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a b s t r a c t 

Modelling raindrop size distribution (DSD) is a fundamental issue to connect remote sensing observations 

with reliable precipitation products for hydrological applications. To date, various standard probability 

distributions have been proposed to build DSD models. Relevant questions to ask indeed are how often 

and how good such models fit empirical data, given that the advances in both data availability and tech- 

nology used to estimate DSDs have allowed many of the deficiencies of early analyses to be mitigated. 

Therefore, we present a comprehensive follow-up of a previous study on the comparison of statistical 

fitting of three common DSD models against 2D-Video Distrometer (2DVD) data, which are unique in 

that the size of individual drops is determined accurately. By maximum likelihood method, we fit models 

based on lognormal, gamma and Weibull distributions to more than 42.0 0 0 1-minute drop-by-drop data 

taken from the field campaigns of the NASA Ground Validation program of the Global Precipitation Mea- 

surement (GPM) mission. In order to check the adequacy between the models and the measured data, we 

investigate the goodness of fit of each distribution using the Kolmogorov–Smirnov test. Then, we apply a 

specific model selection technique to evaluate the relative quality of each model. Results show that the 

gamma distribution has the lowest KS rejection rate, while the Weibull distribution is the most frequently 

rejected. Ranking for each minute the statistical models that pass the KS test, it can be argued that the 

probability distributions whose tails are exponentially bounded, i.e. light-tailed distributions, seem to be 

adequate to model the natural variability of DSDs. However, in line with our previous study, we also 

found that frequency distributions of empirical DSDs could be heavy-tailed in a number of cases, which 

may result in severe uncertainty in estimating statistical moments and bulk variables. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Accurate measurement of precipitation is of fundamental im-

portance in hydrology as well as in several Earth science dis-

ciplines. Precipitation can produce floods and trigger landslides,

which cause annually loss of lives and damages ( Trenberth 2011,

Trezzini et al., 2013 ). Indeed, the precipitation amount is the main

input to rainfall-runoff models and plays a significant role in the

design of most of the hydraulic structures. Therefore, accurate

knowledge, understanding and measurement of precipitation and

its variability in both space and time is strongly needed by several

critical applications. 

Precipitation can be directly measured by ground-based point-

wise devices, such as rain gauges and disdrometers, or estimated
∗ Corresponding author at: Consiglio Nazionale delle Ricerche, Istituto di Scienze 

dell’Atmosfera e del Clima, Area della Ricerca Roma 2 “Tor Vergata”, Via Fosso del 

Cavaliere, 100, I-00133 Roma, Italy. 
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y remote sensing techniques using satellite or airborne passive

r active microwave sensors or ground-based weather radar. Re-

ote sensing techniques obtain indirect measurements of rainfall,

hich are of great importance for process understanding and char-

cterization thanks to the wide spatial coverage, and are the pri-

ary source of observations in ungauged regions. However, indi-

ect measurements are generally affected by a variety of poten-

ial sources of uncertainty that can be related to both instrumen-

al errors and conversion of measurements into rainfall rate at

he ground level ( Stephens and Kummerow, 2007 ; Brandes et al.,

999 ; Villarini and Krajevski, 2010 ; Sebastianelli et al., 2013 among

thers). 

Quantitative Precipitation Estimates (QPE) from remote sens-

ng measurements can be significantly improved through an accu-

ate characterization and modelling of the Drop Size Distribution

DSD), which is involved in the development of rainfall retrieval

lgorithms ( Villarini and Krajevski, 2010 ; Rose and Chandrasekar,

0 06 ; Kozu et al., 20 09 ). A reliable DSD estimate plays also an

mportant role in numerical weather prediction (NWP) models;

http://dx.doi.org/10.1016/j.advwatres.2016.07.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2016.07.010&domain=pdf
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ndeed, varying the DSD shape can highly change the precipitation

mount and the intensity in simulated storms ( van den Heever and

otton 2004 ). 

On the basis of the above considerations, it is easily under-

tood that characterizing and modelling DSDs are indeed receiv-

ng renewed research interest ( D’Adderio et al., 2015 ; Cugerone and

e Michele, 2015 ; Ekerete et al., 2015 ; Adirosi et al., 2016 ; Brown

t al., 2016 ; Jameson and Larsen, 2016 ; Marzuki et al., 2016 ; Suh

t al., 2016 ). 

The DSD is defined to be the number of drops per unit vol-

me of air and per unit of drop diameter interval. It results from

everal physical and microphysical complex phenomena involved

n the generation and evolution of rain; therefore, the DSD shape

an present a high variability both in space and in time, thus re-

ecting the variability of rainfall. Starting from the seminal work

f Marshall and Palmer (1948) , who used dyed filter papers, many

eld campaigns have been conducted worldwide with different

easuring devices, mainly from a category of instruments called

isdrometers ( Kathiravelu et al., 2016 ). Based on the collected data,

ifferent DSD parameterizations have been reported in the litera-

ure (see e.g. Adirosi et al., 2015 and references therein), consider-

ng also different climate regions or rain types (see e.g. Awang and

in 2004 ). 

Statistical frequency analysis procedures postulate some kind of

odel for the process that generates empirical data. Concerning

recipitation microstructure, like most environmental data, the ac-

ual data-generating mechanism is so complicated that we cannot

xpect the model to be an exact representation of the physical pro-

ess. Therefore, we believe it is wise to consider as candidate fre-

uency distributions a range of probability distributions allowing

or both parsimonious parameterization and simple analytical cal-

ulation of statistical moments and bulk variables, which are im-

ortant motivations for practical applications. A problem with this

pproach is that available sample sizes are usually not so large that

he frequency distribution can be identified unequivocally in such

 way as to represent all the different conditions generally met in

ature. For example, failure to detect that the DSD is heavy-tailed,

ill result in severe uncertainty in the retrieval of bulk variables

or hydrological applications ( Adirosi et al., 2015 ). Therefore, major

mprovements in DSD estimation are anticipated in the near fu-

ure, as disdrometer data will become more reliable and will accu-

ulate in time providing datasets with lengths adequate to enable

eliable investigation of the probability distribution of drop sizes.

his paper reports some progress in this respect. 

