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Various Kalman filter approaches have been proposed for the state estimation of gas turbine engines, 
among which Linear Kalman Filter (LKF) is the most common one. Kalman filters achieve state estimation 
provided that there are more available measurement sensors than state parameters to be estimated. 
However, it is hard to hold this assumption in gas turbine engine health monitoring applications, and an 
underdetermined estimation problem rises up.
The aim of this contribution is to present a nonlinear underdetermined state estimation method on 
the basis of Extended Kalman Filter (EKF); and to evaluate the performance of this methodology, the 
comparisons of three nonlinear estimators, i.e. basic EKF, underdetermined EKF and resultant EKF are 
conducted to gas turbine engine health state estimation. The underdetermined EKF is developed from the 
previous linear achievements using the transformation matrix, and it produces the least estimation errors 
in the nonlinear framework. Moreover, the prior state information represented by inequality constraints 
is introduced to create the resultant EKF, and the estimates of state variables are tuned to truncated 
Probability Density Function (PDF). Results from the application to a turbojet engine health monitoring 
in the flight envelope show that the proposed methodology yields a significant improvement in terms of 
underdetermined estimation accuracy and robustness.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Gas turbine engine provides power for airplane, and reliable 
and efficient operation is important to flight safety and perfor-
mance. With the demand on more reliability and low maintenance 
cost, engine health monitoring has received a wide interest [1,
2]. The information about engine health state is used by flight 
crew and ground maintenance groups for further decision, and it 
should be accurate and reliable. Engine component health parame-
ters like efficiencies and flow capacities are generally employed to 
represent gas turbine engine health states [3,4]. Since these health 
parameters are unmeasurable, the sensor measurements are col-
lected and used to estimate health parameters. Various approaches 
have been proposed for engine health estimation, such as Kalman 
filter [5,6], least square algorithm [7], Bayesian hierarchical mod-
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els [8,9], neural network [10,11], fuzzy logic [12], frequency do-
main analysis [13] and stochastic data fusion [14,15]. Among these 
methods, Kalman filter has been paid the most attention due to 
easy achievement recently, and it is one of model-based state es-
timation methods relying on physical characteristics of gas turbine 
engine.

Kalman filter is a minimum-variance state estimator for dy-
namic system with Gaussian noise, and the overall architecture 
of turbojet engine health monitoring using Kalman filter is shown 
in Fig. 1 [5]. The engine control system usually doesn’t contain 
the health monitoring module, but it provides real-time data to 
the module for state estimation during engine steady operation. 
Among the variants of Kalman filter, the Linear Kalman Filter (LKF) 
is widely used for gas turbine engine health estimation and per-
formance prognosis [16,17]. The LKF closely depends on the State 
Variable Model (SVM), which is a classic linear model developed
and simplified from nonlinear aero-thermodynamic model of gas 
turbine engine [18]. For the LKF application, we need to build a 
number of steady base model and SVMs at these steady operating 
points at first. It is noted that the SVM and LKF are designed in 
the linear framework, and they are effective only in a small range 
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Nomenclature

PDF Probability Density Function
EHM Engine health management
LKF Linear Kalman Filter
EKF Extended Kalman Filter
SVM State Variable Model
LPC Low Pressure Compressor
HPC High Pressure Compressor
HPT High Pressure Turbine
LPT Low Pressure Turbine
A, C , L, M, T , W , S, I Proper dimension matrices
P , Q , R Covariance matrices
K Kalman gain matrix
V Transformation matrix
oc Control input vector
x State vector
y Vector of measured outputs
w Vector of process inaccuracies
v Vector of measurement inaccuracies
z Intermediate state vector
h Health parameter vector

q Tuning vector
f , g Nonlinear function
P25 LPC outlet pressure
P3 HPC outlet pressure
P45 HPT outlet pressure
P6 LPT outlet pressure
T45 HPT outlet temperature
T6 LPT outlet temperature
NL Low pressure spool speed
NH High pressure spool speed
SE1 LPC efficiency
SE2 HPC efficiency
SE3 HPT efficiency
SE4 LPT efficiency
SW1 LPC flow capacity
SW2 HPC flow capacity
SW3 HPT flow capacity
SW4 LPT flow capacity
ME Root mean square error
SD Standard square error
Fig. 1. Turbojet engine health monitoring based on Kalman filter.

around the steady operating point. Considering gas turbine engine 
is a nonlinear dynamic system, the LKF performance would de-
crease sharply as the engine leaves far from the steady operating 
point. Hence, a nonlinear state estimation, like Extended Kalman 
Filter (EKF), Unscented Kalman Filter and Particle Filter, might be 
more potential for engine health monitoring [19].

The sensor to measure speed, temperature and pressure is in-
stalled for engine health evaluation, the count of which is limit 
due to the complex engine structure. Besides, some sensors tend 
to break down as seriously cruel operating condition of gas tur-
bine engine. As a result, the available sensor might be less than 
health parameter to be estimated in health state estimation pro-
cess, and it was defined by an underdetermined estimation prob-
lem. As was mentioned earlier, Kalman filter techniques could be 
used for the estimation of engine health parameters, but it is only 
achieved in the condition that the number of sensor measure-
ments is more than the state variable count [20]. The solution 
to underdetermined estimation of the LKF is to introduce tuning 
parameter, which is a linear subset of the original health param-
eter. But wrong estimation results generate in some cases due to 
no enough available measured information [21]. Up to this point 
in time, a significant improvement in the LKF algorithm is pro-
posed using an optimal transformation matrix for gas-path fault 
diagnosis [17]. In this paper, the tuning LKF is extended to the 
state estimation of nonlinear dynamic system at first, so-called the 
underdetermined EKF, and it is applied to turbojet engine health 
monitoring.

The underdetermined EKF can reach the state estimates using 
less sensor measurements compared to the basic EKF, but the re-
duction of sensed information used for state estimation will be 
negative to the underdetermined EKF performance. In order to 
make up for the missing sensed information, the known health 
condition that is usually ignored in the basic EKF is employed 
to the nonlinear estimator in this paper, and it is represented in 
the forms of inequality constraints. For nonlinear dynamic sys-
tem, resultant EKF is developed from underdetermined EKF with 
inequality constraints using truncated Probability Density Function 
(PDF) to improve health state estimation performance. The exper-
iments to evaluate the estimation accuracy and robustness of the 
proposed methodologies are performed at the maximum operat-
ing point in various flight regions. The experimental results are in 
favor of our viewpoints.

