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The present work discusses the practical advantages and disadvantages of using simplified numerical 
methods and computational fluid dynamics in parametric design studies of hypersonic blunt bodies. 
Similarly, the advantages of using problem-specific simplifications to the governing equations to reduce 
computational cost are discussed. The uncertainty associated with using various methods to analyze 
hypersonic blunt body flows has been quantified through comparison to numerical solutions of the 
compressible Navier–Stokes equations. In particular, selected methods that are well defined in the 
literature, such as the modified Newtonian method, transformed finite difference grids, and the method of 
characteristics in the supersonic region, have been utilized to solve two cases of interest. An improvement 
to the prediction methods has been achieved through the inclusion of an iterative interaction between 
the boundary layer displacement thickness and the external inviscid free-stream. Results were collected 
for accuracy and computing time for each method including under-resolved compressible Navier–Stokes 
simulations. The collective information was used as a case-study to discuss the balance an engineer must 
find between simulation fidelity, resolution, accuracy, simulation time, and development time.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

The design of hypersonic blunt-body vehicles requires accurate 
predictions of aerodynamic loads such as drag, friction, moments, 
and heat flux. In general, computational fluid dynamics (CFD) sim-
ulations of the Navier–Stokes equations provide the most accurate 
and detailed predictions of these flow parameters. The highly ac-
curate results of Navier–Stokes simulations are particularly use-
ful when a vehicle geometry is past the initial design phase and 
more accurate predictions are needed to optimize re-entry trajec-
tory, heating or placement of control mechanisms. However, in the 
ongoing advancement and development of blunted hypersonic ge-
ometries, the shape of the body may be further improved upon 
through parametric studies and optimizations [1–3]. These types 
of studies involve evaluating many design variables. In these cases, 
where the best results are achieved with large populations, CFD 
is an inefficient prediction tool due to the high computational 
cost. Often a compromise is made in grid resolution, and hence 
accuracy, in order to keep a parametric or optimization study fea-
sible [4]. It is unclear whether such a reduction in resolution in 
order to reduce computing time, while maintaining the highest 
fidelity governing equations, is the appropriate strategy. Alterna-
tively, the governing equations themselves can be simplified and 
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solved with high resolution in order to achieve a reduction in 
computing time, provided that some prior wisdom of the problem 
exists. Both of these approaches result in decreased accuracy either 
by a lack of resolution, or from simplifications to the governing 
equations. A major problem in starting an analysis or optimiza-
tion campaign is “how does the designer/engineer/scientist choose 
the correct tool?”. In flow prediction, the engineer must weigh 
all of the costs of available tools against their value in terms of 
speed, reliability and accuracy. Obvious costs include the acqui-
sition/development costs and the operational costs. However, the 
learning curve associated with a new tool is also an important 
cost. These decisions are often made based on previous experi-
ences and expertise. The purpose of this work is to assist with 
making that decision by systematically assessing the accuracy and 
cost of a range of analysis methods used in hypersonic flow pre-
diction. Assessment is based on the prediction of a complex, but 
well-known, canonical flow problem. Hypersonic flow over a cylin-
der involves regions that are described by elliptic, parabolic, and 
hyperbolic equations. Large changes in temperature require proper 
treatment of the thermophysical properties. The presence of shock 
waves introduce discontinuities that compromise accuracy, lead to 
instability, and increase computing time for most standard numer-
ical methods. The present work has attempted to examine this 
problem by comparing a series of blunt body flow calculations 
of varying fidelity. The study includes two test cases: (1) a Mach 
6, two-dimensional, laminar flow over a circular cylinder with an 
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Nomenclature

a Velocity profile parameter (in Equation (6) and (7)), 
also speed of sound (m/s)

b Body shape, measured radially from the origin (m)
As Sutherland constant
C C = ρμ

ρeμe

C p Coefficient of pressure
C1, C2, C3 Coefficients for Kays’ laminar heating (in Equation 

(3))
cp Specific heat capacity J/(kg K)
c f Coefficient of friction
F F = U

Ue

G G = H
He

Ge ρeUe (in Equation (3))
H Total enthalpy (J/kg)
H, J , R, P Boundary layer integral parameters (in Equations (6)

and (7))
m Displacement thickness growth ( dδ�

dx )
M Mach number
p Pressure (Pa)
q∞ Free-stream dynamic pressure (Pa)
Pr Prandtl number
r Adiabatic recovery factor (in Equation (20)), also relax-

ation factor (in Equation (26))
R Local axi-symmetric radius of curvature (m) (in Equa-

tion (3))
R g Specific gas constant J/(kg K)

Re Reynolds number
Rec Cell Reynolds number
s̄ Levy–Lees stream-wise coordinate
T Temperature (K)
Taw Adiabatic wall temperature (K)
Ts Sutherland’s temperature (K)
u Velocity vector (m/s)
U Tangent velocity component (m/s) (boundary layer 

equations)
V Normal velocity component (m/s) (boundary layer 

equations)
X Stewartson stream-wise coordinate
Y Stewartson stream-normal coordinate
γ Specific heat ratio
δ∗ Boundary layer displacement thickness (m)
η Levy–Lees stream-normal coordinate
θ Deflection angle (radians or degrees)
μ Dynamic viscosity (kg/ms)
ρ Density (kg/m3)
τ Shear stress (N/m2)

Subscript

e Property at boundary layer edge
i Transformed quantity, also iteration
o Property at forward stagnation point
w Property at wall
∞ Free-stream property
adiabatic wall, not including the separated wake region, and (2) 
a Mach 10, two-dimensional, laminar flow over a blunted leading 
edge with a cold wall.

