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A theoretical model is presented to predict water droplet trajectories in the flow past an airfoil. The 
model considers droplet deformation and includes a drag coefficient that accounts for the influence of 
flow acceleration. This is because, as seen from the reference frame of the droplet, the flow accelerates 
as the airfoil approaches, even if the airfoil moves at constant velocity. To validate the theoretical model, 
a series of experimental tests have been carried out in a rotating arm facility. Three parameters were 
changed in the experiments: 1) the size of the model airfoil (radius of curvature 0.103 m, 0.070 m, 
and 0.030 m), 2) its velocity (50 m/s, 60 m/s, 70 m/s, 80 m/s, and 90 m/s), and 3) the droplets’ initial 
diameters (in the range from 550 μm to 1050 μm). Comparison between the results obtained using the 
theoretical model and those collected in the experimental tests (droplet tracking was carried out using a 
high speed imaging system) showed a good agreement. This suggests that, within the range of parameters 
that has been tested, the proposed theoretical model could be confidently used for trajectory prediction 
purposes.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

The problem of predicting liquid droplet trajectories, inside a 
gas flow is of interest in many fields of science and engineering. 
They include, among many others, forensic applications [1], solvent 
extraction [2], electrostatic enhancement of liquid–liquid contact-
ing processes [3], ink-jet printer design [4], spray modeling [5,6], 
and design of nuclear fusion subsystems [7].

In aeronautics, computation of water droplet trajectories is of 
interest, among others, for the purpose of simulating icing condi-
tions. As compared to situations in other technical fields, droplet 
trajectories in these aeronautics-type conditions are characterized 
by the fact that, in the vicinity of an incoming airfoil, the flow, 
as seen from the reference frame of the droplet, accelerates with 
a non-constant acceleration. This is in contrast to other cases in 
which the flow is either steady or it accelerates with constant 
acceleration. In this context of dealing with non-constant veloc-
ity flows, the interested reader is directed to the work of Rendall 
and Allen [8] that developed a finite volume code in which droplet 
motion is tracked using mesh connectivity. This work is of interest 
because, instead of using a pure Lagrangian approximation, the au-
thors couple the droplet motion to the finite volume computation 
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of the surrounding flow in a computationally efficient way. Also of 
interest is the work by Saeed et al. [9] in which the air model of 
the code is of the panel method type, thereby allowing for a much 
faster computation of droplet trajectories, albeit at the expense 
of a smaller accuracy. On the other hand, a comprehensive work 
that involves both theoretical modeling and experimental testing 
has been reported by Papadakis et al. [10]. Additional experimen-
tal data in the field can be accessed in the study published by 
Reehorst and Ibrahim [11].

With regard to the basic Fluid Mechanics aspects of the mod-
eling of droplet trajectories, it is worth mentioning, first, the re-
view article by Aggarwal and Peng [12] published in 1995. In 
Section 1 of that article, the authors review a number of droplet 
dynamic models and conclude that flow non-uniformity and accel-
eration affect the aerodynamics forces critically. Also, they report 
a large uncertainty regarding their actual contribution to the to-
tal drag and lift forces. Even though it is not a review article 
by itself, reference [13] by Schmehl also contains a quite inter-
esting discussion on droplet drag and dynamics models, including 
those models that deal with flow non-uniformity and acceleration. 
A method to reduce the number of similarity parameters needed 
to close a droplet trajectory model (under certain assumptions) 
has been published by Bragg [14]. In the case of unsteady Stokes 
flow, Maxey and Riley [15] have proposed a generalized equation 
of motion for a sphere in a non-uniform flow. In the case of an in-
viscid unsteady non-uniform flow, Auton et al. [16] have derived 
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a general expression for the fluid force on the body. The case of 
drop deformation under steady conditions for a variety of fluids 
other than water has been extensively studied experimentally by 
Hsiang and Faeth [17]. Empirical correlations for the drag coeffi-
cient of gas bubbles inside a liquid (the opposite case to the one 
presented here) have been reported by Zhang et al. [18]. A statisti-
cal approach to droplet trajectory prediction during aerodynamics 
fragmentation has been developed by Flock et al. [19]. Regard-
ing the fundamental aspects of droplet deformation that, in turn, 
affect droplet trajectory, the reader is directed to the excellent re-
view presented by Theofanous [20]. In this review article, apart 
from making a critical review of the literature, the author proposes 
the existence of two fundamental droplet deformation modes that 
may explain the large variety of available experimental observa-
tions with regard to the shapes of the deformed droplets. From the 
standpoint of novel experimental techniques it is worth mention-
ing the work of Zarrabeitia et al. [21] that have recently developed 
a stereo reconstruction technique that allows for the recording of 
3D droplet trajectories. Also, it is also important to refer to the 
work of Theofanous and Li [22] in which the authors present their 
laser-induced fluorescence technique.