The roadmap of this paper is as follows. A nonlinear dynamic 
model of turbojet engine is given, and the nonlinear underdeter-
mined estimation problem is generalized in Section 2. Section 3
briefly reviews the basic EKF, and then develops nonlinear under-
determined estimation algorithms, i.e. underdetermined EKF and 
resultant EKF. Section 4 presents experimental comparisons of 
nonlinear state estimation methods performed on the examined 
engine. In Section 5, conclusions and future research directions are 
drawn.

2. Problem formulation

Gas turbine engine mechanical fatigue fracture, erosion, cor-
rosion and foreign-object damage cause the deviations of engine 
component thermodynamic maps. The efficiency and flow capac-
ity variations from their normal values in the maps are commonly 
recognized as engine gas path health performance anomaly. These 
health parameters can be worked out from the measurements us-
ing state estimator, and the linear estimator LKF has limitation in 
application discussed earlier. Then the higher order linearization 
or nonlinear estimation methods are studied. Previous publica-
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Fig. 2. Schematic representation of a two-spool turbojet engine.

Table 1
Gas turbine engine performance deterioration over time.

Cycle �SE1 �SW1 �SE2 �SW2 �SE3 �SW3 �SE4 �SW4

0 0 0 0 0 0 0 0 0
3000 −1.5% −2.04% −2.94% −3.91% −2.63% 1.76% −0.54% 0.26%
4500 −2.18% −2.85% −6.71% −8.99% −3.22% 2.17% −0.81% 0.34%
6000 −2.85% −3.65% −9.40% −14.06% −3.81% 2.57% −1.08% 0.42%
tion [19] indicates that gas turbine engine nonlinearities are mild 
enough, and the EKF is the most proper candidates for engine 
health estimation in terms of estimation accuracy and computa-
tional efforts compared to LKF and unscented Kalman filter. Hence, 
the following researches focus on the EKF framework.

A turbojet engine as an important kind of aircraft gas turbine 
is studied and illustrated in Fig. 2. The engine includes inlet, low 
pressure compressor (LPC), high pressure compressor (HPC), com-
bustor, high pressure turbine (HPT), low pressure turbine (LPT) and 
nozzle [22–24]. The inlet supplies airflow into the LPC, then the 
air passes through the HPC and moves to the combustor. Fuel is 
injected and hot gas is produced in the combustor for driving the 
turbines. The HPC and LPC are driven by the HPT and LPT, respec-
tively. The gas leaves the engine through the nozzle. The engine 
station numbers in Fig. 2 are as follows, inlet exit marked by 2, 
LPC exit by 25, HPC exit by 3, combustor exit by 4, HPT exit by 45, 
LPT exit by 6.

The proposed methodology is tested on nonlinear dynamic 
mathematical model of the turbojet engine created from engine 
component level model, which is based on aero-thermodynamic 
physical theory [18,25–27]. It is coded with C language and pack-
aged by Dynamic Link Library (DLL) for simulation in Matlab envi-
ronment [28,29]. The cycle frequency of the engine CLM is 100 Hz, 
and the update rate of engine health estimation system is 50 Hz. 
The nonlinear model of turbojet engine is described as follows

xk+1 = f (xk, uk,oc,k) + wk

yk = g(xk, uk,oc,k) + vk
(1)

where k is the time index, x is a 10-element augmented state 
vector, u is a 2-element control input, oc is a 2-element flight 
condition input, and y is a 8-element measured output. The 
noise terms wk and vk separately represent process inaccuracies 
and measurement inaccuracies, and follow the time-uncorrelated 
zero-mean white noise. The elements of control vector in the 
nonlinear dynamic model are fuel flow W f and nozzle area A8. 
The flight condition variables include altitude H and Mach num-
ber Ma. The sensor measurements consist of LPC outlet pres-
sure P25, HPC outlet pressure P3, HPT outlet pressure P45, LPT 
outlet pressure P6, HPT outlet temperature T45, LPT outlet tem-
perature T6, low pressure spool speed NL and high pressure 
spool speed NH . The augmented state vector x contains two 
original state variables (NL and NH ) and eight health parame-
ters (LPC efficiency SE1, HPC efficiency SE2, HPT efficiency SE3, 
LPT efficiency SE4, LPC flow capacity SW1, HPC flow capacity 
SW2, HPT flow capacity SW3, LPT flow capacity SW4). The engine 
health status is represented by health parameter variations �h =
[�SE1, �SW1, �SE2, �SW2, �SE3, �SW3, �SE4, �SW4]T , which are 
defined as follows

�SEi = SEi

SE∗
i

− 1 i = 1,2,3,4

�SW j = SW j

SW∗
j

− 1 j = 1,2,3,4
(2)

where SE∗
i is the normal value of the ith health parameter. We 

can estimate both original state variables and health parame-
ters by the EKF provided all sensors operate normally and their 
measurements are well collected. If one sensor breaks down, the 
available sensed signal number for engine health estimation is 
reduced, e.g. the available measurement vector will become to 
y = [NL, NH , P25, P45, T45, P6, T6]T as sensor P3 failure occurs. 
The number of sensed data is seven, while the number of health 
parameters still eight. Then the underdetermined estimation issue 
emerges, and the basic EKF fails to deal with it. It is necessary to 
draw forth a novel nonlinear estimator to underdetermined esti-
mation.

In addition, both the engine performance deterioration and per-
formance faults could cause health parameter shift, and finally 
result in engine performance anomaly. The health parameter vari-
ation resulted from deterioration is a long-term and usually larger 
than that from fault [30,31]. Table 1 shows gas turbine engine per-
formance deterioration during the course of its lifetime, and the 
engine component efficiency and flow capacity diverges from the 
nominal quantities with the cycle number increase [30,32].