Parametric studies and design optimizations are a fundamen-
tal tool in the development of future aerospace technologies. In 
CFD applications these types of studies can be very expensive due 
to the high computational requirements of the governing Navier–
Stokes equations. Because of this there is interest in finding ways 
to reduce this cost with minimal compromise in accuracy and con-
fidence. For example, surrogate based analyses are very common in 
CFD applications because they do not require a Navier–Stokes sim-
ulation to be performed at every data point. Instead, a surrogate 
model uses data achieved through high fidelity simulations per-
formed at select points in the design space to create a model [5]. 
Additionally, surrogate models can be constructed using a combi-
nation of high and low fidelity simulations [6,7]. This leads to a 
significantly reduced cost of performing parametric optimizations 
and analyses. However, even in a surrogate-model based study, 
a complicated design space can still require numerous high-fidelity 
simulations to be performed. Additionally, it is important to un-
derstand the limitations and benefits of using intermediate fidelity 
approaches. For this reason there is still value in reducing the cost 
of individual simulations. It is easy to assume that high-fidelity 
CFD is required in order to produce the level of accuracy neces-
sary in modern design. While in some cases this is true, in others 
it is worth investigating the possible reduced-order and simplified 
models that have been developed and used in the past. For exam-
ple, in previous work by the present authors, simplified numerical 
solutions were used with a genetic algorithm to optimize wave-
rider leading edges [1]. The reduced-order model allowed a large 
number of simulations to be performed with high accuracy. The 
optimized results were then examined using high-fidelity CFD and 
it was found that the predicted performance gains from the opti-
mization were not significantly in error. Because of the speed and 
accuracy of the models used, no surrogate based modeling was re-
quired.

Many simplified solutions to flow over hypersonic blunt bodies 
exist. A representative few are presented here in order to provide 
the necessary data for analysis and discussion. Two methods of 
varying accuracy for inviscid flow have been examined: (1) The 
modified Newtonian method [8] and (2) a numerical solution to 
the Euler equations using finite differences [8,9] combined with 
the method of characteristics [8,10]. Similarly, several methods for 
producing boundary-layer flow solutions are examined: (1) A sim-
ple solution for convective heat flux described by Kays et al. [11], 
(2) a solution to the integral boundary layer equations using the 
Cohen–Reshotko family of profiles [12,13], and (3) a direct numer-
ical solution of the complete compressible boundary layer equa-
tions [14]. Each of these methods are solved in combination with 
each other to achieve a representative variation in accuracy. These 
methods are described in more detail in Section 2. Because flow-
fields of practical interest are a mixture of viscous and inviscid 
flow it is often necessary to account for viscous-inviscid interac-
tion. In the case a circular cylinder an interaction occurs between 
the shoulder expansion fan and the boundary layer flow. A simple 
iterative algorithm to account for this interaction is presented in 
Section 3.

For the solution of the compressible Navier–Stokes equations 
the open source CFD package OpenFOAM version 2.3.0 was used 
[15]. The solver used in this work, rhoCentralFoam, has been com-
pared to experiment as well as other solvers from other CFD pack-
ages and shown acceptable results [16–19]. Arisman et al. [17,18]
used a modified form of the rhoCentralFOAM solver to compute 
the injection of nitric oxide in a cross-flow configuration into a 
Mach 10 boundary layer with air as the freestream. Vertical distri-
butions of predicted streamwise velocity were compared to exper-
imental planar laser-induced fluorescence (PLIF) molecular tagging 
velocimetry (MTV) measurements. In addition to velocity, a surface 
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pressure probe was used to capture the hypersonic viscous interac-
tion at the leading edge of the wind-tunnel model. The estimated 
error of the simulations based on comparisons of velocity and 
pressure were 2% and 3%, respectively. Hinman and Johansen [16]
used rhoCentralFoam to study the present case of hypersonic flow 
over an adiabatic circular cylinder. The computational results in 
that work were compared to experimental base pressure measure-
ments by McCarthy and Kubota [20]. In the cases compared, the 
computational results for base pressure distribution had a maxi-
mum error of 0.65% of stagnation pressure from the experimental 
values. This is slightly larger than the estimated experimental error 
for these data points (± 0.2% of stagnation pressure). This addi-
tional error was attributed to uncertainty in matching the nominal 
Reynolds and Mach numbers from the experiments. At higher rel-
ative Reynolds number (where this uncertainty has less effect) 
the maximum error was only 0.12% of stagnation pressure. Very 
close to the reported experimental uncertainty of ± 0.1% of stagna-
tion pressure for these cases. Because of these previous successes, 
the present authors are comfortable using rhoCentralFoam as the 
benchmark for accuracy in the current work.

The discussion in this study should be useful to engineers per-
forming parametric design studies on two dimensional or axisym-
metric hypersonic blunt body geometries such as launch vehicles, 
high-speed aircraft, projectiles, missiles, or atmospheric entry sys-
tems. More generally, this work serves as an example of the bal-
ance that must be struck between fidelity, resolution, accuracy and 
simulation time.

2. Description of numerical and mathematical models

2.1. Summary

In order to provide insight into the benefits of using reduced 
fidelity models in parametric design studies of hypersonic flow, 
a number of methods were implemented. These ranged from low 
fidelity to high fidelity. None of the individual methods for solving 
inviscid or viscous presented here are themselves novel and can be 
found described in significant detail in the literature. The reduced 
fidelity models in this paper are outlined in Table 1. In Sections 2.2
to 2.4 the low and intermediate fidelity approaches are briefly de-
scribed. In Section 3 the viscous-inviscid coupling algorithm used 
for the a region of expansion is outlined. In Section 4 the CFD 
set-up for the compressible Navier–Stokes simulations is described 
briefly. For detailed explanations of the implementations of these 
methods, the references from Table 1 should be consulted. In this 
study these methods have only been applied for two-dimensional 
flows. However, this does not mean that these methods are inca-
pable of analyzing more complicated geometries. For example, all 
of these methods can be modified for axisymmetric body geome-
tries. Axisymmetric results have not been presented here because 
they are currently not a focus of the associated research and de-
velopment projects of the authors. Fully three-dimensional bodies 
(such as a re-entry vehicle at an angle of attack) can often be 
analyzed by low fidelity methods, however achieving intermedi-
ate fidelity for these complicated flow-fields becomes much more 
complicated and difficult.

2.2. Inviscid flow

2.2.1. Local surface inclination methods (Newtonian method)
The simplest inviscid solutions to the supersonic compressible 

flow fields near surfaces are the local surface inclination methods. 
The modified Newtonian method is derived based on Newtonian 
impact theory and is given in Equation (1). The pressure coefficient 
utilized in the method is defined in Equation (2). C pmax is calcu-
lated using the post shock stagnation pressure with Equation (2). 
θ is the deflection angle from the incoming free-stream flow.
Table 1
Summary of flow-field solution methods.