Finally, and because of their relevance for the present work, it 
is important to discuss in some detail the studies presented by 
Temkin and Metha [23], Igra and Takayama [24], and Jourdan et al. 
[25]. The article by Temkin and Metha [23] presents an experimen-
tal study on the motion of water droplets inside accelerating and 
decelerating flows. The interesting modeling aspect of this study 
is that the authors assume a functional relationship between the 
drag coefficient and the so called acceleration parameter that is 
defined as the time derivative of the slip velocity divided by the 
square of the slip velocity itself. The experiments were carried out 
in a shock tube. Droplet diameters were in the range from 100 μm 
to 200 μm, which led to Weber numbers such that the authors as-
sumed a negligible droplet deformation. Their conclusion (which 
is in contradiction with some other studies published in the liter-
ature) is that the unsteady drag of a sphere in decelerating flow 
is always larger than the steady drag at the same Reynolds num-
ber, while is it always smaller if the surrounding flow accelerates. 
Igra and Takayama [24] also used a shock tube facility but, in their 
case, with non-deformable spheres made up of polystyrene, nylon, 
and polyamide. Their diameter ranged from 0.5 mm to 4.8 mm. 
The Reynolds number covered in their experiments was in the 
range down from 6000 up to 100,000. Incident Mach numbers in 
the shock tube were 1.27, 1.50, and 1.80. In their conclusions, the 
authors reported unsteady drag values about 50% larger than the 
corresponding steady values in these shock tube conditions. More 
recently, Jourdan et al. [25] have presented another quite compre-
hensive experimental study based, also, on a shock tube type test 
rig. They used non-deformable spheres (made of either polystyrene 
or nylon) with diameters ranging from 500 μm to 6.6 mm. In their 
tests, the authors found that the unsteady drag is always larger 
than the steady drag at the same Reynolds number and explicitly 
stated at the end of their “Results and Discussion” section (sec-
tion 4) that the acceleration parameter proposed by Temkin and 
Metha [23] may not be the relevant characteristic parameter for 
the flows that they considered. Even though these two experi-
mental studies presented some differences that might affect the 
conclusions (droplet were deformable in reference [23] and non-
deformable in reference [24], and velocities, and associated com-
pressibility effects, were also somewhat different) the conclusion 
is that the field still is quite alive and that no definite conclusions 
are available so far.

The novelty of the work presented in this article consists of 
proposing a new theoretical model on droplet deformation and 
trajectory that is validated afterwards in a series of experimental 
tests in a rotating arm facility. The model, formulated as a set of 
Fig. 1. Sketch of the problem under consideration.

three ordinary differential equations involves the presence of the 
so-called acceleration parameter (already proposed, and contested, 
also, by other researchers) and an equation for the deformation 
of the droplet. Then, the specific novelty aspects of the study are 
twofold: a) both the acceleration parameter and the droplet de-
formation equation enter simultaneously into the model (previous 
studies considered non-deformable droplets only), and b) because 
of this, although the functional form of the acceleration parame-
ter is hypothesized, its actual parametric dependency needs to be 
characterized, and this is done via experimental testing.

Regarding the organization of the present article the theoretical 
model is presented in Section 2. The experimental rotating arm 
rig is described in Section 3. Model and experimental results are 
compared and discussed in Section 4 and, finally, conclusions are 
presented in Section 5.

2. Theoretical model

It is assumed that the droplet motion is governed by three 
equations: two dynamics equations (1)–(2) that represent the equi-
librium of forces in the horizontal (x) and vertical (y) directions, 
and one equation (3) that models the droplet deformation. This 
equation (3) influences the droplet drag force because, indirectly, 
it allows for the computation of the droplet cross-section area nor-
mal to the incoming flow. Fig. 1 shows a sketch of both the acting 
forces and the axis of coordinates. The coordinates’ axes (fixed in 
space) are located in the droplet centre of mass at the precise mo-
ment when it enters the measurement window.

Apart from some other considerations, the model presented 
hereafter is based on three main hypotheses that have been ver-
ified analyzing the experimental data obtained during the comple-
tion of the experimental campaigns. These hypotheses are:

• The “y” component of the incoming airflow |V air_y | is very 
small (V air_y ∼= 0). This assumption (that also implies that 
|V air_x| � |V air_y |) means that the model is valid, only, in the 
vicinity of the stagnation streamline (stagnation region) of the 
incoming airfoil.