In recent years, an increasing complexity in DSD models has

een proposed with the aim of using distributions with enough

ree parameters that they can mimic a wide range of plausible

requency distributions ( Ekerete et al., 2015 ; Cugerone and De

ichele, 2015 ). However, an increase in complexity will introduce

ore model data and parameter requirements, where both data

nd parameters are uncertain (see e.g. Perrin et al., 2001 ; Schoups

t al., 2008 ). Hence, the use of highly parameterized models can

nhance the estimation uncertainty that usually characterizes DSD

stimates from disdrometer data. As suggested by Marzuki et al.

2012) , the rainfall properties estimated from disdrometer data are

ndeed affected by a large variability that can be related not only

o climatological and physical factors but also to instrumental fac-

ors. Specifically, they show that the disdrometer limitations (reso-

ution and sensitivity), its under-sampling effect and the discretiza-

ion procedure that provides binned data at a given discretization

nterval, generate errors when estimating the DSD from observed

ata. 

As follow-up of a previous study ( Adirosi et al., 2015 ), this paper

ims at evaluating the performance of the three different distribu-

ions adopted in the DSD modelling literature, i.e. gamma, lognor-

al and Weibull distributions, in representing raindrop size distri-
utions in nature. This is achieved by applying a statistical analysis

o large datasets disdrometer-measured drop size spectra. In fact,

lthough the gamma is the most widely adopted distribution to

odel the natural DSD, also the lognormal and the Weibull distri-

utions have been considered (see Adirosi et al., 2015 and refer-

nces therein) and a study trying to evaluate in a rigorous manner

t what extent such distributions are able to represent the natural

ariability of DSD is still lacking. We consider herein only distri-

utions with two parameters in order to limit the estimation un-

ertainty and to take into account the fact that more parameters

re hardly retrievable from the limited independent measurements

sually available from remote sensing sensors (see e.g. Williams

t al., 2014 ). 

This study is based on an up-to-date statistical approach, which

upports the absolute statistical performance of the theoretical dis-

ributions mentioned above. Indeed, our analysis of the DSD is car-

ied out by fitting standard probability distributions to raindrop

ata and testing their goodness of fit. In the literature, goodness of

t is usually assessed via the accuracy of the rainfall or other pre-

ictions derived from the DSD or by the relative ranking of models,

hile only recent studies have used absolute tests ( Ekerete et al.,

015 ; Cugerone and De Michele, 2015 ). In this paper, we also test

he absolute fit, whether the proposed model fits the data, using

he common Kolmogorov–Smirnov test. In such an analysis, we ex-

licitly take into account the role of the relationship between the

rop terminal fall velocity and diameter, in order to evaluate how

he assumption of a certain functional form for the drop velocity

ay affect the shape of the DSD. 

We wish to emphasize that, differently from other works in the

iterature, our analysis is based on high quality datasets recorded

y 2D Video Disdrometers (2DVD) ( Kruger and Krajewski, 2002;

chönhuber et al., 2008 ). Such instruments provide more accurate

nd richer information with respect to other types of disdrometers,

hus allowing to potentially reduce the estimation uncertainty that

s usually related to the instrumental limitations ( Marzuki et al.,

012 ). In fact, the 2DVD directly measures the diameter and ter-

inal fall velocity of each single hydrometeor that falls through its

ampling area instead of providing data binned in predefined parti-

le size classes. Moreover, although other types of disdrometer are

ore sensitive to small drops, the 2DVD allows for a more accu-

ate estimate in a wider range of drop sizes, including the larger

rops ( Tokay et al., 2013; Gatlin et al., 2015 ). 

Thousands of 1-minute disdrometer data collected at different

ocations in the world have been considered to investigate ex-

ensively the drop size distribution of rainfall. It is worth noting

hat the 2DVD spectra have been collected during four different

re-launch field campaigns of the Ground Validation program of

he NASA-Jaxa Global Precipitation Measurement (GPM) mission

 Hou et al., 2014 ) in four different regions, namely Italy, Okla-

oma, Iowa and Appalachian Mountains (see Section 4 ). We high-

ight that we include an additional dataset with respect to Adirosi

t al. (2015) . Therefore, the outcomes presented in this study are

ot site-specific. 

The remainder of this paper is organized as follows.

ection 2 provides some insight into definition and mathe-

atical formulation of the DSD from the statistical point of view.

urthermore, in this Section we theoretically analyze the role of

he terminal fall velocity of the drops in the computation of the

SD. Section 3 explains the methodology followed in this study to

t the measured drop spectra – with and without taking into ac-

ount the relationship between the drop terminal fall velocity and

ize and considering both complete and truncated distributions

and to test and select the fitted models. A brief description of

he measured datasets is provided in Section 4 , while Section 5 il-

ustrates the main results and their implications from a practical

erspective. Finally, a conclusion Section 6 closes the paper. 
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Fig. 1. Raindrop terminal fall speed as a function of diameter. Observations of Gunn 

and Kinzer (1949) are shown as black stars markers. The Atlas et al. (1973) relation 

is the dark gray solid curve and the Atlas and Ulbrich (1977) power-law relation is 

the light gray solid line. 
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2. Mathematical framework 

2.1. DSD definitions and relationships 

From a statistical point of view, and following the definition

given in the Introduction, the drop size distribution can be ex-

pressed as the product of the concentration of the raindrops in a

volume of air ( n c in m 

−3 ) by the probability distribution of drop

sizes in the unit volume of air, f V ( D ) (mm 

−1 ) 

N ( D ) = n c f V ( D ) (1)

We assume that f V ( D ) can be represented mathematically by

the lognormal, gamma and Weibull distributions. It is worth not-

ing that, for disdrometer measurements, the volume of air V (m 

3 )

which the DSD refers to is proportional to the disdrometer sam-

pling time interval �t (s), the measuring area A (m 

2 ), and the ter-

minal fall speed of the drops v ( D ) (m s −1 ), which is related to the

drop diameter, i.e. V = �t A v (D ) . 