Flow assumption/
solution type

Method Fidelity References

Inviscid Flow Newtonian Impact 
Theory

Low [8]

Shock-Fitted Finite 
Difference Grid

Intermediate [8,9]

Method of Characteristics Intermediate [8,10]

Viscous Flow and 
Heating

Kays et al. [11] Laminar 
Heating

Low [11]

Integral Boundary Layer Intermediate [14,12,21,22,13]
Numerical Boundary 
Layer

Intermediate [14,21]

Coupled Solution Viscous-Inviscid Coupling Intermediate [21,22]

Compressible 
Navier–Stokes 
Equations

rhoCentralFoam High [15]

C p = C pmax sin2 θ (1)

C p = p − p∞
1
2ρ∞V 2∞

(2)

A major disadvantage of the Newtonian method is that past a 
deflection angle of 0 degrees (such as on a projectile aft-body), 
it is assumed that the pressure coefficient C p = 0. This means 
that the pressure is assumed to be equal to the free-stream value 
(see Equation (2)). Unfortunately, this limits the applicability of the 
Newtonian method to flows where the deflection angle is small.

2.2.2. Shock-fitted finite difference grid (elliptic Euler equations)
On the forebody of the blunt body, the flow is subsonic and 

the governing Euler equations are elliptic in nature. The gov-
erning equations in this region can be solved through a time-
stepping, shock-fitted, transformed finite difference grid for both 
two-dimensional and axisymmetric geometries [8,9]. In standard 
finite volume solutions the grid extends across shock waves, and 
complicated numerical techniques are required in order to accu-
rately capture the steep gradients in flow properties. By utilizing 
shock-fitting techniques, the boundaries of the computational grid 
are limited to the fore-body region. This significantly reduces the 
computation time by reducing mesh size, and speeds convergence 
by avoiding complicated shock capturing techniques. The method 
as explained by both Salas [9] (in cylindrical coordinates), and An-
derson [8] (in Cartesian coordinates), utilizes a transformed grid 
between the shock-wave shape and the body. The use of the trans-
formed finite difference grid is attractive because any arbitrary 
body that can be represented by an equation or set of points can 
be transformed to a rectangular grid. This also becomes an asset 
in the proposed viscous-inviscid interaction scheme. The basics of 
this method, as well as the formulation of the transformed govern-
ing equations are described in detail by Salas and Anderson [9,8].

The shock fitted finite difference method (SFFD) was adapted 
directly from the sample code provided in the book by Salas [9]. 
Slight modifications were made to the code to implement thermo-
physical modelling of gas properties (see Section 2.4), and for the 
curve-fit geometries utilized in the viscous correction. The code 
has also been modified to perform 2D simulations with no sym-
metry plane [1]. A typical finite difference grid is shown in Fig. 1. 
The grid extends from the shock wave to the body, and from the 
symmetry plane to the outlet boundary. In a case with no sym-
metry plane the grid extends from lower outlet boundary to upper 
outlet boundary. The problem is initialized by assuming a shape for 
the shock [9]. The quality of this initial guess is important because 
if the shape is significantly in error, the solution convergence will 
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Fig. 1. Typical shock-fitted finite difference grid.

be negatively affected. The solution is achieved by marching for-
ward in time by utilizing the MacCormack finite difference scheme. 
At each iteration, the gas properties throughout the flowfield are 
updated using the JANAF polynomial given in Section 2.4. As the 
solution moves forward in time, all of the properties approach 
convergence. The outlet boundary (see Fig. 1) must be placed suf-
ficiently far downstream of the stagnation point such that all of 
the flow is supersonic. This is because the solution method utilizes 
one-sided backwards difference equations that are only suitable in 
supersonic flow. As well, since this time marching finite difference 
solution is intended to become the input to the method of charac-
teristics solution, it is necessary to ensure that the outlet boundary 
does not lie adjacent to a characteristic Mach line. At high Mach 
numbers the jump across the shock-wave is solved numerically us-
ing the normal shock relations and the polynomials in Section 2.4.

2.2.3. Method of characteristics (hyperbolic Euler equations)
The method of characteristics is a mathematical method that is 

useful in solving hyperbolic partial differential equations, such as 
the supersonic Euler equations. The method solves the flowfield by 
converting the hyperbolic PDE to a set of algebraic equations that 
are solved along flow characteristics. Very often, the method of 
characteristics can be solved assuming irrotational flow, however 
because the strong bow shock on a blunt body is curved, entropy 
and velocity gradients are created across the shock, resulting in 
rotational flow [8]. Thus, the rotational method of characteristics 
(RMOC) described by Zucrow and Hoffman was used [10]. In or-
der to solve the rotational method of characteristics the flow is 
assumed to be isentropic along streamlines. For this type of flow, 
as described by Anderson [8] and Zucrow and Hoffman [10], three 
characteristic lines are required to achieve a solution to the flow 
field. At any point in the flow field, 4 points are selected, 3 known, 
and 1 unknown, forming a system of equations that is solved 
explicitly. The derivation of the characteristics and compatibility 
equations used, as well as detailed descriptions of solution pro-
cesses, can be found in Zucrow and Hoffman [10].

A typical characteristics grid resulting from a calculation is 
shown in Fig. 2. The solution is started from an initial value line 
(calculated with the method in Section 2.2.2) and progressed for-
ward in space until a desired amount of solution is achieved. The 
outlet of the finite difference grid and the initial value line for the 
RMOC solution is selected at some point ahead of the fore-body 
sonic line. Selecting this line closer to the sonic line is better be-
cause the RMOC solves faster and therefore slightly reduces the 
computation time. The characteristic equations are solved itera-
tively at each grid intersection. At each iteration, the JANAF poly-
nomial given in Section 2.4 is used to update the flow properties, 
Fig. 2. Typical characteristics grid.

thus facilitating a calculation of the flow field with variable prop-
erties. When the local thermodynamics properties are updated, 
the local Mach angle and speed of sound change, thus impacting 
the downstream solution. The method of characteristics, similar to 
the solution to the shock-layer, is easily applied to a body shape 
represented by an equation. No computational grid needs to be 
generated or transformed. The output characteristics grid is part 
of the flow-field solution. In the case for bodies with regions of 
small radius of curvature (like that the shoulder of an atmospheric 
entry vehicle), in order to facilitate a solution at points along the 
wall, a mixture of “direct” and “inverse” wall point methods are re-
quired. In the direct wall point approach, the intersection with the 
wall of a Mach line emanating from a known internal flow point 
is calculated. However, on the aft-body it is possible that the Mach 
line does not intersect the body and therefore cannot be solved. In 
this case, a point on the wall is selected, and the data in the field 
is interpolated to find the point in the field where an intersecting 
Mach line originated. Some improvements to the author’s present 
implementation of the method characteristics can be made, such 
as to allow the formation of shock-waves in the flow field.