• It is assumed that the droplet deforms as an oblate spheroid.
• Because of the first hypothesis, the slip velocity in the hori-

zontal direction is much larger than the slip velocity in the 
vertical direction (this is, of course, not true during the initial 
instants of the droplet trajectory but velocities are very low 
and droplet deformation is negligible at these stages). Then, it 
is further hypothesized that the droplet deforms, only, along 
the vertical direction that is perpendicular to the direction of 
the much larger horizontal slip velocity. The practical impli-
cation of this third hypothesis is that forcing terms in the 
equation that models droplet deformation (equation (3)) de-
pend, only, on the horizontal slip velocity; thereby decoupling, 
effectively, the “x” equation of motion (equation (1)) and the 
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equation for droplet deformation (equation (3)) from the “y” 
equation of motion (equation (2)).

Now, the three model equations are:

md
d2x

dt2
= Fdrag_x (1)

md
d2 y

dt2
= −Fdrag_y + md g (2)

3 md

16

d2a

dt2
= +F v + Fst + F P (3)

where:

• x, y, a, and t are the coordinates of the droplet centre of mass, 
the half-maximum dimension of the deformed droplet, and 
time respectively.

• md is the droplet mass equal to 4πρR3
d/3 (Rd is the initial 

droplet radius), g is the gravity acceleration and ρd is the wa-
ter density.

• Fdrag_x , Fdrag_y , F v , Fst , and F P are the “x” and “y” compo-
nents of the aerodynamics drag force, the viscous force and 
surface tension force that oppose droplet deformation, and the 
flow pressure force that acts on the droplet surface respec-
tively.

The aerodynamic drag forces Fdrag_x and Fdrag_y depend on the 
slip velocities V sx and V sy defined as:

V sx = V air_x − dx

dt
, V sy = dy

dt
(4)

It has been assumed previously that V sx � V sy . Then, if β is the 
angle between the total drag force and the “x” axis, the following 
approximations hold: sin β ∼= V sy/V sx and cos β ∼= 1. Then, Fdrag_x
in equation (1) can be modeled as:

Fdrag_x
∼= 1

2
ρair V 2

sxπa2C D (5)

where ρair is the air density and C D is the drag coefficient. Now, 
the modeling of this drag coefficient is the most critical aspect of 
the formulation presented in this section. Specifically, it was de-
cided that C D = C D1 + C D2, where C D1 and C D2 model steady and 
unsteady effects respectively as follows:

C D1 = Cb/a
Dsphere

· C1−b/a
Ddisk

(6)

C D2 = k
b

V 2
sx

dV sx

dt
(7)

where C Dsphere is the known drag coefficient of a perfect sphere 
based on a Reynolds number defined using the instantaneous (time 
dependent) slip velocity as the characteristic velocity, and the in-
stantaneous (time dependent) droplet maximum elongation: “2a” 
(see Fig. 1), as the characteristic length. C Ddisk is the drag coeffi-
cient of a disk whose value, assumed to be constant in the range 
of Reynolds numbers considered, is taken to be 1.17. In practice, 
relation (6) assumes that the quasi-steady part of the droplet drag 
coefficient is obtained by interpolating between the drag of a per-
fect sphere and the drag of a disk. The parameter that controls 
the interpolation is the droplet aspect ratio b/a, see Fig. 1. Since 
the droplet has constant known volume, Vd , the values of “a” 
(obtained from equation (3)) and “b” are related by a simple ge-
ometry relation: Vd = (4π/3)a2b that means R3

d = a2b. Relation 
(7) assumes that the unsteady part of the droplet drag coefficient 
depends on the functional (1/V 2

sx)dV sx/dt that is directly related 
to the acceleration parameter as defined by Temkin and Metha 
[23]. The main difference here with the formulation of Temkin and 
Metha [23] is that, in the present model, C D2 depends, also, on 
the instantaneous (time dependent) droplet elongation “b” in the 
“x” direction. k is a calibration coefficient that in the range of ex-
perimental cases that have been tested (that will be described in 
the next section) has been found to be constant and equal to 9. 
Possibly, the most critical aspect of the model being presented has 
to do with relations (6) and (7). These two relations describe sep-
arately the steady and unsteady parts of the problem, but it might 
be natural to think that a more general single formulation (not 
divided into two different terms) should exist. However this gen-
eralization is out of the scope of the present article. The second 
question is that in the formulation of the steady part, the dimen-
sionless parameter that controls the drag coefficient is the droplet 
deformation ratio b/a. It was found that this formulation yields 
a model that agrees fairly well with the experimental data but, 
obviously, it was not possible to provide a plausible physical expla-
nation for this specific selection at this stage. It could have been, 
for example, the same ratio elevated to some power.