It can be seen from Table 1 that health parameters vary various 
values at the same cycle number, and there are different drift ways 
of health parameters as performance deterioration. The health pa-
rameters �SW3 and �SW4 move in positive direction while the 
remaining ones in negative direction. It is noted that the varia-
tion of each health parameter is finite within a specific range in 
both cases of performance deterioration and fault [31]. These fixed 
variation scopes of health parameters could be recognized as sig-
nificant prior state information, and are employed to determine the 
inequality constraints in this study. Define the upper limit value 



F. Lu et al. / Aerospace Science and Technology 58 (2016) 36–47 39
and lower limit value of the ith health parameter hi as bi and ai , 
then the inequalities related to the ith health parameters follow{

hi,k ≤ bi

hi,k ≥ ai
i = 1, · · · ,8 (3)

Since the quantity of health parameter deviation caused by per-
formance deterioration at the last cycle number is larger than that 
by performance fault, the constrained bounds are referred to the 
maximum performance deterioration value of health parameter at 
6000 cycle number in Table 1. The upper and lower limit vectors 
are separately b = [1.01, 1.01, 1.01, 1.01, 1.01, 1.03, 1.01, 1.01]T , 
a = [0.97, 0.96, 0.90, 0.85, 0.96, 0.99, 0.98, 0.99]T after adding
small quantity tolerant bands. For example, �SW1 is 0% initially 
and −3.65% at 6000 cycle number in Table 1, then the upper 
and lower bounds of SW1 are 1.01 and 0.96. These bound val-
ues are corresponding to the second element of constraint bound 
vectors b and a, respectively. The inequality constraints are often 
neglected in conventional EKF algorithm. This paper tries to de-
velop a way to nonlinear underdetermined estimation issue with 
inequality constraints of state variable, and proofs that the pro-
posed methodology improves the estimation accuracy in turbojet 
engine health monitoring applications.

3. Nonlinear estimation algorithms for health monitoring

3.1. Extended Kalman filter

In the EKF algorithm, Taylor rules are adopted to expand the 
nonlinear dynamic system around a nominal operating point, and 
system matrices are calculated by Jacobian calculations [19]. The 
EKF algorithm for state estimation of the nonlinear dynamic sys-
tem as Eq. (1) is given

x−
k = f (xk−1, uk−1,oc,k−1)

P −
k = A P k−1 AT + Q

Kk = P −
k C T (C P −

k C T + R
)−1

(4)

xk = x−
k + K k

[
yk − g
(
x−

k , uk−1,oc,k−1
)]

P k = (I − K kC)P −
k

where Q denoted the covariance of process noise w , and R de-
noted the covariance of measurement noise v . The system matrices 
A and C are obtained as follows

A =
(

Ar Lh
0 I

)
= ∂ f (xk−1, uk−1,oc,k−1)

∂xk−1

C = ( C r Mh
)= ∂ g(xk−1, uk−1,oc,k−1)

∂xk−1

(5)

As was mentioned earlier, the augmented state vector x =
[xT

r , hT ]T = [NL, NH , SE1, SW1, SE2, SW2, SE3, SW3, SE4, SW4]T in-
cludes the original state variables and health parameters, and then 
the system matrices A ∈ R10×10, C ∈ R8×10 can be decomposed 
to the proper dimension sub-matrices Ar ∈ R2×2, Lh ∈ R2×8, I ∈
R8×8, C r ∈ R8×2, Mh ∈ R8×8. The general EKF can’t be achieved 
state estimation when the sensor measurement number is less 
than the health parameter count [33,34].

3.2. Underdetermined EKF with inequality constraints

For the purpose of underdetermined estimation for nonlinear 
dynamic system, the underdetermined EKF algorithm is developed 
at first, and then the inequality constraints are added into the 
underdetermined EKF to create resultant EKF. The key of the un-
derdetermined EKF is to introduce a new reduced-order state vec-
tor so-called tuner q ∈ Rm , which is a linear combination of the 
original health parameter vector h ∈ Rn . The tuning vector q is ex-
pressed as follows

q = V h (6)

where V is a transformation matrix with rank m, and the tuner di-
mension m is less than that of health state vector n, i.e. m < n. An 
optimal transformation matrix with the minimum of estimation er-
ror is V ∗ , and the Eq. (6) can also be written as �h = (V ∗)−1�q
where (V ∗)−1 is the pseudo-inverse of V ∗ . When the tuner re-
places the original health parameter vector, the augmented state 
vector becomes xa = [xT

r , qT ]T . In order to prevent convergence to 
a poorly scaled solution, transformation matrix follows ‖V ∗‖F = 1
(F is the Frobenius norm) [16,20].

Given that the nonlinear system runs in an open-loop pro-
cess, flight condition vector and the control vector are constant 
(�uk = 0, �oc,k = 0), an approximation of new reduced-order aug-
mented state variables �x̂a,k at time k in the framework of EKF is 
formulated

�x̂a,k+1 = Aa�x̂a,k + K (�yk − Ca Aa�x̂a,k)

K = P C T
a

(
Ca P C T

a + R
)−1

P = Aa P AT
a − Aa P C T

a

(
Ca P C T

a + R
)−1

Ca P AT
a + Q a

Q a =
(

I 2×2 0
0 V ∗

)
Q
(

I 2×2 0
0 V ∗

)T

(7)

where the matrices with the subscript a are related to the state 
variables xa . The estimates of health parameter vector could be 
obtained from the tuner using the optimal transformation matrix(

�x̂r,k

�ĥk

)
=
(

I 0
0 (V ∗)−1

)
�x̂a,k (8)

In the following section we will find the optimal transformation 
matrix V ∗ which produces the minimum of estimation error. Due 
to the inequality dim(�q) ≤ dim(�y) < dim(�h), the tuner can’t 
contain all information of the health parameters. Augmented state 
variable conversation where the tuner takes the place of the health 
parameter vector plays an important role in the estimation errors 
of the EKF.(

�x̃r,k

�h̃k

)
=
(

�x̂r,k

�ĥk

)
−
(

�xr,k
�hk

)
(9)

By taking expected values of both sides of Eq. (1), the nonlinear 
system model can be written as follows{

E(�xk+1) = E( f (�xk,�uk,�oc,k)) + E(wk)

E[�yk] = E(g(�xk,�uk,�oc,k)) + E(vk)

⇒

⎧⎪⎪⎨
⎪⎪⎩

�x̄ =
[

�x̄r

�h̄

]
=
[

Ar Lh
0 I

][
�x̄r

�h̄

]

� ȳ = [ C r Mh
][�x̄r

�h̄

] (10)

⇒
{

�x̄r = (I − Ar)
−1 Lh�h̄

� ȳ = (C r(I − Ar)
−1 Lh + Mh)�h̄

The expected values of reduced-order augmented state vari-
ables satisfy the following equations

E[�x̂a,k] = Aa E[�x̂a,k−1] + K
(

E[�yk] − Ca Aa · E[�x̂a,k−1]
)

� ¯̂xa = Aa�
¯̂xa + K (� ȳ − Ca Aa�

¯̂xa) (11)

� ¯̂xa = (I − Aa + K Ca Aa)
−1 K� ȳ

Thus, the mean state vector � ¯̂xa in Eq. (12) can be defined

� ¯̂xa = (I − Aa + K Ca Aa)
−1 K
(
C r(I − Ar)