2.3. Viscous flow

2.3.1. Integral method for laminar heating
Convective heat flux is an important design consideration in 

hypersonic flight. One of the most simple formulations to predict 
heat flux is the approach outlined by Kays et al. [11]. If the invis-
cid external flow properties are known, the distribution of Stanton 
number over a body of arbitrary shape can be easily calculated us-
ing Equation (3) [11].

Stx = C1μ
0.5 RGC2

e(∫ x
0 GC3

e R2dx
)0.5

(
Ts

Te

)−0.08 (
Taw

Te

)−0.04

(3)

Here, Ge = ρeue , μ is the dynamic viscosity (evaluated at film tem-
perature), and C1–C3 are empirical constants (C1 = 0.418, C2 =
0.435, C3 = 1.87). R is the axisymmetric body radius and can-
cels out of the equation in the two-dimensional case as in this 
study. Once Stx is known, the heat flux distribution is then calcu-
lated. At the stagnation point (x = 0) the solution is badly behaved. 
This is a limitation of this method. To account for this, in the 
present implementation the heat flux through the stagnation re-
gion is found by linear interpolating through the badly behaved 
region. This typically provides smooth results that match the ex-
pected distributions.
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2.3.2. Integral momentum method
A solution of the viscous boundary layer flow can be achieved 

by simplifying the problem by assuming a set of known similar 
boundary layer solutions. By integrating the boundary layer equa-
tions, and implementing boundary layer thickness parameters, the 
problem of the momentum flow close to the wall can be simplified 
to a set of ordinary differential equations [12,14]. A formulation of 
the integral momentum equations, and set of profile parameters 
for use in the solution was used in works by Lees, Reeves, and 
Klineberg [12,23,24]. Equations (4) to (7) were taken from Lees et 
al. assuming two-dimensional adiabatic flow [12]. This formulation 
of the boundary layer equations utilizes the Stewartson transfor-
mation of the streamwise and normal dimensions (Equation (4)
and (5)). Similar equations are available for flow with heat trans-
fer, however these are not explored here [24,13,23,12].

dX =
(

peae

poao

)
dx (4)

dY =
(

aeρ

aoρo

)
dy (5)

H
dδ∗

dX
+ δ∗

i
dH

dX
+ (2H + 1)

δ∗
i

Me

dMe

dX
= νo

ao Meδ
∗
i

P (6)

J
dδ∗

dX
+ δ∗

i
d J

dH

dH

dX
+ (3 J )

δ∗
i

Me

dMe

dX
= νo

ao Meδ
∗
i

R (7)

Equations (6) and (7) are the integral momentum, and moment 
of momentum equations, respectively. In the equations above, R , 
P , H and J are profile parameters that were evaluated and curve 
fitted to a single profile parameter a in works by Klineberg, Reeves, 
and Lees [12,23,24]. In these equations the parameter H is the 
boundary layer shape factor (not to be confused with enthalpy). In 
the method of Reeves and Lees [23], these equations were utilized 
for strong viscous-inviscid interaction and were coupled with the 
continuity equation (with the Prandtl–Meyer function included), 
to account for displacement of the external inviscid streamline. 
Here, the boundary layer flow is to be solved for a known Mach 
number distribution (calculated from an inviscid method), dMe

dX is 
known and therefore the continuity equation can be dropped and 
Equations (6) and (7) are the only necessary equations. A known 
boundary layer profile is required at the forward stagnation point 
in order to initialize the solution of the problem. At the stagna-
tion point, the Cohen–Reshotko stagnation profile was utilized as 
the initial condition [13]. This profile is the result of a similarity 
solution to stagnation point flow and thus provides a reasonable 
estimate for an initial condition. Equations (6) and (7) were in-
tegrated downstream using the 4th order Runge–Kutta technique. 
The stream-wise derivatives ( dδ∗

dX and dH
dX ) were solved in a 2 × 2

matrix to ensure the two equations are directly coupled at each 
step. The solution results in a stream-wise distribution of the pro-
file parameters R , P , H , J , and a. The shear stress is calculated 
from the solution by utilizing the shear stress profile parameter P
which can be untransformed with Equation (8).

τw = μw

(
Me

√
γ RTe

δ∗
i

)(
aeρw

a∞ρ∞

)
P (8)

2.3.3. Numerical boundary layer solution
The compressible boundary layer equations are parabolic in na-

ture and constitute an initial value problem. In blunt body flows, 
the boundary layer solution must be initialized with a stagnation 
point solution. Similar to the integral method in Section 2.3.2, the 
Cohen–Reshotko stagnation profile is used [13]. The boundary layer 
equations are transformed to the Levy–Lees coordinate system and 
are given in Equations (9)–(14) [14]. When these equations are 
Fig. 3. Boundary layer solution set-up.

represented in the general parabolic form (Equation (15)) the sys-
tem of equations is easily discretized and solved using the Crank–
Nicolson method. In this form, W represents the unknown variable 
(F or G) and A1 to A4 are constants. At interior nodes the deriva-
tives are approximated using second order central differences. First 
order differences are used to approximate the derivatives at the 
boundaries. At each stream-wise step, a tri-diagonal matrix is for-
mulated and solved.

2s̄F s̄ + V ′ + F = 0 (9)

2s̄F F s̄ + V F ′ = β

(
ρe

ρ
− F 2

)
+ (

C F ′)′ (10)

2s̄F Gs̄ + V G ′ = C

Pr
G ′′ +

(
C

Pr

)′
G ′

+ U 2
e

He

((
1 − 1

Pr

)(
C ′ F F ′ + C

(
F ′)2 + C F F ′′)

+ C F F ′
(

1 − 1

Pr

)′)

where:

F = u

Ue
(11)

G = H

He
(12)

C = ρμ

ρeμe
(13)

β = 2s̄

Ue

dUe

ds̄
(14)

W ′′ + A1W ′ + A2W + A3 + A4W s̄ = 0 (15)

Fig. 3 presents a diagram illustrating the boundary layer co-
ordinate system, as well as the boundary and initial conditions. 
The boundary conditions for boundary layer flow are the exter-
nal flow conditions (determined through solution of the inviscid 
flow-field) and the conditions at the wall. In this case the bound-
ary conditions at the wall are the adiabatic wall temperature and 
enthalpy, as well as the no-slip condition for velocity. The Prandtl 
number is calculated using the thermophysical model given in Sec-
tion 2.4. In order to simplify the solution, the Prandtl number was 
assumed to be constant at each stream-wise step thus eliminating 
the derivatives of Prandtl number in the normal direction. The adi-
abatic wall temperature gives the wall boundary condition and is 
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approximated using the external flow properties and Equation (20). 
The adiabatic wall enthalpy is calculated using the approximated 
wall temperature and the thermophysical model described in Sec-
tion 2.4. The approximation of an adiabatic wall enthalpy simplifies 
the formulation of the finite difference equations by providing a 
Dirichlet boundary condition for G .