The variability of raindrop sizes can be also expressed in terms

of the product of the probability density function of drop diam-

eters at the ground, f ( D ) (mm 

−1 ) by the number M of drops col-

lected at ground. Hence, the probability distribution of drop diam-

eter in the unit volume of air, f V ( D ) is linked to the distribution

of drop sizes at ground, f ( D ), such as ( Ignaccolo and De Michele,

2014 ) 

n c f V ( D ) = 

M f ( D ) 

A �t v ( D ) 
(2)

Since f V ( D ) – as well as f ( D ) – is a proper probability density

function (pdf), such that 
∫ ∞ 

0 f V (D ) dD = 1 , using Eq. (2) and exploit-

ing the latter f V ( D ) property we can derive the expression for the

concentration of the raindrops in a volume of air n c as a function

of the total number M of drops collected at ground 

n c = 

M 

A �t 

∫ ∞ 

0 

f ( D ) 

v ( D ) 
dD. (3)

Then, by substituting Eq. (3) in Eq. (2) , we obtain 

f V ( D ) = 

f ( D ) v ( D ) 
−1 ∫ ∞ 

0 f ( D ) v ( D ) 
−1 dD 

. (4)

It also follows that 

f ( D ) = 

f V ( D ) v ( D ) ∫ ∞ 

0 f V ( D ) v ( D ) dD 

. (5)

Eq. (4) shows that, while f ( D ) only depends on the diameter val-

ues, the shapes of f V ( D ) and N ( D ) as per Eq. (1) strictly depend on

the relationship between the drop fall velocity and diameter v ( D ).

The theoretical role of the terminal fall velocity-diameter relation-

ship is analyzed in detail in the following section. 

2.2. Role of the terminal fall velocity v ( D ) 

Even if most disdrometers can measure the arrival velocity of

the falling drops, a theoretical relationship between the terminal

fall velocity and the drop diameter is usually adopted for DSD

computation (see e.g. Kruger and Krajewski, 2002 ; Caracciolo et al.,

2006 ; Marzuki et al., 2013 ; Adirosi et al., 2014 ; Angulo-Martinez

and Barros, 2015 and Adirosi et al. 2015 among others). Many size-

fall velocity relationships are reported in the literature (see e.g.

Atlas et al., 1973; Beard, 1976; Atlas and Ulbrich, 1977; Brandes

et al. 2002 among others). Some laboratory and empirical exper-

iments have been carried out to measure the drop terminal fall

velocity (e.g. Laws, 1941; Gunn and Kinzer, 1949; Beard and Prup-

pacher, 1969 and more recently Thurai and Bringi, 2005 ). Atlas and

Ulbrich (1977) proposed a power-law relationship, such as 

v ( D ) = 3 . 78 D 

0 . 67 (6)
with D in mm and v in mm s −1 ), that is valid for D ranging from

.5 mm to 5 mm, while Atlas et al. (1973) obtained the following

elation: 

 ( D ) = 9 . 65 − 10 . 3 e −0 . 6 D (7)

The two size-velocity models in ( 6 ) and ( 7 ) are based on the

xperimental work of Gunn and Kinzer (1949) , but are also a good

pproximation to the data collected in the experiment by Thurai

nd Bringi (2005) considering drops falling from a bridge 80 m

bove the disdrometer. The Atlas et al. (1973) and Atlas and Ulbrich

1977) relations together with the Gunn and Kinzer (1949) data are

hown in Fig. 1 . The deviation of the Atlas and Ulbrich (1977) rela-

ion from the experimental data is evident for D greater than about

 mm, therefore Atlas et al. (1973) fit seems to better approximate

he data, although for very small drops ( D � 0.11 mm) it has the

roblem to output negative values. Please note that the latter rela-

ions should need an altitude correction in the case of high altitude

ocations ( Beard, 1985 ). 

The choice of the theoretical relationship, e.g. between those

f Atlas and Ulbrich (1977) and Atlas et al. (1973) given in Eqs.

6) and ( 7 ) respectively, has some important implications on DSD

stimation. Indeed, the functional form of v ( D ) can modify the

hape of f V ( D ) with respect to that of f ( D ). Ignaccolo and De

ichele (2014) demonstrated that if f V ( D ) is a gamma distribution,

.e. f V (D ) = p �( D ;λ, μ) where 

p �( D ;λ, μ) = 

D 

μe −Dλλμ+1 

�[ μ + 1 ] 
(8)

s it is commonly assumed in practical applications, then also the

 ( D ) follows a gamma distribution with the same scale parameter

and a shape parameter related to that of f V ( D ) by a simple linear

elation ( Ignaccolo and De Michele 2014 , Eq. (12) ) 

f ( D ) = p �( D ;λ, μ + 0 . 67 ) (9)

However, the latter statement holds true only if we adopt a

ower-law relationship between the drop fall velocity and the drop

iameter, such as Eq. (6) . By contrast, if we hold Eq. (7) because

t describes more appropriately the velocity of larger drops ( Thurai

nd Bringi, 2005 ), and then substitute Eqs. (7) and ( 8 ) in Eq. (5) we

btain 

f ( D ) = 

p �( D ;λ + 0 . 6 , μ) + γ ( λ, μ) p �( D ;λ, μ) 

1 + γ ( λ, μ) 
(10)
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(  
here γ ( λ, μ) = −10 . 33 / 9 . 65 ( λ/ ( λ + 0 . 6 ) ) μ+1 . By Eq. (10) , f ( D ) is

othing else than the linear combination of two gamma distribu-

ions. The difference between the pdfs expressed by Eqs. (9) and

 10 ) clearly depends on the parameter values, and it might be not

egligible in the ranges of parameter values commonly used for

SD modelling. 

. Methods 

.1. DSD estimation from disdrometer data 

The “instantaneous” drop size distribution is usually estimated

rom data collected by disdrometers with a sampling interval �t =
 min. Depending on the device measurement principle, there are

isdrometers (i) that provide the number of drops ( n i ) within

 predefined size ( �D ) and fall velocity bins ( �v ), with i =
 , 2 , . . . , M D , where M D is the total number of size and velocity

lasses. Other devices (ii), such as the 2DVD, detect the diameter

nd fall velocity of each single drop passing through the virtual

easuring area, without grouping the data into classes. 