Within the same set of hypotheses, Fdrag_y in equation (2) can 
be approximated as:

Fdrag_y
∼= 1

2
ρair V sx V syπa2C D (8)

Finally, the three terms in the right hand side of equation (3)
are modeled as follows:

F v = −64

9
μdπ R3

d
1

a2

da

dt
(9)

where μd is the droplet viscosity. This term, as described by Sor 
and Garcia-Magariño [26], represents the force that viscosity op-
poses to droplet deformation. It has been included into equation 
(3) for the sake of completion. However, for the range of param-
eters considered in the experimental tests, its actual value was 
found to be much smaller than the other two terms in the right 
hand side of equation (3). If a different fluid is chosen for the tests, 
for instance: glycol that has much higher viscosity than water, this 
term becomes comparable to the other two terms. Then, since this 
model will deal with water droplets only, this viscous term will be 
dropped altogether from the formulation:

Fst = −4

3
σ

dAd

da
(10)

This term, as described by Sor and Garcia-Magariño [26], rep-
resents the force that surface tension opposes to droplet deforma-
tion. σ is the water surface tension and Ad is the surface area of 
the droplet. dAd/da represents the rate of variation of droplet sur-
face area with respect to the maximum elongation for a constant 
volume droplet. Since the deformed droplet is assumed to have the 
shape of an oblate spheroid, the derivative dAd/da can be obtained 
by purely geometrical considerations. In particular:

dAd

da
= 4πa − 4π Rd

ε(a/Rd)
5

ln

(
1 + ε

1 − ε

)

+ 3π Rd

ε(a/Rd)
11

[
2

ε(1 − ε2)
− 1

ε
ln

(
1 + ε

1 − ε

)]
(11)

where ε = [1 − (b/a)2]1/2. Note that dAd/da is a known functional 
that depends on the variable a only. For the reminder of the article 
this functional will be referred to as (a).

The last term in equation (3) represents the pressure force that 
the incoming flow exerts on the droplet, Sor and Garcia-Magariño 
[26]. The actual effect of this term is to promote deformation:

F P = 1
C P ρair V 2

sxπ R2
d (12)
2



S. Sor et al. / Aerospace Science and Technology 58 (2016) 26–35 29
where C P is a pressure coefficient that has been calibrated and 
that has a constant value of 0.93. This pressure term should be the 
integral of a local pressure times a differential surface area and, 
therefore, it cannot be computed as such since the droplet surface 
local pressure distribution is unknown. This is the reason why re-
lation (12) represents a global approximation to that integral. It 
could be argued that F P in relation (12) should scale with a2 in-
stead of R2

d (a > Rd). However, as discussed by Ibrahim et al. [27], 
the fact that pressure decreases sharply up from the droplet stag-
nation streamline region down to the droplet edge region suggests 
that scaling with a parameter smaller than a might be more appro-
priate. Note that within the hypothesis of this model, relation (12)
involves V sx only and not V sy that means, as mentioned earlier, 
that equations (1) and (3) are effectively decoupled from equa-
tion (2). The initial conditions for equations (1)–(3) are:

x(0) = 0,

(
dx

dt

)
t=0

= 0 (13)

y(0) = 0,

(
dy

dt

)
t=0

= V 0 (14)

a(0) = Rd,

(
da

dt

)
t=0

= 0 (15)

where V 0 is the droplet falling velocity when it enters the test 
window. In an actual generic case, it should be taken equal to the 
terminal falling velocity of the droplet.

Now, it is convenient to re-write equations (1)–(3) in dimen-
sionless form. To this end, the following dimensionless variables 
and parameters are defined:

η = x

Rd
, ζ = y

Rd
, α = a

Rd
, τ = tUm

Rc
(16)

Vsx = V sx

Um
, Vsy = V sy

Um
, Ad = Ad

R2
d

, F(α) = F (a)

Rd
(17)

where Um is the airfoil velocity and Rc its radius of curvature. 
Using this new change of coordinates, the model equations and 
initial conditions are written as:

d2η

dτ 2
= Π1V

2
sxα

2
[(

C (Rd/a)3

Dsphere
· C1−(Rd/a)3

Ddisk

) +
(

Π2
1

α2V2
sx

dVsx

dτ

)]

(18)

d2ζ

dτ 2
= −Π1α

2
VsxVsy

(
C (Rd/a)3

Dsphere
· C1−(Rd/a)3

Ddisk

) + Π3 (19)

d2α

dτ 2
= −Π4F(α) + 16

3
Π1C PV

2
sx (20)

where:

Π1 =
[

3

8

ρair

ρd

(
Rc

Rd

)2]
(21)

Π2 = kRd

Rc
(22)

Π3 = g Rc

U 2
m

(
Rc

Rd

)
(23)

Π4 = 16

3π

σ

ρd

(
Rc

Um Rd

)2 1

Rd
(24)

The dimensionless initial conditions are:

η(0) = 0,

(
dη

dτ

)
τ=0

= 0 (25)

ζ(0) = 0,

(
dζ

dτ

)
= Rc

R

V 0

U
(26)
τ=0 d m
Fig. 2. Top view (sketch) of the rotating arm facility.