2.4. Thermophysical models

In high-speed flows, large gradients in temperature exist mak-
ing an assumption of constant gas properties improper. In order to 
account for the changing gas properties throughout the flowfield, 
the gas properties were treated using known models. The specific 
heat capacity, was modeled using 7-coefficient JANAF NASA poly-
nomials given in Equation (16) and (17) [25].

cp = R g

(
a1 + a2T + a3T 2 + a4T 3 + a5T 4

)
(16)

H = R g

(
a1T + a2T 2/2 + a3T 3/3 + a4T 4/4 + a5T 5/5 + a6

)
(17)

These polynomials were used to model nitrogen flow in the cylin-
der problem, and air in the leading edge problem. The polynomials 
closely match NIST data from 100 K to 6000 K [26].

The viscosity of the fluid was modeled using Sutherland’s law. 
Sutherland’s law for viscosity is given in Equation (18) and is valid 
up to 3000 K [8,27]. The modified Eucken method for thermal 
conductivity is given in Equation (19) [28]. The modified Eucken 
method is assumed to be valid as long as the calculations of cv and 
μ are valid. In the previously described boundary layer models, the 
adiabatic wall temperature is approximated by Equation (20) from 
Schetz [14]. The Prandtl number is calculated with Equation (21).

μ = As T 3/2

T + Ts
(18)

κ = μcv

(
1.32 + 1.77R g

cv

)
(19)

Taw = Te + r
U 2

e

2cp
= Te + Pr0.5 U 2

e

2cp
(20)

Pr = μcp

k
(21)

3. Viscous-inviscid interaction solution

The previous sections briefly described well defined methods 
that on their own provide solutions to either the inviscid, or vis-
cous flow. In reality, there is a weak viscous-inviscid interaction 
between the boundary layer and the external inviscid free-stream. 
At high Reynolds numbers, this effect can be small, but at low 
Reynolds numbers or cases of small radius of curvature the ef-
fect can be important. Hypersonic vehicles often operate at high 
altitudes where (assuming the flowfield is still a continuum) the 
viscous-inviscid interaction on the body can be significant. Here, 
a simple method where the prediction of the flow around the body 
is corrected for this interaction is proposed. According to Tannehill 
et al. [21], in general, the essential elements required to calcu-
late a viscous-inviscid interaction are: (1) a method for obtaining 
the initial and improved inviscid flow solution, (2) a method for 
solving the boundary layer flow, and (3) a procedure for relating 
the inviscid and viscous flow solutions that will drive the so-
lution to convergence. Viscous-inviscid interactions in supersonic 
flow have been characterized by mathematical treatment previ-
ously. Some treatments have utilized the parabolic Navier–Stokes 
equations [29] while others have coupled inviscid and boundary 
layer solutions [30–33,23,12,34]. The approach presented in this 
paper utilizes the latter, by solving the external inviscid flow and 
the boundary layer flow in an iterative fashion using the methods 
described in Section 2. In the present model it is assumed that the 
effect of the boundary layer on the external flow can be quanti-
fied by the displacement thickness (δ∗). Because the solution from 
the subsonic fore-body region does not join perfectly smoothly to 
the method of characteristics these two regions are solved sepa-
rately. Initially, the inviscid solution to the shock-layer is solved for 
the actual body shape (bo). The boundary layer is then solved us-
ing the conditions predicted from the inviscid solution as the edge 
boundary conditions that are represented by polynomial functions. 
The calculated displacement thickness (Equation (22)) is added to 
the body in the normal direction. The new body is represented 
by a polynomial and used to repeat the shock-layer solution. This 
process is repeated until convergence. Between iterations, the suc-
cessive displacement of the body is calculated using the error in 
the displacement thickness between iterations (Equation (24)).

δ∗ =
∞∫

0

(
1 − ρu

ρeue

)
dy =

√
2s̄

ρeue

∞∫
0

(
ρe

ρ
− F

)
dη (22)

�δ∗
i = δ∗

i − δ∗
i−1 (23)

bi = bi−1 + �δ∗
i (24)

The above solution method was found to work well and lead to 
fast convergence for the subsonic forebody region, however; due 
to the sensitivity of supersonic flow to small perturbation in body 
shape, a slightly different convergence method was used for the 
rest of the body. Specifically, the use of the magnitude of dis-
placement thickness as the iterative variable is not suitable. In 
supersonic flow the change in external streamline angle, and thus 
dδ∗
dx (displacement thickness growth), is more important in predict-

ing stream-wise properties. Because of this, a simple convergence 
approach based on dδ∗

dx was used.
From the converged solution of the primarily subsonic portion 

of the fore-body, the initial boundary layer properties, and an ini-
tial value line for the method of characteristics are known. In the 
first iteration, a constant value of (m = dδ�

dx ) is assumed. With this, 
an initial guess for the deformed body is calculated. The char-
acteristics mesh is then evaluated using this body shape. Using 
the solution found from the characteristics, a new corrected body 
shape is determined. The error between the previous iteration’s 
result for the profile of displacement thickness is used to predict 
the next iterations profile (Equations (25) to (28)). A combination 
of spline and polynomial fits are used in order to pass the exter-
nal flow variables to the boundary layer solution, and the body 
shape to the inviscid solution. In order to ensure a stable solution, 
the streamline angle was restricted to a low order polynomial. If a 
spline, or direct interpolation was used, small changes in the shape 
of the body eventually led to divergence. This somewhat restricts 
the solution by smoothing out sharp changes in displaced body 
shape, but ensures convergence.