−1 Lh + Mh
)
�h̄ (12)
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By taking expected values of augmented state variable in 
Eq. (9), and we can reach the expected values of estimation er-
rors(

� ¯̃xr

�
¯̃h

)
= E

[(
�x̂r,k

�ĥk

)]
− E

[(
�xr,k
�hk

)]

=
(

I 0
0 (V ∗)−1

)
E[�x̂a,k] −

(
�x̄r

�h̄

)

=
(

I 0
0 (V ∗)−1

)
� ¯̂xa −

(
�x̄r

�h̄

)
= G�h̄

(13)

where the matrix G can be calculated as follows

G =
(

I 0
0 (V ∗)−1

)
(I − Aa + K Ca Aa)

−1

× K
(
C r(I − Ar)

−1 Lh + Mh
)

−
(

(I − Ar)
−1 Lh

I

)
(14)

From the Eq. (9), the mean square error takes the following 
form

ξ = E

⎡
⎣(� ¯̃xr

�
¯̃h

)T (
� ¯̃xr

�
¯̃h

)⎤⎦

= E

⎡
⎣tr

⎧⎨
⎩
(

� ¯̃xr

�
¯̃h

)(
� ¯̃xr

�
¯̃h

)T
⎫⎬
⎭
⎤
⎦

= E
[
tr
{

G�h̄�h̄
T

G T }]
= tr
{

G P G T }

(15)

The difference of reduced-order augmented state variables esti-
mates and their expect values satisfied

εa,k = �x̂a,k − E[�x̂a,k]
= �x̂a,k − � ¯̂xa

= (Aa − K Ca Aa)(�x̂a,k−1 − � ¯̂xa) + K (�yk − � ȳ)

= (Aa − K Ca Aa)εa,k−1 + K vk

(16)

where vk is defined by vk = �yk −� ȳ, and P a,k is the covariance 
matrix of εa,k

E
[

vk v T
k

]= R

E
[
εa,k−1 v T

k

]= E
[

vkε
T
a,k−1

]= 0 (17)

P a,k−1 = E
[
εa,k−1ε

T
a,k−1

]
The matrix P a,k related to the state vector xa is calculated by 

solving the following equation

P a,k = (Aa − K Ca Aa)E
[
εa,k−1ε

T
a,k−1

]
(Aa − K Ca Aa)

T

+ (Aa − K Ca Aa)E
[
εa,k−1 v T

k

]
K T

+ K E
[

vkε
T
a,k−1

]
(Aa − K Ca Aa)

T

+ K E
[

vk v T
k

] · K T

= (Aa − K Ca Aa)P a,k−1(Aa − K Ca Aa)
T + K R K T

= (Aa − K Ca Aa)P a,k(Aa − K Ca Aa)
T + K R K T

(18)

The covariance matrix P xh about the original augmented state 
vector x can be calculated from Eq. (19)
P xh,k = E

[((
�x̂r,k

�ĥk

)
− E

[(
�x̂r,k

�ĥk

)])

×
((

�x̂r,k

�ĥk

)
− E

[(
�x̂r,k

�ĥk

)])T
]

(19)

=
(

I 0
0 (V ∗)−1

)
Pa,k

(
I 0
0 (V ∗)−1

)T

The estimation errors for the optimal transformation matrix in-
clude estimation mean deviation and square deviation, which are 
defined by the following equation and finally can be reached

e = ξ + tr{P xh,k}
= tr
{

G P G T + P xh,k
} (20)

The health parameters are calculated from the tuning parame-
ters by the optimal transformation matrix inverse (V ∗)−1 in the 
underdetermined EKF, which produces the minimum estimation 
errors. The health parameter estimates can be achieved, while the 
available measurement number decrease inevitably affects the es-
timation accuracy of state variables by the underdetermined EKF.

In order to reduce uncertain estimation errors, the prior state 
information represented by inequality constraints is introduced to 
compensate partial absence of sensor measurements. For linear 
system, some studies had been carried out in the topics of state 
estimation with equality constraints, such as moving horizon es-
timation [35], estimate projection [36] and the smooth constrain 
[37]. When it comes to inequality constraint estimation, both hard 
and soft inequality constraint methods have been put forward to 
the LKF [38,39]. On the basis of the earlier achievements, the re-
sultant EKF is developed and focused on uncertain estimation with 
inequality constraints for nonlinear dynamic system in this paper. 
The inequality constraints ai,k ≤ hi,k ≤ bi,k , i = 1, · · · , n is intro-
duced into the underdetermined EKF, and it could be specified

ak ≤ (V ∗)−1
qk ≤ bk (21)

To make this problem tractable, assume that these constraints 
are linearly independent, and the upper and lower bound values 
for each state variable are constant. We convert the original bound 
vectors ak and bk to reduced-order bound vectors ck and dk

V ∗ak ≤ qk ≤ V ∗bk

c j,k ≤ φT
j,kqk = q j,k ≤ d j,k j = 1, · · · ,m (22)

ck = V ∗ak,dk = V ∗bk

where c j,k and d j,k are the two sided constraints of the jth tuner 
element at time k, and φT

j,k is the former j row of the matrix φk

(φk ∈ Rm×m). The number of inequality constraints is totally m and 
also less than the original constraint number n after the state vari-
able transformation.

With the tuner estimate q̂k and its covariance Q ′
k at time k, the 

partial state estimates in underdetermined EKF hold the Gaussian 
probability density function (PDF) N(q̂k, Q ′

k). Once the inequality 
constraints Eq. (22) is considered in the underdetermined EKF, the 
PDF changes and then follows N(q̃k, Q̃ ′

k). The tuner estimate q̃ j,k

and covariance Q̃ ′
j,k are defined after the former j scalar con-

straints enforced, and then the intermediate state variables z j,k
could be calculated

z j,k = S j W
− 1

2
j T T

j (qk − q̃ j,k) (23a)

T j W j T T
j = Q̃ ′

j,k (23b)