α(0) = 1,

(
dα

dτ

)
τ=0

= 0 (27)

Numerical integration of equations (18) and (20) with initial 
conditions (25) and (27) is straightforward. Then, after x(t) and 
a(t) have been obtained b(t) is easily computed and equation (19)
together with initial condition (26) can be integrated. In the ex-
perimental test cases described in the next section, V 0 in initial 
condition (26) was close to the terminal falling velocity of the 
droplets. This means that the droplet vertical velocity in the test 
window was nearly constant. In fact, the tracking equipment was 
not able to detect significant changes in this vertical velocity.

3. Description of the experimental setup

The experimental campaign to examine the droplet trajectory 
model has been carried out at the INTA rotating arm facility in 
Spain. A detailed description of this facility has been published 
by the authors in a previous article [28]. In any case, and for the 
sake of completion, a shortened account of its characteristics is 
presented in this section.

The facility, see Figs. 2 and 3, consists of an electric motor, 
a support structure and a rotating arm that has a length of 2.2 m. 
The engine axis is vertical which means that airfoils placed at the 
arm’s end describe a circular trajectory with diameter of 4.4 m in 
a horizontal plane. The whole setup is placed inside a room whose 
dimensions (length, width and height) are 6.8 m, 6.6 m, and 2.7 m, 
respectively. At maximum power, the electrical motor can rotate at 
400 rpm which means the maximum attainable airfoil velocity is 
90 m/s (Mach 0.26).

Three Styrofoam airfoils were used in the experiments. They 
were labeled M1, M2 and M3 and their geometry parameters are 
specified in Table 1.

The airfoils were rather blunt to simulate those used for com-
mercial aircraft applications. Their dimensionless coordinates can 
be found in reference [28]. The droplet generator was a monosized 
TSI MDG-100. The discharge could be varied between 2.2 cm2/min 
and 51.79 cm2/min. For the present experimental campaign, three 
different ranges of droplets diameter were selected. They were 
575 μm ± 25 μm, 775 μm ± 25 μm and 1025 μm ± 25 μm. These 
specific ranges were obtained by means of acting on both the jet 
mass flow rate of the droplet generator and on the frequency of 
the piezoelectric. The optical camera was a Photron SA-5. Its cap-
turing rate ranged from 103 frames per second (fps) to 106 fps. 
In the present campaign, the capturing rate was selected to be 
75,000 fps with a resolution of 192 × 312 pixels. Also, extra lenses 
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Fig. 3. Actual picture of the rotating arm facility.
Table 1
Geometry parameters of the three airfoils: M1, M2, and M3.

Model Chord Leading edge radius Thickness

M1 0.690 m 0.103 m 0.276 m
M2 0.468 m 0.070 m 0.187 m
M3 0.199 m 0.030 m 0.080 m

were used for additional magnification of the images. Characteri-
zation of the flow field was performed by using a Particle Image 
Velocimetry system (PIV). It was TSI System with illumination pro-
vided by two pulsed Nd-Yag 190 mJ lasers. A Power View Plus 
4MP camera was used to record the images with a resolution of 
2048 × 2048 pixels. Camera lenses were AF-S VR Micro Nikkor 
105 mm f/2.8 G IF-ED Nano Crystal Coat, AF Nikkor 80–200 mm 
f/2.8 D IF-ED, and Nikkor 50 mm f/1.4. Particles used to sow the 
flow were olive oil droplets having a diameter of 1 μm. The TSI 
Insight 3G software was used for synchronized of image captur-
ing, flow illumination, and the subsequent analysis. Sampling of 
the flow field was carried out at frequencies in the range from 
4.75 Hz to 6.5 Hz. Time between two consecutive laser pulses var-
ied between 1.1 μs and 200 μs. At 34 μs (the time used for the 
fastest moving airfoil) PIV particle moved about 3 mm that is a 
distance much smaller than the characteristic length of the prob-
lem that is the airfoil leading edge radius (103 mm, 70 mm and 
30 mm respectively). PIV interrogation areas were divided into 
smaller sub-interrogation areas for analysis purposes. The spatial 
flow field resolution in the test windows near the airfoil leading 
edges was of the order of 1 mm. Additional details on the specifics 
of the PIV analysis can be found in reference [28].