�mi = mcalc − mi−1 (25)

mi = mi−1 + r × �mi (26)

δ∗
i (x) = δ∗

o +
∫

midx (27)

bi = bo + δ∗
i (28)

An important detail of the method shown in Equations (25) to 
(28) is the relaxation factor r. Difficulty in convergence was present 
at lower Reynolds numbers. In order to stabilize the method, the 
iteration process is under-relaxed (typical values of r were <0.3). 
This is a common requirement in methods of viscous-inviscid in-
teraction [21]. The convergence for the supersonic region of the 
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Fig. 4. Typical convergence.

flow around an adiabatic cylinder at Mach 6, and a Reynolds num-
ber of Re = 4 × 104 is shown in Fig. 4. Here, the % error is cal-
culated as the maximum % difference of flow properties between 
iterations. The result shown is typical of other test cases examined.

4. CFD simulations

4.1. Solver and setup

Hypersonic flow over an adiabatic circular cylinder and a cooled 
blunt leading edge were used as test cases in this study. High-
fidelity simulations performed by the present authors as part of 
related studies have been used for comparison to the simplified 
methods described in the previous sections [1,16]. In both of these 
cases, rigorous mesh independence studies have been performed. 
In [16], the adiabatic cylinder case has been compared to exper-
imental synthetic Schlieren images, and pressure distributions. In 
those studies a full description of their respective set-up and vali-
dation can be found. In the present work these simulation results 
are to be used as the bench-mark for calculation accuracy and set-
up of these simulations is only briefly covered.

Simulations were performed using the open-source CFD soft-
ware OpenFOAM version 2.3.0 [15]. In particular, the density based 
compressible flow solver, rhoCentralFoam, was used [19]. The sim-
ulations were performed assuming continuum, equilibrium, and 
laminar flow. The thermophysical modelling implemented in the 
solver are the Sutherland, and JANAF models described in Sec-
tion 2.4. The governing equations solved in rhoCentralFoam are the 
compressible Navier–Stokes equations (Equations (29) to (31)) [19].

∂ρ

∂t
+ ∇ · (ρu) = 0 (29)

∂(ρu)

∂t
+ ∇ · u(ρu) − ∇p − ∇ · τ = 0 (30)

∂ρE

∂t
+ ∇ · (u(ρE)) + ∇ · [up] + ∇ · (τ · u) + ∇ · j = 0 (31)

where ρ , u, p, j, τ , and E represent the density, velocity, pressure, 
diffusive heat flux, viscous stress tensor, and total energy respec-
tively. RhoCentralFoam has been used previously by the present 
authors and shown good results with comparison to experiment 
and other CFD packages [35,36,1,17,18].

In both the adiabatic circular cylinder and cooled leading edge 
test cases the simulations were performed on grids consisting en-
tirely of unstructured hexahedral elements. The inlet boundary 
conditions were set with constant p, T , and u. The outlet, as 
well as the top and bottom boundaries were all treated as zero-
gradient for all properties. Free-stream properties such as Mach 
number, Reynolds number, and dynamic pressure of the flow were 
Fig. 5. Domain for full cylinder simulations.

Fig. 6. Typical CFD result (synthetic Schlieren, M = 6, Re = 40000).

controlled through manipulation of the inlet pressure, temperature 
and velocity.

4.2. Test case: adiabatic circular cylinder

The primary goal of the adiabatic cylinder cases is to examine 
the ability of the investigated methods to predict the distributions 
of pressure and friction forces. Additionally the effect of Reynolds 
number on the effectiveness of the methods (particularly the inter-
action model) is of interest. The test gas in this study was nitrogen. 
A schematic of the domain is shown in Fig. 5. Full details of these 
simulations can be found in related work [16]. The domain was 
sized to ensure that no boundary interference effects were present 
in the results. A typical simulation result is shown by a synthetic 
Schlieren image in Fig. 6. To compare the solution time of full 
CFD and the simplified methods, additional simulations were per-
formed with a reduced domain. In these cases the outlet was set at 
125◦ and a symmetry plane was used to reduce the domain size. 
The reduced domain is depicted in Fig. 5.

4.3. Test case: cooled leading edge

The primary goal of the cooled leading edge cases is to evaluate 
the ability of the investigated methods to capture convective heat 
flux distributions in hypersonic flow. In these cases, Mach 10 flow 
at a free-stream dynamic pressure of q∞ = 9.57604 × 104 Pa and 
free-stream static temperature of 225 K is simulated over blunt 
leading edges with a constant wall temperature (T w = 311.1 K). 
The test gas in this case was air. These properties were chosen to 
simulate flight at approximately 29 km. Because of the cold wall, 
significant heat flux is transfered to the edge. Two different leading 
edge geometries are examined. Geometry 1 has sharp shoulders 
and a high radius of curvature near the stagnation region. Geom-
etry 2 is a hemicylindrical geometry. In Fig. 7 the geometries and 
their respective simulation domains are shown. The domain was 
sized to allow the bow shock to exit the simulation through the 
outlet and not reflect off the top and bottom. Full details regard-
ing the design of these simulations can be found in the related 
work [1].
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Fig. 7. Simulation geometry with associated Mach number isolines.

Simulation of stagnation point heating requires special consid-
eration in terms of grid generation. The computational grid was 
generated using the native OpenFOAM meshing utility blockMesh. 
The grid employs shock alignment to capture the bow-shock and 
high grid resolution in the boundary layer. The cell Reynolds num-
ber at the stagnation point was ensured to meet the criteria of 
Rec < 5 [37]. These extra considerations required for accurate re-
sults increase the cost of each simulation by increasing the number 
of cells and the time spent generating each grid.

Typical simulation results are depicted by Mach isolines in 
Fig. 7. Because of the difference of results (rate of flow accelera-
tion, standoff distance etc.) these two geometries provide adequate 
test cases for the low and intermediate fidelity solvers.

5. Results and discussion

5.1. Pressure distribution – adiabatic circular cylinder

The modified Newtonian method is known to give good re-
sults for pressure distribution close to the stagnation point on the 
fore-body. This is confirmed in Fig. 8 at a representative Reynolds 
number (Re = 20000). The coefficient of pressure (see Equation (2)) 
is shown from 0 to 120 degrees from the forward stagnation point. 
Up to approximately 50 degrees the modified Newtonian theory 
shows close agreement to the other methods. Past this point it can 
be seen that Newtonian theory begins to diverge significantly from 
the other solutions.