S j W
1
2
j T T

j φ j,k =
[ (

φT Q̃ ′ φ j,k
) 1

2 0 · · · 0
]T

(23c)

j,k j,k
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Fig. 3. Flowchart of the resultant EKF algorithm for gas turbine engine health monitoring.
where T j is orthogonal, W j is diagonal (the quantities of matrices 
T j and W j can be derived from the Jordan canonical decompo-

sition of Q̃ ′
j,k). Since the matrix W j is diagonal, W 1/2

j says the 
square root of every diagonal element of W j . The matrix S j is 
generated by Gram–Schmidt orthogonalization [40] to find the or-
thogonal S j following Eq. (23c). In the initialization of resultant 
EKF, the mean and covariance of tuner equal to those without in-
equality constraint, i.e. q̃ j,k = q̂k, Q̃ ′

j,k = Q ′
k , j = 0. The constraints 

are in turn decoupled, and there are m transformed constrain in-
equalities yielded with each constraints related to one transformed 
state. Based on the definitions in Eq. (23), the lower bound in 
Eq. (22) is rewritten as

φT
j,kqk ≥ c j,k

φT
j,k T j W

1
2
j S T

j z j,k + φT
j,kq̃ j,k ≥ c j,k

φT
j,k T j W

1
2
j S T

j z j,k

(φT
j,k Q̃ ′

j,kφ j,k)
1/2

≥ c j,k − φT
j,kq̃ j,k

(φT
j,k Q̃ ′

j,kφ j,k)
1/2

[1,0, · · · ,0]z j,k ≥ c j,k − φT
j,kq̃ j,k

(φT
j,k Q̃ ′

j,kφ j,k)
1/2

(24)

The upper bound can be obtained in the similar way as Eq. (24), 
then the former j inequality constraints are normalized

l j,k ≤ [1,0, · · · ,0]z j,k ≤ m j,k

l j,k = c j,k − φT
j,kq̃ j,k

(φT
j,k Q̃ ′

j,kφ j,k)
1/2

(25)

m j,k = d j,k − φT
j,kq̃ j,k

(φT
j,k Q̃ ′

j,kφ j,k)
1/2

Since z j,k has statistically independent element, only the first 
element is constrained in Eq. (25) and the PDF truncation reduces 
to a one-dimensional PDF. The part falling outside the constraint 
bound is removed due to z j,k lying between l j,k and m j,k . The 
truncated PDF is normalized and the probability sum within con-
straint bound equals to one. The mean μ j and variance σ 2

j of the 
first element of z j,k with the constraint enforcement are expressed
α =
√

2√
π(erf (m j,k/

√
2) − erf (l j,k/

√
2))

μ j = α

d j,k∫
c j,k

ξ exp
(−ξ2/2

)
dξ = α

[
exp
(−l2

j,k/2
)− exp

(−m2
j,k/2
)]

σ 2
j = α

d j,k∫
c j,k

(ξ − μ j)
2 exp
(−ξ2/2

)
dξ (26)

= α
[
exp
(−l2

j,k/2
)
(l j,k − 2μ j)

− exp
(−m2

j,k/2
)
(m j,k − 2μ j)

]+ μ2
j + 1

where α is a magnification factor, and erf (t) = 2√
π

∫ t
0 exp(−τ 2)dτ . 

The inverse transformation of Eq. (23) is conducted, and the mean 
and covariance of the constrained tuner estimate are achieved

q̃ j+1,k = T j W
1/2
j S T

j [μ j,0, · · · ,0]T + q̃ j,k

Q̃ ′
j+1,k = T j W

1/2
j S T

j diag
(
σ 2

j ,1, · · · ,1
)

S j W
1/2
j T T

j

(27)

Repeat the steps from Eq. (23) to Eq. (27) to enforce the next 
constraint to the state estimate and jump out of the iteration 
until j = m. For example, q̃0,k is the state estimate without any 
constraints, and q̃3,k is the state estimate with the first three con-
straints. Since the inequality constraints are independent, the mean 
and variance of the tuner with all constraints can be calculated 
after repeating process m times. For gas turbine engine health 
monitoring, the resultant EKF to the issue of underdetermined es-
timation with inequality constraints is detailed shown in Fig. 3.

4. Experiments and analysis

Experiments are carried out on a semi-physical platform of tur-
bojet engine that is developed by Nanjing University of Aeronautics 
and Astronautics [28,29], and then a systematical discussion is pre-
sented to reveal the performance of the proposed methodology. 
The involved state estimation algorithms run in Matlab Software, 
and the engine operates at the maximum power in typical flight 
regions. The maximum power operation is defined as the corrected 
low pressure rotor speed NL,cor = 1. Turbojet engine sensor mea-
surements, nominal value and standard deviation are shown in 
Table 2 [26,41].



42 F. Lu et al. / Aerospace Science and Technology 58 (2016) 36–47
Table 2
Turbojet engine sensor measurements, nominal value and standard deviation.

Measurement Acronyms Nominal 
value

Standard 
deviation

Low pressure spool speed NL 1 0.0015
High pressure spool speed NH 1 0.0015
LPC outlet pressure P25 1 0.0015
HPC outlet pressure P3 1 0.0015
HPT outlet pressure P45 1 0.0015
HPT outlet temperature T45 1 0.002
LPT outlet pressure P6 1 0.0015
LPT outlet temperature T6 1 0.002

Table 3
Turbojet engine gas path performance fault cases.

Case Variations of health parameter Abnormal 
component

I �SE1 −0.4% LPC
II �SE2 −0.7% and �SW2 −1% HPC
III �SE2 −1%
IV �SW2 −1%
V �SW3 +1% HPT
VI �SE3 −1% and �SW3 −1%
VII �SE3 −1%
VIII �SE4 −1% LPT
IX �SE4 −0.6% and �SW4 +1%

The element of health parameter vector h is initialized to the 
nominal value equaling 1. The health parameters derive from the 
normal values suddenly in the performance fault, and the shift 
quantities of various fault cases are presented in Table 3 [31]. The 
turbojet engine operating data are collected and corrected through 
similar normalized process before the utilization for health moni-
toring.

The underdetermined estimation using various sensor subsets 
are performed, and the effects of different sensed information and 
prior knowledge to estimation accuracy are analyzed. The robust-
ness of the resultant EKF at the maximum power in typical flight 
region is discussed. In order to compare the estimation perfor-
mance of the examined methodologies, two performance indices, 
viz. root mean square error (ME) and standard square error (SD) 
are defined and given in the following forms, where the sampling 
number is S .