The summary of the 45 tests cases addressed in the experi-
mental campaign is provided below. The values of the different 
dimensionless parameters of the theoretical model (Π1, Π2, Π3, 
and Π4, see relations (21)–(24)) are also given:

• Three droplet diameters: 575 μm, 775 μm, and 1025 μm
• Three airfoils leading edge radii: 0.103 m, 0.070 m, 0.030 m
• Five airfoil velocities: 50 m/s, 60 m/s, 70 m/s, 80 m/s, and 

90 m/s
• Range of Π1: 0.38 to 14.5
• Range of Π2: 0.05 to 0.31
• Range of Π3: 0.001 to 0.072
• Range of Π4: 0.012 to 2.770
Fig. 4. Velocity time histories at the stagnation streamline for thee airfoil models 
(M1, M2 and M3) at translational velocities of 51 m/s and 91 m/s.

The flow field velocity and acceleration time histories were 
characterized in the absence of falling water droplets. This means 
that, implicitly, a one way interaction approach was consid-
ered [29]. The methodology used to obtain the different velocity 
field in the airfoil reference frame out of a series of consecutive 
PIV standing frames is described in reference [28]. 15 different 
flow velocities and acceleration profiles were used in the experi-
mental campaign. This corresponds to three airfoil models (M1, M2 
and M3) and five translational velocities for each of them (see Ta-
ble 1). In practice, from the droplet trajectory model point of view, 
this means that 15 different flow velocity and acceleration profiles 
could be used for testing purposes. To give an impression of the 
range that was actually covered, the stagnation stream line histo-
ries of flow velocity at the extremes of the velocity range (50 m/s 
to 90 m/s) for the three airfoil models are presented in Fig. 4. The 
acceleration histories for these cases are presented in Fig. 5.

A large number of samples were taken for each of the 45 test 
cases. An experimental uncertainty analysis in the flow velocity 
characterization is summarized in Figs. 6 and 7. Fig. 6 presents 
the three uncertainty bars associated to the 3 limiting velocity 
profiles corresponding to 90 m/s of maximum airfoil velocity as 
presented in Fig. 4. These bars were obtained using all recorded 
velocity profiles to calculate the standard deviation and plotting 
this standard deviation band. The typical spread was of the order 
of ±0.8 m/s that for an average velocity in the range between 
20 m/s and 40 m/s (see Fig. 6) yields and uncertainty of the or-
der of ±2% to ±4%. Fig. 7 shows the kernel density estimate of 
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Fig. 5. Acceleration time histories at the stagnation streamline for thee airfoil mod-
els (M1, M2 and M3) at translational velocities of 51 m/s and 91 m/s.

Fig. 6. Uncertainty bars associated to three velocity profiles (Um = 91 m/s) pre-
sented in Fig. 4.

Fig. 7. Kernel density estimate of the measurement at time 3 ms in the case of 
intermediate airfoil (M2) at the maximum airfoil velocity (91 m/s).

the 50 measurement at time 3 ms in the case of intermediate air-
foil (M2) at the maximum velocity (90 m/s) calculated by MATLAB. 
The kernel density estimation is a non-parametric way to estimate 
the probability density function of a random variable [30]. The rug 
plot of the measurements is super-imposed on the kernel density 
estimate plot.

Regarding the uncertainty associated to the measurement of 
droplet trajectories, Fig. 8 shows a sample of three different mea-
surements of the case with Rc = 0.070 m, Rd = 388 μm, and 
Um = 71 m/s. It can be observed that, initially, the droplets moved 
in the negative “x” direction, see Fig. 1. This is because the droplet 
generator did not always discharge droplets with a purely vertical 
velocity. In fact, in some cases, some residual horizontal velocity 
was present as the droplet left the generator (sometimes along the 
positive x direction and sometimes along the negative one). In any 
case, as the airfoil approached the droplet, the slip velocity began 
Fig. 8. Results corresponding to three different measurements of the droplet trajec-
tory of the same experimental case: Rc = 0.070 m, Rd = 388 μm, and Um = 71 m/s.

Fig. 9. Comparison between experimental and theoretical results for the case of 
Rc = 0.030 m, Rd = 288 μm, and two airfoil velocities: Um = 51 m/s, and Um =
91 m/s.

Fig. 10. Counterpart of Fig. 8 for Rc = 0.103 m, Rd = 288 μm, and Um = 51 m/s, 
and Um = 91 m/s.

to increase sharply and the droplet moved in the positive “x” di-
rection.

4. Results

Comparison between the experimental results and those ob-
tained by applying and solving numerically the theoretical model 
has been carried out for all 45 cases described in the previous 
section. Here the results obtained for the 8 limiting cases that 
combine the largest and smallest values of droplet diameter, air-
foil leading edge radius, and airfoil velocity are presented (23 = 8
cases) in Figs. 9, 10, 11 and 12. It could be observed that, in gen-
eral, there is a reasonably good agreement between the measured 
and computed droplet trajectories. Typically, the larger discrepan-
cies tend to occur at the late time instants of the trajectories and, 
also, for the smaller droplets. The reason could be that in those 
instants, both the slip velocity and the flow acceleration achieve 
their largest values and this decreases the accuracy of the experi-
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Fig. 11. Counterpart of Fig. 8 for Rc = 0.030 m, Rd = 513 μm, and Um = 51 m/s, 
and Um = 91 m/s.