The ability to predict flow past the shoulder (aft-body) is im-
portant for finite bluff bodies such as re-entry vehicles. The pres-
sure distributions past 60 degrees are normalized to the pre-
dicted stagnation pressure at the fore-body stagnation point. Fig. 9
shows the results for three representative Reynolds numbers. Close 
agreement is visible between the laminar Navier–Stokes simulation 
(rhoCentralFoam) and the SFFD and the RMOC with interaction 
up to 120◦ for three Reynolds numbers. The results of the SFFD 
and the RMOC without interaction still show close results to the 
CFD solution. In the high Reynolds number case, it is clear that 
less advantage was gained in prediction of the pressure distribu-
tion by accounting for the interaction. At a Reynolds number of 
Re = 8000, the change in the pressure distribution due to the vis-
cous interaction calculation is noticeable. The poor performance of 
the modified Newtonian theory in this region is evident.

A summary of the effect of Reynolds number, and the relative 
accuracy of each method is shown in Fig. 10. The plot shows the 
maximum percent error in normalized pressure between 0 and 
110 degrees. The % error is calculated between the predicted and 
the rhoCentralFoam results. It is clear that over the Reynolds num-
ber range investigated, the correction for viscous interaction leads 
to a significant improvement in accuracy for the prediction of pres-
sure distribution. At a Reynolds number of Re = 8000, the error 
reduced from approximately 50% to 10% when the solution to the 
SFFD and RMOC solution was corrected for the viscous-inviscid in-
teraction. At a Reynolds number of Re = 80000 the reduction in 
error is less significant but still yields improved accuracy. This jus-
tifies the use of the present method of correction throughout the 
investigated Reynolds number range. The Newtonian method has 
large error and only mildly increases in accuracy with Reynolds 
number. The SFFD and RMOC solution gives more accurate results 
than the Newtonian method, and the error reduces noticeably with 
increasing Reynolds number.

5.2. Shear stress – adiabatic circular cylinder

To assess the accuracy and applicability of the boundary layer 
methods described in Section 2.3, the shear stress was compared 
along the surface of the adiabatic cylinder. In Fig. 11, the coef-
ficient of friction c f = τw

0.5ρ∞U 2∞
is plotted as a function of angle 

from the forward stagnation point. The results were compared for 
different combinations of inviscid and viscous solutions, as well as 
with and without the interaction method presented in Section 3. 
The results for shear stress lead to similar conclusions regarding 
the applicability of the methods as the results for pressure dis-
tribution. Variations in the external flow properties influence the 
development of the boundary layer. Therefore the quality of the 
Fig. 8. Pressure distribution.
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Fig. 9. Pressure distribution a) Re∞ = 80000, b) Re∞ = 40000, c) Re∞ = 8000.

Fig. 10. Max % error in normalized pressure (P/Po ).

Fig. 11. Coefficient of friction a) Re∞ = 80000, b) Re∞ = 8000.
boundary layer solution is not only a function of the applicabil-
ity of the assumptions in the governing equations, but also by the 
quality of the solution for the boundary conditions (pe , Ue , Me , 
Te , Taw and μw ). Using the Newtonian method (along with isen-
tropic flow relations) for the external flow parameters, the results 
from the integral momentum method, and the numerical solution 
of the compressible boundary layer equations were relatively poor. 
The results show that the correct shape for the shear stress profile 
are found; however the magnitude of the peak coefficient of fric-
tion is over-predicted. The maximum calculated error between the 
Newtonian method boundary layer predictions was for the inte-
gral momentum method. Past 90◦ , where the pressure is assumed 
constant, the solution shows especially poor results.

Using the solutions based on the SFFD and RMOC to give the 
external flow parameters, all of the results show improved agree-
ment to the CFD. The solution given by the integral momentum 
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Fig. 12. Max % error in coefficient of friction (C f ).
method shows an improvement from the Newtonian method for 
the distribution of shear stress, however the magnitude of c f is 
under-predicted, particularly on the aft-body. The reduced accu-
racy of the integral method is due to the restriction of the solution 
to a family of boundary layer profiles, in this case the Klineberg 
[24] polynomials. The SFFD and RMOC solution to the inviscid flow, 
with the numerical solution of the boundary layer equations shows 
good results for shear stress distribution along the body. The pre-
dictions match closely up to 90 degrees but have increasing error 
on the aft-body. This is because as the flow expands around the 
cylinder, the favorable pressure gradient induces boundary layer 
growth, which then acts to alter the pressure distribution. This can 
also be seen in the pressure distribution results previously dis-
cussed. As the Reynolds number is increased this effect reduces 
in importance and the accuracy of this method improves greatly. 
The improvement of the solution by implementing the weak in-
teraction correction given in Section 3 is seen in the results for 
shear stress. The corrected shear stress closely matches the CFD 
results in all cases. A summary of the accuracy of each method in 
the Reynolds number range investigated is shown in Fig. 12. The 
maximum % error in coefficient of friction between 0 and 110 de-
grees is plotted. The % error is calculated between the predicted 
and the rhoCentralFoam results. The increased accuracy of the nu-
merical boundary layer solution is evident. For the present method, 
the error in coefficient of friction is < 10% throughout the range of 
Reynolds numbers investigated. Because of the increased accuracy 
at higher Reynolds numbers of the simulation without the inter-
action solution, the gains in accuracy due to the inclusion of this 
model are reduced as Reynolds number is increased. At the lowest 
Reynolds number the gain in accuracy is much more noticeable.

5.3. Heat flux – cooled leading edge

For the cooled leading edge, only the Kays et al. [11] method 
for laminar heating, and the numerical solution to the boundary 
layer equations were used to analyze the viscous part of the flow. 
The momentum integral approach was not used for the heat flux 
study because Equations (6) and (7) (as they are written) along 
with the family of boundary layer profiles used are only valid for 
an adiabatic wall problem. The equations can be altered to include 
the energy equation, and a family of profiles accounting for heat 
flux [24] but this is not done in the present work. The modified 
Newtonian method and the shock fitted finite difference grid were 
used for the inviscid flow. Neither the method of characteristics 
or the interaction correction were implemented for this case. The 
primary reason for examining those methods was to capture the 
shoulder region expansion which does not occur on these leading 
edges.