ME =
[

1

S

S∑
k=1

(
�ĥ(k) − �h(k)

)T (
�ĥ(k) − �h(k)

)]1/2

SD = 1

n

⎡
⎣ 1

S − 1

S∑
k=1

(
�ĥ(k) − 1

S

S∑
k=1

�ĥ(k)

)T

(28)

×
(

�ĥ(k) − 1

S

S∑
k=1

�ĥ(k)

)]1/2
4.1. Fault detection with gas path benchmark data

Nine benchmark data sets about engine performance fault 
modes referred to Table 3 are used to compare health monitor-
ing performance of the basic EKF, moving horizon state estimation 
(MHE), underdetermined EKF and resultant EKF. The engine op-
erating points in the flight envelope are the ground international 
standard atmosphere (ISA) operation (Scenario 1: H = 0, Ma = 0, 
W f = 1.15 kg/s, A8 = 0.2083 m2) and the high altitude oper-
ation (Scenario 2: H = 10700 m, Ma = 0.84, W f = 0.517 kg/s, 
A8 = 0.2083 m2). The simulation time is totally 50 seconds and 
the health parameter shifts are injected into the nominal engine 
model at 10 seconds. The sensor P3 failure is simulated. The num-
ber of available measurement is seven and the count of health 
parameters to be estimated is eight. As was mentioned earlier, the 
underdetermined EKF and resultant EKF could estimate all state 
variables while the basic EKF is disabled in underdetermined esti-
mation.

In order to fulfill the comparison, the LPT flow capacity �SW4
is assumed known and equals to 1 in the basic EKF since the 
change quantity of �SW4 is the least among all health parameters 
in Table 2. It implies that the engine fault case IX in Table 3 can’t 
be detected by the basic EKF. The system process noise covari-
ance Q is generated from the several tests, i.e. Q = 0.004 × I 8×8, 
and the diagonal elements of measurement noise covariance R are 
referred to Table 2. Based on the procedure of resultant EKF algo-
rithm given in Fig. 3, the transformation matrices of resultant EKF 
at the typical operating points, i.e. Scenario 1 denoted by V ∗

1 and 
Scenario 2 denoted by V ∗

2, are separately worked out. The Frobe-
nius norms of both V ∗

1 and V ∗
2 equal one, and their condition 

number are 33.81 and 34.18. Then we can find that these trans-
formation matrices are steady at the typical operating condition.

The eight health parameters are obtained from the tuning vec-
tor q with help of the optimal transformation matrix both in the 
underdetermined EKF and resultant EKF, while seven health pa-
rameters except for �SW4 worked out in the basic EKF. The MEs 
of health parameter estimates for nine benchmark data sets related 
to general performance fault in two Scenarios are presented in Ta-
ble 4. The performance index MEav by each method is the average 
of ME in all involved fault cases.

As it can be seen from Table 4, the estimation errors of the un-
derdetermined EKF are the largest among the examined algorithms 
in the most fault cases. The MEs by the MHE and underdetermined 
EKF are larger than 3.5e−2 (the threshold of performance fault 
[32]) in some cases, and the detection results are unacceptable. 
The MEs by the resultant EKF are all below 3.5e−2 and far smaller 
than those by the MHE and the underdetermined EKF, and the per-
formance of resultant EKF is nearly the same as the basic EKF from 
the case I to case VIII. The known state information is considered 
to compensate partial measurement absence in the resultant EKF, 
and it makes the estimation accuracy of resultant EKF better than 
that of underdetermined EKF. We can also find that the MEs at 
ground ISA by all state estimation methods are less than that at 
Table 4
MEs for benchmark data sets corresponding to engine gas path fault cases (×10−2).

Operating 
points

Algorithms Case MEav

I II III IV V VI VII VIII IX

Scenario 1 Basic EKF 1.30 1.93 2.34 1.41 1.27 1.37 1.28 2.28 – 1.95
MHE 1.78 2.15 3.19 2.50 2.00 3.13 2.43 3.09 2.12 2.48
Underdetermined EKF 2.49 3.12 3.37 2.58 2.82 2.88 2.56 3.45 3.10 2.93
Resultant EKF 1.42 1.91 2.24 2.63 1.73 1.70 1.29 2.23 2.49 1.96

Scenario 2 Basic EKF 2.79 2.16 2.54 1.80 1.53 2.16 1.04 2.23 – 2.03
MHE 2.30 3.84 3.17 4.36 2.33 3.24 2.67 3.39 3.37 3.18
Underdetermined EKF 2.97 4.07 4.11 3.57 3.12 3.13 2.69 3.67 3.25 3.40
Resultant EKF 1.46 2.18 2.41 1.67 2.72 2.25 2.39 2.38 2.51 2.22
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Fig. 4. The mean, maximum and minimum of each health parameter estimates at the ground design point. (a) Basic EKF in the case of SE3 −2%, (b) Basic EKF in the case of 
SW1 −4% and SE3 −2%, (c) Underdetermined EKF in the case of SE3 −2%, (d) Underdetermined EKF in the case of SW1 −4% and SE3 −2%, (e) Resultant EKF in the case of 
SE3 −2%, (f) Resultant EKF in the case of SW1 −4% and SE3 −2%.
the high altitude. Similar normalization process to the system pa-
rameters could extend the EKF application in flight envelope, but 
it also inevitably brings the estimation errors.

4.2. Gas path fault test-bed data monitoring

Two test-bed data sets which are collected from wet experi-
ments at the ground design point are employed to further compare 
the performance of the examined EKF algorithms. These data sets 
including 500 samples refer to the following engine component 
fault cases: (1) −2% on SE3, (2) −4% on SW1 and −2% on SE3. 
Sensor fault detection and isolation (FDI) logic addressed in [42,
43] is implemented, and sensor P3 failure is recognized and then 
this faulty measurement excluded from the available sensed vec-
tor. Fig. 4 gives the mean, maximum and minimum of each health 
parameter estimates by the three EKF algorithms, and color varia-
tions in turn represent the estimates of health parameters.

As can be seen from Fig. 4, the mean values of health parame-
ter estimates by the basic EKF are closer to their actual values than 
those by the underdetermined EKF and resultant EKF, and change 
amplitudes of health parameter estimates by the basic EKF are al-
most the least. Furthermore, the performance indices ME and SD
by the involved EKF algorithms for two test-bed data sets at the 
ground design point are presented in Table 5. The ME and SD also 
reveal that the underdetermined EKF performance is inferior to the 
other EKFs, and the performance of resultant EKF approaches to 
that of basic EKF. However, it is noted that �SW4 is assumed to 
be constant and not estimated in the basic EKF, and wrong esti-
mates of health parameter will be generated when the fault cases 
Table 5
MEs and SDs for two test-bed data sets at the ground design point (×10−2).