Once the measurements are collected, the empirical drop size

istribution can be calculated in the case (i) as 

 

(
D̄ i 

)
= 

n i 

�D �t A v ( D ) 
(11) 

here D̄ i is a nominal drop diameter that corresponds to the mean

f the i th bin width. The overall sum of the number of drops n i , for

 = 1 , . . . , M D , equals the number of drops collected at the ground

 . Otherwise, case (ii), the empirical DSD can be estimated start-

ng from the empirical frequency of the diameter sample, D = { D j }
ith j = 1 , . . . , M ( M gives the sample size). 

In our work, we estimate the pdfs f ( D ) and f V ( D ) from drop-by-

rop data, without binning. The statistical methodologies for the

stimation of f ( D ) and f V ( D ) are further illustrated in the following

ection. 

.2. Statistical inference of f ( D ) and f V ( D ) 

In this study, three different two-parameter continuous distri-

utions related to positive, real-valued quantities (i.e. raindrop di-

meters), are fitted to the disdrometer-measured drop size spectra

y the Maximum Likelihood method (ML) ( Haddad et al., 1996 ;

arzuki et al., 2012 ). In the literature, the method of moments

MM) is broadly used for DSD estimation (e.g. Waldvogel, 1974 ;

lbrich, 1983 ; Tokay and Short, 1996 ; Ulbrich and Atlas, 1998 ;

zyrmer et al., 2005 among others). Nevertheless, recent works

ave criticized MMs for producing biased parameters, whereas the

aximum likelihood method proves to perform better (see e.g.

mith and Kliche, 2005 ; Smith et al., 2009 ; Kliche et al., 2008 ). 

As shown above, the pdfs f ( D ) and f V ( D ) are transformations of

ne another. Therefore, it is possible to estimate the former from

ata and then derive the latter or vice versa. When fitting the

robability distribution of drop diameters at the ground f ( D ) to

ata, the model parameters can be estimated by maximizing the

lassical likelihood function 

 ( β, γ ) = 

M ∏ 

i =1 

[ p ( D i ;β, γ ) ] (12) 

here p ( D i ; β , γ ) denotes the probability model with scale pa-

ameter β and shape parameter γ . Otherwise, when we wish to

stimate the probability distribution of drop sizes in the unit vol-

me of air, f V ( D ), the likelihood function becomes ( Haddad et al.,

996 ) 

 ( β, γ ) = 

M ∏ 

i =1 

[ p ( D i ;β, γ ) ] 
N i (13) 
here β and γ are respectively the scale and shape parameters

f f V ( D ), and N i is obtained from the drop-by-drop data basis. The

atter quantity is simply given by the inverse of the volume of air,

 , as defined above and considering the size-velocity relationship

n Eq. (7) . 

In the hydro-meteorological literature, the use of the definition

f drop size distribution given in ( 1 ) prevails, and, except for few

tudies, all of the proposed fitting methods aim to model the

 V ( D ). Therefore, in order to provide results and considerations that

an be useful and easily applicable in the practice, we focus our

nalysis on the direct fitting of f V ( D ). Notwithstanding this, some

esults of the fitting of f ( D ) are also provided herein in order to

ighlight the role of v ( D ) in DSD estimation and analyze results

rom a different perspective. 

The theoretical distributions considered in this study are the

odels mostly adopted in the literature: gamma (GA), lognormal

LN) and Weibull (WE) distributions with positive shape and scale

arameters, i.e. β , γ > 0. Revising Eq. (1) in terms of such distri-

utions, we have 

 GA ( D ) = n c p GA ( D ) = n c 
1 

β �( γ ) 

(
D 

β

)γ −1 

exp ( −D/β) (14) 

 LN ( D ) = n c p LN ( D ) = n c 
1 

Dγ
√ 

π
exp 

[ 
−l n 

2 ( D/β) 
1 
γ

] 
(15) 

 W E ( D ) = n c p W E ( D ) = n c 
γ

β

(
D 

β

)γ −1 

exp ( −D/β) 
γ

(16) 

In the fitting procedure, n c is determined by imposing that the

otal predicted drop concentration matches the total expected drop

oncentration, and the two other parameters (i.e. the shape and

cale parameters) are estimated by maximum likelihood method

 Haddad et al., 1996 ). Note that the gamma distribution used by

he meteorological community to describe the natural DSD has

ypically the form ( Ulbrich, 1983 ) 

 GA ( D ) = n c 
�μ+1 

�( μ + 1 ) 
D 

μ exp ( −�D ) = N o D 

μ exp ( −�D ) 

(17) 

hich is equivalent to Eq. (14) letting μ = γ − 1 and � = 1 /β . 

It is important to recall that current disdrometers have some

imitations in detecting smaller drops. Specifically the 2DVD is not

ble to detect accurately the drops with diameter smaller than

bout 0.2 mm ( Tokay et al., 2013 ). Consequently, the number of

mall raindrops is probably underestimated by these devices. In or-

er to take into account the lack of small drops due to instrumen-

al limitations, the Truncated Maximum Likelihood method (TML)

an be applied (see e.g. Mallet and Barthes, 2009 ; Johnson et al.,

014 ). Following this approach, the model parameters of the prob-

bility distribution of drop diameters at the ground f ( D ) can be es-

imated by maximizing the modified likelihood function 

 T ( β, γ ) = 

M ∏ 

i =1 

p ( D i ;β, γ ) 

1 − P ( D th ;β, γ ) 
(18) 

here D th is the lower threshold under which the device is not

ble to detect the drops diameter; P ( D i ; β , γ ) represents the cu-

ulative distribution function (cdf). Similarly, the parameters of

he probability distribution in the volume of air, f V ( D ), can be esti-

ated by using the following expression 

 T ( β, γ ) = 

M ∏ 

i =1 

[
p ( D i ;β, γ ) 

1 − P ( D th ;β, γ ) 

]N i 

(19) 

The term that appears at the denominator of Eqs. (18) and

 19 ) is the degree of truncation, i.e. the mass of the probability
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function that is not detected by the measurement device. Note

that in the TML approach the total number of detected drops

does not correspond exactly with n c because small drops are not

collected by the device. 