The heat flux distributions for the cooled leading edges shown 
in Fig. 7 are plotted in Fig. 13. From the results, the modified 
Newtonian theory with the Kays et al. [11] laminar heating model 
over-predicts the peak heat flux for both geometries. Additionally, 
this approach over-predicts the sensitivity of the heat flux distri-
bution to changes in geometry. This weakness can be important in 
the design of aero-thermal components. When the Kays et al. [11]
laminar heating model was used with the SFFD solution for an in-
viscid input the peak heat flux was under-predicted but the shape 
of the distribution was more correct.

As expected, the combination of the numerical boundary layer 
solution with the SFFD solution provides the best result. Both the 
magnitude and shape of the heat flux distribution are in close 
agreement. For the simpler shape (geometry 2) where the radius 
of curvature is nearly constant the results are almost identical. The 
more complicated geometry resulted in more error however the 
results still agree closely.

5.4. Relative accuracy and computing time

The adiabatic circular cylinder problem was used to charac-
terize the relative accuracy and computing time. Additional sim-
ulations were performed with a reduced domain at the highest 
Reynolds number investigated here (Re = 80000). The goal of these 
simulations was to compare the relative accuracy and computing 
time of each of the simplified methods in comparison to CFD so-
lutions of varying resolution. The domain was reduced in order to 
give a fair representation of the simulation time of rhoCentralFoam 
(see Fig. 5). In the previous section the entire flow solution was 
achieved and thus the simulation time was much longer and could 
not be compared to the time required for the simplified calcula-
tions. In Fig. 14, the relative accuracy compared to computation 
time is shown. Both the error and the calculation time are normal-
ized to the error and calculation time of the most simple method 
(modified Newtonian method + integral boundary layer). This way 
the penalties in cost and accuracy can more easily be visualized 
as multiples of each other. The specific values in seconds or hours 
would be heavily influenced by computer speed and efficiency of 
programming. By normalizing the values this problem is reduced 
because all of the simplified codes were written by the same au-
thor and all simulations were computed on the same computer 
system.

The grids were refined by doubling the number of cells in both 
principal directions. Thus the fine grid has 4 times and 16 times 
as many cells as the medium and course grids, respectively. The 
grid convergence index based on peak shear stress was 1.53 from 
the coarse to medium grids, and 0.33 from the medium to fine 
grids. The results in Fig. 14 contain an important observation re-
garding the use of CFD with insufficient grid resolution. Despite 
the fact that full CFD does not simplify the equations in any way, 
when insufficient grid resolution is used the results are less ac-
curate than the simplified methods and in fact take more time. 
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Fig. 13. Heat flux distributions – (left) geometry 1 (right) geometry 2.

Fig. 14. Normalized error (in shear stress) and computation time (M = 6, Re = 80000).
For example, the present method here that includes a correction 
for viscous-inviscid interaction (Section 3) is nearly four orders of 
magnitude faster than the medium resolution CFD simulation and 
produces more accurate results. Additionally the computation time 
was nearly 5 orders of magnitude faster than the fine grid solu-
tion. It is difficult to know ahead of time whether a single CFD 
grid setup will be of sufficient resolution throughout an entire de-
sign space. Therefore an engineer has the choice of choosing an 
extremely high grid resolution to increase confidence, or choose 
a moderate grid refinement and hope that the resulting error is 
insignificant. This is a major obstacle and makes a strong case 
for using simplified numerical methods for rapid calculations. It 
is therefore easy to see the benefit of using a carefully selected 
and designed simplified numerical approach. In the design space 
for a blunt hypersonic body such as a leading edge or heat shield 
the simplified methods could construct a superior surrogate model 
based on significantly more samples requiring fewer CFD simu-
lations, or even be used directly to perform the optimization. In 
previous work by the present authors, methods of varying fidelity 
were used in sequence to narrow the design space and then ap-
proach the optimal result [1].

Aside from computational cost and accuracy there are also 
important concerns regarding front-end costs. For example, com-
mercial software such as OpenFOAM or FLUENT can have added 
front-end costs such as steep learning curves or licensing costs. 
Alternatively, unlike a commercial software, the code for these 
simplified methods typically doesn’t exist and therefore must be 
developed. Certain methods such as the Newtonian method are ex-
tremely simple and require negligible time to implement. However 
a more complicated method such as the present method took ap-
preciable time and testing. This can be a strong argument against 
simplified methods in circumstances where front-end time is ex-
tremely valuable and results are needed right away. In the long 
term it can often be worth it to develop these codes. Some simpli-
fied codes that have been effectively used for design are XFoil for 
airfoils [38], or CBAero for hypersonic flight vehicles [39,40]. For 
the present authors, all of the methods described in Section 2 and 
3 have been combined into a tool named HyPE2D which has re-
cently been used for the optimization of blunt leading edges for 
wave-riders [1].

6. Conclusion

Simple analytical and numerical methods were used to analyze 
two hypersonic blunt body flow problems. A simple method for 
accounting for the weak viscous-inviscid interaction between the 
boundary layer and the external free-stream was given. The results 
were compared to those obtained from the numerical simulation 
of the compressible Navier–Stokes equations. The analysis was per-
formed in the context of evaluating each methods merits to be 
used for the rapid design and analysis of hypersonic blunt bodies. 
The results showed that a specific surface inclination method (the 
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modified Newtonian method, Section 2.2.1) has limited applicabil-
ity because of its poor accuracy away from the forward stagnation 
point. A solution to the Euler equations using a shock-fitted fi-
nite difference grid (Section 2.2.2) combined with the method of 
characteristics (Section 2.2.3) showed close agreement but reduced 
in accuracy at lower Reynolds numbers. A good approximation of 
the convective heat flux distribution was achieved using a sim-
ple integral calculation (Section 2.3.1). The integral boundary layer 
method (Section 2.3.2) utilizing a single parameter family of pro-
files was found to under predict the shear stress around the body. 
The numerical solution to the compressible boundary layer equa-
tions (Section 2.3.3) showed close agreement to the CFD results 
for both shear stress and convective heat flux. The results from 
the simple viscous-inviscid interaction solution (Section 3) showed 
improved accuracy from the calculations where the interaction was 
ignored, particularly at low Reynolds numbers. The relative accu-
racy and computing time of each method was compared to a series 
of CFD simulations with reduced grid refinements. It was shown 
that an under-resolved CFD simulation can result in significantly 
reduced accuracy and still take several orders of magnitude longer 
to compute than lower order models.
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