Algorithms Indices SE3 −2% SW1 −4% and 
SE3 −2%

Basic EKF ME 1.39 1.65
SD 0.20 0.23

Underdetermined EKF ME 2.76 2.84
SD 0.34 0.32

Resultant EKF ME 1.86 1.94
SD 0.26 0.24

about �SW4 occur. Consequently, the resultant EKF is the best way 
to achieve underdetermined estimation of engine health state with 
the sensor P3 absence regards among these EKFs.

Fig. 5 and Fig. 6 detailed show the estimation results of health 
parameters by the resultant EKF in the fault cases of −2% on SE3, 
and −4% on SW1 and −2% on SE3. The red lines are the actual 
health parameters and blue lines are their estimates. The devia-
tion of the health parameters could be rapidly tracked around 2 s
by the resultant EKF, and the estimates fluctuate within the small 
intervals in a long term. Both dynamic and steady estimation per-
formance of the resultant EKF are satisfactory.

4.3. Health estimating robustness over operating envelope

The optimal transformation matrix V ∗ should be calculated at 
certain operating point before resultant EKF application. If this ma-
trix is constant at different operating points in the flight envelope, 



44 F. Lu et al. / Aerospace Science and Technology 58 (2016) 36–47
Fig. 5. The estimated values of health parameters by the resultant EKF in the case of SE3 −2%. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

Fig. 6. The estimated values of health parameters by the resultant EKF in the case of SW1 −4% and SE3 −2%. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)
it could obviously reduce computational efforts and save in-flight 
storage. Hence, the resultant EKF robustness to various operating 
points is discussed on the numerical simulation in this section, 
and a test operating point (Scenario 3: H = 5000 m, Ma = 0.8, 
W f = 0.93 kg/s, A8 = 0.2083 m2) is introduced which falls into 
the region between Scenario 1 and Scenario 2. Three operating 
points of the engine are all at the maximum power NL,cor = 1. 
The optimal transformation matrix V ∗

3 is calculated using the Sce-
nario 1 data and Scenario 2 data with the same weight. The condi-
tion number of V ∗

3 is 18.79, and it implies that the transformation 
from the original health parameter to tuner is steady at the maxi-
mum power.
Table 6 shows that the MEs of health parameter estimates vary 
with different transformation matrices. The optimal matrices V ∗

1
and V ∗

2, which are separately obtained at ground operation Sce-
nario 1 and high altitude operation Scenario 2, produce satisfactory 
performance at their own operation points. The ME using V ∗

1 is 
1.86e−02 at Scenario 1, 2.83 at Scenario 2, and 2.67 at Scenario 3, 
while the MEs using V ∗

3 at three Scenarios are separately 2.13, 
2.25 and 2.18 in Table 6. Therefore, the ME using V ∗

1 is 0.27e−02 
less than the ME using V ∗

3 in the fault case SE3 −2% at the 
ground operation. But the MEs using V ∗

1 are separately 0.58e−02 
and 0.49e−02 more than those using V ∗

3 at Scenario 2 and Sce-
nario 3.
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Table 6
MEs of health parameter estimates related to the various transformation matrices (×10−2).

Transformation 
matrix

SE3 −2% SW1 −4% and SE3 −2%

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

V ∗
1 1.86 2.83 2.67 1.94 3.14 3.28

V ∗
2 2.76 1.91 2.63 3.12 2.36 3.24

V ∗
3 2.13 2.25 2.18 2.77 2.89 3.03
Fig. 7. MEav of health parameter estimates related to V ∗
1, V ∗

2, and V ∗
3 at three op-

erating points.

The performance index MEav in the fault cases of −2% on SE3, 
and −4% on SW1 and −2% on SE3 are presented in Fig. 7. The per-
formance index MEav using matrix V ∗

3 at Scenario 1 is not as good 
as that using V ∗

1, and also not good as that using V ∗
2 at Scenario 2. 

Nevertheless, the resultant EKF using V ∗
3 produces the relatively 

smooth MEav than the others, around 2.50e−2. Besides, there are 
no MEs exceeding 3.50e−02 at the maximum power in the ex-
amined flight region, and the estimation results of resultant EKF 
related to three optimal transformation matrices are acceptable. 
That is to say, the resultant EKF robustness to the typical oper-
ating points is satisfactory.

4.4. Health estimating performance comparisons by different 
measurement subset

In the experiments above, the resultant EKF is conducted given 
that all measurement used for state estimation except P3. To fur-
ther evaluate the performance of resultant EKF, we try to launch 
experiments utilizing various measurement subsets to estimate 
eight health parameters. The sensed signals NL and NH are the 
key parameters to represent the turbojet engine operation and 
are designed by double-channel redundancy. If one channel breaks 
down, the other channel would accommodate this fault and works 
[43]. The rest measured signals are collected using single chan-
nel. Hence, the measurements NL and NH failure is not consid-
ered in the study, and there are six combinations to construct 
seven measurements from the eight sensed signals. Since the 
MEs of health parameter estimates under the measurement sub-
set [NL NH P25 P45T45 P6T6] for benchmark data have been given in 
Table 4, Table 7 presents the MEs of the remaining measurement 
combinations at ground operation Scenario 1 and high altitude op-
eration Scenario 2.

As can be seen from Table 4 and Table 7, the resultant 
EKF using available sensed subsets [NL NH P25 P3 P45T45 P6] and 
[NL NH P25 P3 P45T45T6] produce larger MEav than that using other 
sensor subsets both at the ground and high altitude opera-
tions. The performance index MEav under the sensor subset 
[NL NH P3 P45T45 P6T6] is the least. It implies that the sensors T6
and P6 are another two important measurements for health es-
timation, and the estimation errors evidently increase as the loss 
of T6 or P6. Sensor significance for turbojet engine health esti-
mation can also be obtained from the MEav sequence in Table 7. 
Tests about eight health parameters estimation using six measure-
ments are performed, and the MEs of health parameter estimates 
for benchmark data as two sensors absence are presented in Ta-
ble 8.

In Table 8, the MEs in several fault cases are less than 3.5e−2, 
and the resultant EKF could still give acceptable results for en-
gine health monitoring. However, the performance of the resul-
tant EKF becomes worse in general as one more measurement 
unavailable. The MEav by resultant EKF using the sensor subset 
[NL NH P25 P3 P45T45] is the largest among all six-sensor combina-
tions. It indicates that the measurements without P6 and T6 will 
produce more estimation errors in the engine health monitoring. It 
also could give us a guideline that the sensors, especially P6 and 
T6, should preferably be collected by double channel redundancy 
technique.