3.3. Model testing and selection 

Once the parameters of the three theoretical distributions are

estimated by maximizing Eq. (12) or ( 13 ) (or Eqs. (18) and ( 19 )

following the truncated estimation approach, TML) we investigate

the discrepancy between observed values and the values expected

under the model in question by a goodness-of-fit test, which aims

to justify whether the chosen distribution is acceptable or not. In

this study, we adopt the Kolmogorov–Smirnov (KS) test (see e.g.

Kottegoda and Rosso, 1997 ), which is based on the KS statistic that

quantifies a distance between the empirical distribution function of

the sample ˆ F (D ) and the cumulative distribution function F ( D ) of

the reference distribution (namely gamma, lognormal or Weibull).

In essence, the test does not reject the null hypothesis that the

sample is drawn from the reference distribution with a significance

level equal to α if the KS statistic, D M 

, is 

D M 

< �M 

( α) (20)

where �M 

( α) is a critical reference value that decreases when in-

creasing the sample size M and the significance level of the test α,

and 

D M 

= max 
i 

∣∣F ( D i ) − ˆ F ( D i ) 
∣∣ (21)

where i = 1 , . . . , M. 

In this study the significance levels α = 0 . 01 is used. 

The empirical cdf is simply computed by sorting in ascending

order the measured drop diameters and then using the common

Weibull (plotting position) formula ˆ F ( D i ) = i/ ( N + 1 ) , for the f ( D )

fitting. Otherwise, in the case of the f V ( D ) fitting, we have ( Adirosi

et al., 2015 ) 

ˆ F V ( D i ) = 

1 ∑ M 

z=1 1 / v ( D z ) 

i ∑ 

j=1 

1 

v 
(
D j 

) (22)

When the TML estimates are tested, the measured diameter

smaller than 0.2 mm are eliminated. 

Since the parameters of the reference distributions are deter-

mined from the data (which means that we are testing the com-

posite hypothesis that a sample of observations comes from a dis-

tribution whose parameters are unspecified), the critical values

�M 

( α) of the KS test should be redetermined via Monte Carlo sim-

ulations for each sample and for each hypothetical distribution (see

e.g. Kottegoda and Rosso, 1997 ; Laio, 2004 ). Indeed, the parameters

of the theoretical cdfs are estimated from the same sample used

in the test (as it is customary in hydrological applications); con-

sequently, �M 

( α) is not independent on the hypothetical distribu-

tion F ( D ). Moreover, �M 

( α) depends on the empirical cdf formula.

Hence, �M 

( α) needs to be recalculated for each distribution model

considered in our analysis, as described in the following. For each

sample and for each distribution model, the Monte Carlo simula-

tion consists in (i) generating a large number of samples from F ( D )

(e.g. 10 0 0), (ii) estimating the distribution parameters of each syn-

thetic sample through maximum likelihood method (by Eq. (12) or

( 13 ) for the ML or Eq. (18) or (19) for TML), (ii) computing the

corresponding value of the KS test statistics D M 

following Eq. (21) ,

and (iv) estimating �M 

( α) as the (1 −α) quantile of the empirical

distribution of D M 

. 

Since both D M 

and �M 

( α) are peculiar of each sample and of

each hypothetical distribution, their relative difference cannot be

used to compare and rank the fitted distributions. To overcome

this problem a “selection criterion” can be used to make a choice
mong the models that pass the KS test. The selection of the best

odel should deal with the trade-off between the model accuracy

nd the model complexity. To date, several selection criteria have

een developed, such as the Akaike Information Criterion (AIC) and

he Bayesian Information Criterion (BIC) (see e.g. Zucchini, 20 0 0 ;

aio et al., 2009 ; Calenda et al., 2009 ). Both AIC and BIC reward

odel accuracy (as assessed by the likelihood function), but they

lso include a penalty term for the number of parameters. 

As we consider only hypothetical distributions with the same

umber of parameters, the model selection is easily performed by

omparing the maximized likelihood values. 

. Experimental data 

In this study the drops spectra measured by 2D Video Disdrom-

ters have been used. The 2DVD is an optical disdrometer that al-

ows to measure the equivolumetric diameter (i.e. D ) and fall veloc-

ty of each single hydrometeor that falls through its virtual measur-

ng area of 10 × 10 cm 

2 . The compact version of the 2DVD has two

ine-scan cameras with 632 pixel, a nominal resolution of about

.16 mm; only the particles detected by both the cameras are ana-

yzed by the 2DVD software. 

In the last two decades, 2DVD has been employed in several

eld campaigns worldwide ( Gatlin et al., 2015 ). The experimental

ata used in this study have been collected during four field cam-

aigns around the globe. One dataset was collected during the first

pecial Observation Period (SOP1.1) of the HYdrological cycle in

he Mediterranean EXperiment (HyMeX) field campaign in Rome,

rom September 2012 to November 2012 ( Ferretti et al., 2014 ). The

econd dataset was collected during the Midlatitude Continental

onvective Clouds Experiment (MC3E) in North Central Oklahoma

rom late April 2011 to early June 2011 ( Jensen et al., 2015 ), and it

onsists of size spectra collected by five 2DVDs. The third dataset

as collected by six different 2DVDs during the Iowa Flood Stud-

es (IFloodS, http://iowafloodcenter.org/projects/ifloods/ ) field cam-

aign in eastern Iowa from May 2013 to June 2013. Finally, the

ourth dataset was collected more recently, from May 2014 to June

014, during the Integrated Precipitation and Hydrology Experi-

ent (IPHEx, http://iphex.pratt.duke.edu/node/50 ) in the southern

ppalachian Mountains in the eastern United States by five 2DVDs.

hree of those datasets (namely HyMeX, MC3E, and IFloodS) have

een analyzed also in Adirosi et al. (2015) . 

