. Comparison between SRP model-1 and model-2
Section 3.2.5 verifies that the sail oscillation has an effect on 

the attitude and orbit even ignoring the difference of SRP force 
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Fig. 13. (a) The responses of modal coordinate. (b) The responses of tip deflection. (b2) The partial enlarged drawing of (b).
Fig. 14. The variation of the SRP torque.

caused by the deformation. In this part, the same oscillation–
attitude–orbit equation (58) but the different SRP models (refer 
to Eq. (59) and Eq. (67)) are used for simulation to analyze the 
SRP impact of the sail deformation. The simulation parameters are 
identical to section 3.2.5. When the spin angular velocity is still 
set to −0.3 rad/s, the attitude response of the SRP model-1 and 
model-2 are presented as Fig. 12. It can be seen that the prior pas-
sive station keeping under SRP model-1 is broken when the SRP 
impact of deformation is taken into account. The primary reason 
for this instability is that the SRP torque is produced by vibration, 
which is different to the case of SRP model-1. The vibration re-
sponse of the sail and the corresponding SRP torque are shown 
in Fig. 13 (a, b, b2) and Fig. 14 respectively. It can be seen that 
the sail vibration of the two SRP models are similar, where their 
deflection amplitudes of sail tip is about 8 cm. The SRP torque am-
plitude produced by deformation is about 0.01 N m, which makes 
the attitude instable.

The simulation results indicate that the designed attitude equi-
librium using a plane sail is not completely fit to the deformed 
case, especially the deflection increases. As is well known, a large 
spin rate will make the normal orientation of a spacecraft more 
stable. So one feasible option to stable the flexible solar sail is to 
increase the spin rate, which means larger cm/cp offset. The atti-
tude response of the flexible solar sail with a spin angular velocity 
−0.8 rad/s is shown in Fig. 15. The corresponding cm/cp offset is 
24 cm. It can be seen that with this large spin rate the impact 
of the sail oscillation is reduced compared with the prior lower 
Fig. 15. The attitude response with a spin rate 0.8 rad per second.

Fig. 16. The SRP torque produced by sail deformation with a spin rate 0.8 rad per 
second.

spin rate. By this time, the attitude deviation amplitude from the 
equilibrium is 0.08 rad, while the amplitude of the SRP torque con-
ducted by sail deformation is 0.001 N m as is presented in Fig. 16. 
Further simulations indicate that the larger spin rate will make 
the impact of sail oscillation on the attitude smaller as expected. 
Here gives an example of the spin rate 1.2 rad/s, corresponding to 
the cm/cp offset 35 cm. The attitude and SRP torque responses are 
shown in Fig. 17 and Fig. 18 respectively. It can be seen that the 
amplitudes of attitude deviation and SRP torque are smaller than 
the case with the spin rate 0.8 rad/s.
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Fig. 17. The attitude response with a spin rate 1.2 rad per second.

Fig. 18. The SRP torque produced by sail deformation with a spin rate 1.2 rad per 
second.

4. Conclusion

In this paper, the general passive stability design criterion of 
a flexible solar sail is investigated. As a design model, the pas-
sive station keeping during the inclination cranking of a spinning 
solar sail is developed using a rigid model. The design criterion 
shows that the required stable attitude of solar sail can be ob-
tained passively by adjusting the cm/cp offset and the spin rate. 
A modal reduced oscillation–attitude–orbit model for spinning so-
lar sail is developed to analyze the impacts of sail oscillation and 
the attitude–orbit coupling. The total time-varying SRP force ex-
perienced by the deformed sail is considered using the FE based 
method. The study indicates that the attitude–orbit coupling ef-
fect referred in this paper during the inclination cranking is tiny, 
whereas the oscillation has an obvious impact on the attitude and 
orbit of the solar sail under a certain spin rate. In the case of con-
sidering the oscillation, the original passive stability criterion by 
the rigid model may become invalid. The reasons of the oscillation 
influence are investigated via comparative simulations. The results 
indicate that the SRP torque due to the sail deformation and the 
variation of structural parameter of a flexible solar sail are the two 
main causes to influence the attitude and orbit. Attempt to stabi-
lize the flexible solar sail is proposed, which is increasing the spin 
rate and the cm/cp offset.
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