5. Conclusion

This paper has proposed an improved nonlinear state estima-
tion approach to gas turbine engine health monitoring. The novelty 
Table 7
MEs for benchmark data as one sensor absence (×10−2). Available measurement subsets label 1 to 5 are [NL NH P3 P45 T45 P6 T6], [NL NH P25 P3 T45 P6 T6], 
[NL NH P25 P3 P45 P6 T6], [NL NH P25 P3 P45 T45 T6], [NL NH P25 P3 P45 T45 P6], respectively.

Operating 
points

Sensor 
subset

Case MEav False 
positiveI II III IV V VI VII VIII IX

Scenario 1 1 1.46 1.65 2.10 1.45 1.17 1.29 1.30 2.06 1.67 1.57 0/9
2 1.15 1.64 2.98 1.66 2.00 2.79 1.33 2.69 2.35 2.07 0/9
3 1.46 1.68 3.21 2.21 2.06 2.77 2.03 2.43 2.12 2.22 0/9
4 1.27 1.35 3.35 2.16 2.50 3.88 1.66 2.49 2.12 2.31 1/9
5 1.40 2.46 2.97 3.40 2.36 2.42 1.36 2.17 2.18 2.30 0/9

Scenario 2 1 1.28 1.84 2.83 1.70 1.69 2.68 2.01 2.42 1.74 2.02 0/9
2 1.32 1.90 2.89 1.65 1.61 3.20 2.05 2.02 1.68 2.04 0/9
3 1.46 1.74 3.62 2.21 2.44 3.02 1.51 2.73 2.59 2.37 1/9
4 1.40 2.50 2.83 2.22 2.47 3.82 2.84 2.66 2.42 2.57 1/9
5 1.56 2.64 3.45 2.87 2.58 3.14 2.40 2.25 2.90 2.64 0/9
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Table 8
MEs for benchmark data sets as two sensors absence at scenario 1 (×10−2).

Absent 
sensors

Case MEav False 
positiveI II III IV V VI VII VIII IX

P 6 , T 6 2.03 6.29 15.36 27.60 2.41 5.56 7.79 8.10 4.49 8.85 7/9
P45, P6 2.46 3.48 2.86 3.65 5.12 3.36 6.50 2.51 4.41 3.82 4/9
P45, T6 1.41 2.85 4.13 4.55 2.59 2.65 2.22 4.32 3.70 3.16 4/9
T45, P6 1.02 2.41 2.51 1.76 5.02 4.30 4.71 2.11 1.77 2.85 3/9
T45, T6 4.98 5.57 3.64 3.57 12.53 31.21 2.09 2.20 4.30 7.79 7/9
T45, P45 1.61 1.84 2.59 1.55 2.12 2.74 1.53 2.00 4.28 2.25 1/9
P3, P6 1.49 2.03 1.92 1.89 2.68 3.38 1.66 2.10 2.35 2.17 0/9
P3, T6 1.91 2.99 4.21 3.81 2.81 4.14 1.98 4.53 2.99 3.26 4/9
P3, P45 1.89 3.16 4.74 3.89 5.35 6.35 1.85 4.28 3.69 3.91 6/9
P3, T45 1.16 2.30 3.03 2.05 2.91 3.67 1.84 2.04 2.52 2.39 1/9
P25, P6 2.58 1.89 3.89 3.46 15.21 4.50 16.38 3.38 11.20 6.94 5/9
P25, T6 2.30 2.44 2.91 3.71 3.36 3.16 4.23 2.04 2.37 2.95 2/9
P25, P45 1.40 2.33 2.43 1.75 1.95 2.93 2.06 2.08 1.78 2.08 0/9
P25, T45 1.40 3.10 1.94 3.35 3.40 2.44 2.56 3.64 7.11 3.22 2/9
P25, P3 1.78 2.32 4.77 4.33 6.75 5.92 1.77 4.88 4.50 4.11 6/9
of this methodology lies in the development of resultant EKF algo-
rithm with inequality constraints for the purpose of underdeter-
mined estimation. The tuner with reduced order is introduced into 
the underdetermined EKF using the optimal transformation matrix, 
and it is a linear combination of state variables. The resultant EKF 
is a new uncertainty estimator that inequality constraints are com-
bined to underdetermined EKF. One advantage of this methodology 
is that this improved EKF can deal with underdetermined estima-
tion for nonlinear dynamic system. The EKF in state estimation 
applications is no longer restricted by the condition that available 
measurement number is less than the count of state variables. An-
other advantage of this methodology is that the underdetermined 
estimation accuracy is improved, since prior state information de-
picted by inequality constraints is considered and used to make up 
for partial measurement absence. Important theoretical algorithms 
of the resultant EKF have been presented to the issue of nonlinear 
underdetermined state estimation with inequality constraints.

The methodology is tested and validated using benchmark data 
and test-bed data of a turbojet engine. The experimental results of 
health monitoring by the basic EKF, underdetermined EKF and re-
sultant EKF are compared at the typical operating points. Both of 
the underdetermined EKF and resultant EKF achieve eight health 
parameter estimation using seven sensors at the ground and high 
altitude operations, while the basic EKF fails to accomplish it. The 
resultant EKF is superior to underdetermined EKF with regards to 
estimation accuracy. In addition, the resultant EKF estimation ro-
bustness to various measurement subsets at the maximum power 
in the typical flight regions is satisfactory. The resultant EKF esti-
mator is easy to design, and by this estimator the engine health 
monitoring results are acceptable as one sensor is absent. How-
ever, the estimation accuracy of the methodology decreases as two 
measurements become unavailable, and it can’t work well espe-
cially in the case that both sensors P6 and T6 failure occurs. The 
methodology developed in this paper is not limited to turbojet en-
gine health monitoring, but also can be extended to other engine 
types and applied to fault tolerant control.

This research establishes a new direction in state estimation 
for nonlinear dynamic system by proposing an improved nonlin-
ear state estimator technique that is beneficial for gas turbine en-
gine health monitoring applications. There are several important 
topics for future research that are related to this work. First, fur-
ther studies can be done to investigate the performance when the 
prior measurement information is supplemented and estimation 
errors performance index changes. Except for the prior knowledge 
of state variables in this study, the known measurement informa-
tion could also be used as the constraints of nonlinear estimator. 
The weights of mean bias and square deviation to the performance 
index of estimation errors in the resultant EKF could be tuned 
to various estimation tasks. Second, although this paper focuses 
on turbojet engine health monitoring at the maximum operating 
power in typical flight region, extensions to the cases that have 
more operational conditions in whole flight envelope are worthy 
of further exploration.
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