All the datasets were pre-processed following the same pro-

edure. As in other 2DVD related studies ( Kruger and Krajew-

ki, 2002 ; Thurai and Bringi, 2005 ; Jaffrain and Berne, 2011 ;

auser, 1984 ; Tokay et al., 2001 ; Adirosi et al., 2015 ; Adirosi et al.,

014 among others), a filter criterion based on the fall velocity has

een applied to each single drop in order to eliminate the spu-

ious drops due to splashing, wind effects, or mismatching. We

dopt herein the one of Tokay et al. (2001) , which relies on the

ssumption that the law of Atlas et al. (1973) correctly describes

he true relationship between the terminal velocity and the size

f the drops; hence, it rejects the diameters whose measured ve-

ocity falls outside the range ±50% of the theoretical velocity law.

e stress here that this kind of filter could accidentally remove

ome real raindrops together with the spurious ones, determin-

ng an error in the estimation of f ( D ) and f V ( D ); yet, the investi-

ation of such an effect goes beyond the scope of this work. For

ach dataset, the percentage of drops removed by the filtering is

eported in Table 1 along with the number of 1-min drop spec-

ra with at least 100 drops (used rain/no rain threshold), the mean

nd maximum values of the rain rate and maximum drop diameter

 D max ) , and the median value of sample size ( M ; namely the num-

er of drops detected in 1 min). Note that most the drops removed

y the filtering criterion are small to medium drops ( D ≤ 2 mm). 

http://iowafloodcenter.org/projects/ifloods/
http://iphex.pratt.duke.edu/node/50
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Table 1 

Percentage of drops removed by the filtering criterion, i.e. drops that fall outside ± 50% of the ( 7 ), number of selected 1-min samples, maximum and mean 

rain rate ( R ), maximum drop diameter ( D max ), and sample size ( M ) for each dataset. 

% of filtered drops # of 1-min samples max( R ) (mm h −1 ) mean( R ) (mm h −1 ) max( D max ) (mm) mean( D max ) (mm) median( M ) 

HyMeX 14.2 2849 158.2 4.0 7.79 2.54 339 

MC3E 11.3 6647 97.6 2.6 8.61 2.48 299 

IFloodS 13.7 22, 125 195.2 2.6 9.18 2.26 378 

IPHEx 14.2 10, 347 194.0 4.1 8.65 2.27 358 
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Table 2 

Fitting of f ( D ): percentage of 1-minute drop 

sample that a distribution passes (is not re- 

jected) by the KS test at the a = 1% significance 

level for the datasets considered . 

Fitting of f ( D ) 

gamma lognormal Weibull 

HyMeX 31.0% 30.2% 18.4% 

MC3E 33.8% 30.4% 21.6% 

IFloodS 28.2% 20.0% 20.5% 

IPHEx 33.0% 26.5% 22.0% 
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A quick and basic description of the four datasets has been

rovided by the plots of Fig. 2 , that shows for each dataset the

otal number of drops measured in 1 min plotted versus i) D max 

nd ii) the value of mean diameter, D mean . Data are presented in a

wo-dimensional density plots (namely 2D histograms) where the

olorbar represents the percentage of occurrence in each cell. As

xpected, D max increases with the number of detected drops. The

inimum drop diameter collected by 2DVD are 0.18 mm, 0.12 mm,

.18 mm and 0.17 mm for the HyMeX, IFloodS, IPHEx, and MC3E

eld campaigns respectively; these values are in agreement with

he findings of Thurai et al. (2015) . The biggest raindrop found in

he four analyzed datasets has D equal to 9.18 mm; it belongs to

he IFLoodS dataset and can be defined as a giant raindrop (namely

 drop with D > 8 mm according to Gatlin et al. 2015 ). In total,

here are 17 giant raindrops in the four 2DVD datasets considered

n this study. Please note that the fall velocity filtering criterion

dopted in this study allows to affirm that the particle analyzed

re raindrops, although the latter giant drops could also belong to

 rain-hail mixture ( Gatlin et al., 2015 ). Most of the mean drop

iameters are around 1 mm and their values are not significantly

nfluenced by the total number of drops; in fact, when increasing

 the mean diameter D mean does not vary widely. 

It is relevant to note that due to the natural ranges of rain drop

imensions, roughly between 0.1 mm ( Pruppacher and Klett, 1997 )

nd 9.7 mm ( Gatlin et al., 2015 ), to the rounding effect (i.e. the

quivolumetric diameter is recorded with two decimal places), and

o the large amount of drops that can be recorded in 1 min (see

ig. 2 ), the available 2DVD measurements may be a discretized

ersion of the actual continuous values of drop diameters. Fig. 3

hows the scatterplot of the number of detected drops against the

ercentages of repeated diameter (namely ties) of all the analyzed

atasets (because they have similar behavior); the colors represent

he corresponding value of D max . From Fig. 3 it is evident that,

xing the number of detected drops, the percentage of ties in-

reases when decreasing D max . In order to remove the ties from our

atasets, a randomization procedure commonly used in hydrology

see e.g. Chambers et al., 1983 ; Vanderberghe et al., 2010 ; Salvadori

t al., 2014 ) has been applied to the data, by introducing a random-

zed diameter ˜ D i as ˜ 

 i = D i + ϕ U i (23) 

here ϕ = 0 . 01 mm is the rounding error and U i is an indepen-

ent identically distributed random variable uniform over the in-

erval ( −0 . 5 , 0 . 5 ) mm. 

. Results 

The lognormal, Weibull and gamma distributions are fitted to

he disdrometer-measured spectra under two different conditions,

.e. considering: (i) the probability distribution of drop diameter at

round, f ( D ), and (ii) the more commonly used probability distri-

ution of drop diameter per unit volume of air, f V ( D ). The parame-

ers of the theoretical distributions, i.e. the scale ( β) and the shape

arameter ( γ ), are estimated using the ML method, based on Eqs.