Fig. 12. Counterpart of Fig. 8 for Rc = 0.103 m, Rd = 513 μm, and Um = 51 m/s, 
and Um = 91 m/s.

Table 2
Discrepancy between measured and theoretical droplet trajectories for the 8 limit-
ing cases presented in Figs. 9 to 12.

Model Um (m/s) Rd (μm) Mean (Ω) Std (Ω)

M1 51 294 3,64 3,99
M1 51 520 1,98 1,14
M3 51 291 2,54 1,76
M3 51 523 2,54 1,69
M1 91 286 2,78 2,68
M1 91 525 1,00 0,88
M3 91 299 2,17 1,85
M3 91 501 2,55 2,83

mental droplet tracking system. At the same time, smaller droplets 
are more difficult to track because they fill in a smaller number of 
pixels in the camera.

It is important, nevertheless to quantify the discrepancies be-
tween the measured and computed droplet trajectories. This has 
been done for all 45 experimental tests cases. The criterion was to 
compute, for each case, a figure of merit Ω defined as the differ-
ence (for each time) between the experimental and theoretical “x” 
droplet displacement divided by the maximum experimental value. 
The results of the most critical cases are presented in Table 2 (the 
Standard deviation is also included). There, it could be observed 
that the average discrepancy was of the order of 3.6% at most. The 
maximum discrepancy Ω for all cases was 15%.

Now, it is shown how the droplet deformations obtained from 
the theoretical model compare to the experimental data. This has 
been done selecting some cases and solving the model equations. 
Then, the theoretical results are compared to the experimental 
tracking of the droplet trajectories and, also, to the images ob-
tained with camera system. A comparison for two different cases: 
a) Rc = 0.103 m, Rd = 513 μm, and Um = 91 m/s, and b) Rc =
0.070 m, Rd = 388 μm, and Um = 71 m/s is presented in Fig. 13. 
The comparison has been performed superimposing the computed 
theoretical shape (drawn using a white line in a pixel-wise basis) 
Fig. 13. Comparison between photographed and computed droplet shapes (superim-
posed white lines) as a function of time for cases: Rc = 0.103 m, Rd = 513 μm, and 
Um = 91 m/s (left), and Rc = 0.070 m, Rd = 388 μm, and Um = 71 m/s (right).

on top of the droplet images obtained from the experimental track-
ing system. The snapshots shown in Fig. 13 were taken at small 
time intervals to allow for a better comparison of the theoretical 
and experimental droplet shapes. This means that if the differ-
ent snapshots of the droplet were presented in the same spatial 
reference frame, the droplet images would overlap creating confu-
sion. Then, Fig. 14 shows both theoretical and experimental droplet 
shape and trajectory (for the two selected cases) using a larger 
time interval that allows for the pictures to be superimposed with-
out overlapping. These two figures show a reasonable agreement 
between the predictions afforded by the theoretical model and the 
experimental data.

Now, it is pertinent to evaluate the issue of the relative impor-
tance of the quasi-steady, C D1, and unsteady, C D2, components of 
the drag coefficient in relations (5)–(7). To this end, both compo-
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Fig. 14. Counterpart of Fig. 14 with the theoretical droplet trajectories (white lines) 
superimposed on the actual droplets images.

Fig. 15. Comparison between the quasi-steady, C D1, and unsteady, C D2, components 
of the drag coefficient in relations (5)–(7) for three representative cases.

nents have been plotted in Fig. 15 for three representative cases. 
It could be observed that the quasi-steady component is always 
larger than the unsteady one but the latter cannot be neglected (if 
accurate results are sought) because it is, typically, of the order of 
25% of the former. This means that, at least in the parametric space 
of parameters that have been considered in this experimental cam-
paign, the unsteady component of the drag coefficient should not 
be neglected. It is also of interest to plot the total drag coeffi-
cient (C D = C D1 +C D2) as a function of the instantaneous Reynolds 
number that the droplet senses. This is done in Fig. 16 where the 
drag coefficient of an equivalent stationary sphere is also plotted 
for comparison purposes. As it could be observed, in the three 
cases that are presented in Fig. 16 (that are representative of the 
whole set of experimental cases that have been addressed in this 
study), the total drag coefficient is always larger than the steady 
sphere one. Also, the tendency is also different because the to-
tal C D grows along with the Reynolds number while the steady 
sphere C D decreases.