12) and ( 13 ) for the fitting of f ( D ) and f V ( D ) respectively. To esti-

ate f ( D ), the law of Atlas et al. (1973) was adopted, in agreement
V 
ith the filtering criterion used to pre-process the data. Then the

tted distributions are tested by applying the KS test, Eqs. (20) and

 21 ), respectively; the percentage of samples that pass the test (i.e.

re not rejected) is defined as “pass rate” hereinafter. Finally, when

ore than one theoretical distributions pass the test, they are

anked according to their maximized log-likelihood, log L ( β, γ ) ;

n practice, the distribution that has the maximum log-likelihood

alue is the one that performs best. In the following, we call “suc-

ess rate” the percentage of samples, among the ones that pass the

S test, that has been best fitted by a given theoretical model. 

Furthermore, in order to investigate the effect of the lack of

mall drops (with D < 0.2 mm) due to instrumental limitations, the

nalyses were repeated by applying the truncated maximum likeli-

ood approach based on Eqs. (18) and ( 19 ), where D th is set equal

o 0.2 mm. The truncated approach for parameter estimation was

pplied only to the HyMeX dataset. 

Before presenting the overall results, we briefly discuss the ef-

ect of the presence of ties. In order to analyze the influence of ties

n results, we apply the randomization procedure expressed by Eq.

23) to some selected samples of the HyMeX dataset. Specifically,

e analyze results for some 1 - min samples presenting different

haracteristics – in terms of length ( M ) and number of distribu-

ions that pass the KS test – in order to understand under which

onditions the presence of ties might affect the results of our anal-

sis. For each selected sample, we repeat the procedure presented

n Section 3 for 300 times and compare the results (not shown)

ith those obtained for the original sample (not randomized) in

erms of estimated parameters, log-likelihood values and results of

he KS test. We find that the differences between the distribution

arameters of the original sample and randomized ones are negli-

ible. Most importantly, the results of the KS test for the original

amples are the same as those of the randomized samples. There-

ore, the analyses presented in this study are referred to the origi-

al measured datasets, without randomization. 

.1. Fitting of f(D) 

Table 2 shows the KS test pass rates at level α = 0 . 01 for the

elected distributions. Although datasets are collected in four dif-

erent regions, results are consistent with each other. The gamma

istribution is the one that performs best with the lowest rejec-

ion rate ( ∼ 68% on the average, considering the four datasets),

hile the Weibull distribution shows the highest rejection rate (



296 E. Adirosi et al. / Advances in Water Resources 96 (2016) 290–305 

Fig. 2. For each dataset (row 1 for HyMeX, row 2 for MC3E, row 3 for IFloodS and row 4 for IPHEx) the number of drops detected in each minute is plotted versus (i) the 

maximum drop diameter ( D max ; first column), and (ii) the mean drop diameter ( D mean ; second column). The colorbar indicates the percentage of samples in each cell. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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∼ 79% on the average, considering the four datasets). The KS re-

jection rates are quite high, indicating that the selected theoret-

ical distributions cannot adequately model all the empirical drop

size distribution at the ground. The obtained rejection rates for the

gamma and lognormal distribution are a bit higher than the ones

obtained by Cugerone and De Michele (2015) . This difference could

be a consequence of the fact that while we analyze drop-by-drop

data, Cugerone and De Michele (2015) used binned data (although

a randomization procedure within the bin was applied) collected

by a different type of disdrometer; further, the length of the mea-

sured drop spectra could have some influence, as discussed in the
ollowing. Finally, negligible variations of the values of the rejec-

ion rates are reached if the truncated approach for parameter es-

imation is considered (results not shown); further considerations

n this issue are provided in the next section. 

Considering only the distributions that pass the KS test, and

electing among them the one with the maximum values of log-

ikelihood (best fit), the gamma distribution results to be that with

he highest percentage of success; however, such percentage is

uite low being equal to ∼ 22% on average considering the four

atasets ( Table 3 ). As expected from the results in Table 2 , for the

ajority of the samples no distribution fits properly the data; in
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Fig. 3. Scatterplot between the number of detected drops in a given minute and 

the percentage of ties, as function of D max . All the four datasets have been plotted 

together because they reveal the same behavior. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article). 

Table 3 

Fitting of f ( D ): percentage of samples for which a model 

(gamma, lognormal or Weibull) is selected according to 

the log-likelihood criterion. The last column shows the 

percentage of samples that cannot be modelled by any of 

the considered distributions, according to the KS test at 

the a = 1% significance level for the datasets considered. 

Fitting of f(D) 

gamma lognormal. Weibull none 

HyMeX 22.1% 14.3% 9.9% 53.6% 

MC3E 22.0% 15.1% 11.6% 51.3% 

IFloodS 21.0% 8.1% 12.2% 58.8% 

IPHEx 22.8% 10.7% 13.8% 52.6% 

Table 4 

As Table 2 but for the fitting of f V ( D ) . 

Fitting of f V ( D ) 

gamma lognormal Weibull 

HyMeX 22.7% 18.7% 14.5% 

MC3E 26.1% 21.1% 17.8% 

IFloodS 16.3% 11.2% 14.1% 

IPHEx 23.3% 17.7% 17.7% 
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Table 5 

As Table 3 but for the fitting of f V ( D ) . 

Fitting of f V ( D ) 

gamma lognormal Weibull none 

HyMeX 15.8% 10.7% 7.3% 66.2% 

MC3E 16.7% 12.7% 8.6% 62.0% 

IFloodS 11.5% 5.3% 8.6% 74.6% 

IPHEx 16.0% 8.0% 11.1% 64.9% 
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ther words, the KS test rejects all the distributions (last column

f Table 3 ). 