Finally, and for the sake of completion, the three terms in the 
right hand side of equation (3) are plotted separately to allow for 
comparison and, also, to check the hypothesis that has been made 
that the viscous force is much smaller than the surface tension 
force and the pressure force. To this end, once a representative 
case has been computed (the case parameters were Rc = 0.103 m, 
Rd = 513 μm, and Um = 91 m/s) it solution was used to compute 
a posteriori the viscous force. The comparison between the three 
terms is shown in Fig. 17 where it could be observed that the 
Fig. 16. Drag coefficient versus instantaneous Reynolds number for three different 
experimental cases. The drag coefficient of the stationary sphere is included for 
comparison purposes.

Fig. 17. Evaluation of terms in equation (3) for the case Rc = 0.103 m, Rd = 513 μm, 
and Um = 91 m/s.

results obtained are consistent with the hypothesis that has been 
made in equation (3).

5. Conclusions

A theoretical model has been presented that predicts droplet 
trajectory and deformation in the vicinity of an incoming airfoil. 
The model is of interest both to gain a better understanding of 
droplet trajectories in some flows of aeronautics interest, and to 
provide an alternate formulation to researchers that develop nu-
merical flow solvers in the field of icing conditions simulations. 
The model has been tested and calibrated using a series of dedi-
cated experimental tests in a rotating arm facility. The novelty of 
the study consists on the fact that it accounts for the actual flow 
acceleration profile that the droplet senses as the airfoil closes on 
it. This is in contrast to other more basic-physics oriented studies 
in which shock tube type acceleration profiles are considered. The 
conclusions that have been obtained are, basically, two.

First, it is worth mentioning that a relatively simple model 
based on droplet dynamics and deformation (three ordinary dif-
ferential equations) is enough to predict with reasonable accuracy 
droplet trajectory in the conditions that have been considered. 
The model can be said to have a “global” character because it 
implements force formulations that are “global” themselves. For 
example, the pressure force does not depend on the actual local 
coordinate on the droplet surface but it is modeled after a “glob-
al” coefficient. This suggests that the two problems of: a) the onset 
and further development of flow instabilities leading to droplet de-
formation and eventual break-up, and b) computation of droplet 
trajectory, are loosely coupled only. That is, once the conditions 
that define the basic type of deformation and break-up are set, the 
droplet trajectory can be modeled somewhat independently. For 
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example, in the parametric range of cases that have been consid-
ered, the assumption that the droplet deforms following the shape 
of a spheroid appears to be sufficient for trajectory prediction pur-
poses.

The second question to be noted is that in the cases that have 
been addressed in the experimental campaign, implementation of 
an unsteady term in the aerodynamics drag model (the so-called 
acceleration parameter) is essential to allow for model accuracy. 
The issue of separating the drag into quasi-steady and unsteady 
parts (each one with its own modeling) is somewhat controversial 
and no claim is made in this article regarding its generalization. 
The only thing that can be said it that for the range of param-
eters under consideration in the present experimental campaign, 
the unsteady part of the drag coefficient was critically needed to 
compute trajectories that compared well to the observed trajecto-
ries. Regarding the unsteady drag model itself, the main differences 
between the model proposed in this article and previous results 
put forward by other researchers are two:

a) In the present model the acceleration parameter includes, also, 
the time dependent droplet dimension in the slip velocity-
wise direction. This parameter was not considered in formu-
lations described previously in the literature. In this sense, it 
could be said that its present inclusion makes sense because of 
the fact that droplets deformed significantly in these rotating 
arm experiments. It is to be noted that in other experimen-
tal studies researchers sometimes used droplets manufactured 
out of materials (plastic type) that did not allow for large de-
formations. On the Fluid Mechanics side, the reason for the 
implementation of the unsteady drag term is based on the fact 
that in an accelerating (or decelerating flow) the size of the 
recirculation region downstream of the droplet changes con-
tinuously; and the dynamics of this change affects the drag 
evolution. Then, in this regard, it is important to modify the 
acceleration parameter so as to account for information on 
droplet continuous deformation in the slip velocity-wise direc-
tion that, in turn, also affects the dynamics of the recirculation 
region.

b) The coefficient that multiplies the modified acceleration pa-
rameter in the present model is 9. In other studies dealing 
with different experimental setups, researchers found that this 
coefficient was dependent, also, on some other parameter(s) 
of the problem. However, in the present study it was found 
that for the range of parameters under consideration, the co-
efficient was always 9.

Finally, it should be said that the previous conclusions only 
apply for the cases that consider the flow acceleration profile gen-
erated by an incoming airfoil. This means that these conclusions 
cannot be extrapolated to other situations. A systematic study on 
the influence that functionally different acceleration profiles may 
have on droplet deformation and droplet trajectory is out of the 
scope of the present study.
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