.2. Fitting of f V (D) 

When directly fitting the probability distribution in the unit

olume of air ( Table 4 ), the rejection rates of the KS test are even

igher for all of the reference distributions than those obtained

hen fitting f ( D ). This difference is due to the velocity-diameter

aw of Atlas et al. (1973) used for f V ( D ) fitting, Eq. (7) , which mod-

fies the shape of f V ( D ) with respect to that of f ( D ). As previously

iscussed in Section 2.2 , the gamma shape of the distribution of

he diameter in the unit volume of air, f V ( D ), is preserved into the

istribution of the diameter at the ground, f ( D ) (and vice-versa)

hen a power-law relationship between drops terminal velocity
nd diameter is adopted. This implies that when Eq. (6) is used

or f V ( D ) estimation, we should have a rejection rate of the gamma

istribution for f V ( D ) similar to that of f ( D ). Hence, differences be-

ween the rejection rates reported in Tables 2 and 4 clearly indi-

ate that the choice of the terminal fall velocity-diameter law has

n impact on f V ( D ) assessment. This means that the absolute per-

ormance of a probability model in representing the natural vari-

bility of the DSD as measured by a disdrometer is conditioned on

he functional form assumed for the velocity law. 

The Weibull and the gamma distributions have the lowest and

ighest pass rate of KS test, respectively. Ranking the models ac-

ording to their log-likelihood values ( Table 5 ), we observe that

or the HyMeX dataset about 16% of the measured drop spectra

re best represented by a gamma distribution; such a percentage

ecreases to 11% and 7% of the data for the lognormal and Weibull

istributions, respectively. For the other datasets the percentage of

pectra best fitted by the Weibull distribution increases, mainly at

he detriment of the lognormal distribution. These results are in

uite good agreement with the findings of Adirosi et al. (2015) . 

Only for a small number of measured drop spectra (about 5%

f the samples), all of the reference distributions pass the KS test,

.e. they are alternative model hypotheses. Fig. 4 shows for each

ataset an example of 1 - min spectra for which all the three dis-

ributions are alternative possible model; under this condition, the

istribution that performs best has been selected comparing the

alues of the likelihood. By the maximum likelihood selection cri-

erion, the distribution that performs best in such cases (that are

 subsample of those considered in Table 5 ) is the gamma dis-

ribution. In Fig. 5 (first column) we show with different colors

he number of times that the gamma (red), lognormal (green)

nd Weibull (blue) distributions have the best performance for all

atasets. 

To gain a deeper understanding, we evaluate the behavior of the

andidate distributions in terms of other statistics that are not em-

loyed in the model fitting procedure. We use L-moments, because

hey are indeed useful summary statistics. These are analogous to

he conventional moments but can be estimated by linear com-

inations of the elements of an ordered sample. L-moments have

everal advantages over conventional moments. For example, when

stimated from a sample, they are more robust to the presence of

utliers in the data. Moreover, the asymptotic efficiency of sam-

le L-moments is less affected by heavy-tailed distributions than

onventional moments ( Lombardo et al., 2014 ). Another advantage

s that their existence only requires the random variable to have

nite mean, so the L-moments exist even if the higher conven-

ional moments do not exist ( Hosking and Wallis, 1997 ). We con-

ider herein L-moments with orders ranging from one to four. The

rst L-moment ( � 1 ) directly corresponds to the mean; the others

 � 2 −4 ) can be computed as linear combinations of the probability

eighted moments ( b k ) as � 2 = 2 b 1 − b 0 , � 3 = 6 b 2 − 6 b 1 + b 0 
nd � 4 = 20 b 3 − 30 b 2 + 12 b 1 − b 0 . Then, we derive and compare

he theoretical and empirical L-moments for all the candidate dis-

ributions in order to assess which performs best. 
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Fig. 4. For each dataset an example of measured 1-minute sample has been pro- 

vided (grey bars) along with the three fitted distributions: gamma (red line), log- 

normal (green line) and Weibull (blue line). For the four depicted samples, all of the 

reference distributions pass the KS test, and the one that preforms best according 

to the likelihood criterion has been reported in the title of each plot. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 5. Each column shows the number of empirical drop spectra that can be rep- 

resented by the three theoretical distributions considered in this study. The colors 

depict the number of samples for which the gamma (red), lognormal (green) or 

Weibull (blue) distribution has the maximum values of log-likelihood, log L ( β, γ ) 

(first column) or the minimum difference between the sample and theoretical L- 

moments, � 2 (second column), � 3 (third column), and � 4 (fourth column). (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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The theoretical probability weighted moments b k can be com-

uted as ( Hosking, 1990 ) 

 k = 

∫ 
D f V ( D ) [ F V ( D ) ] 

k dD (24)

here f V ( D ) and F V ( D ) are the pdf and cdf of drop diameters per

nit volume of air, respectively, of each model with parameters es-

imated by maximum likelihood method ( Section 3.2 ). The sample

oments ( ̂ b k ) can be computed as 

ˆ 
 k = 

M ∑ 

i =1 

D i 
ˆ f V ( D i ) 

[
ˆ F V ( D i ) 

]k 
(25)

here ˆ F V ( D i ) is given by ( 22 ) and, as a consequence, the corre-

ponding pdf is given by ˆ f V ( D i ) = 

1 / v ( D i ) ∑ M 
z=1 1 / v ( D z ) 

. Substituting the lat-

er expression and Eq. (22) in Eq. (25) we obtain 

 k = 

M ∑ 

i =1 

D i 

v ( D i ) 
−1 ∑ M 

z=1 v ( D z ) 
−1 

[ ∑ i 
j=1 v 

(
D j 

)−1 ∑ M 

z=1 v ( D z ) 
−1 

] k 

(26)

The comparison between theoretical and sample L-moments

hows a very good agreement for � 1 and � 2 , while a larger dis-

ersion is present for the higher order L-moments (not shown).

ndeed, we recall here that the maximum likelihood method used

or parameter estimation is grounded on the concept of selecting

he model that best describes the bulk of the empirical distribu-

ion, which is accounted for by the low order moments ( � 1 and � 2 
n the case of L-moments). 

If we rank the candidate models according to the minimum

bsolute error between theoretical and empirical L-moments (last

hree columns of Fig. 5 ), the number of times that a certain model

erforms best might change with respect to that obtained follow-

ng the maximum likelihood selection criterion. Note that results

or � 1 are not shown because the maximum likelihood method im-

lies that the theoretical mean equals the sample mean for the
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Table 6 

Distribution of the number (#) of HyMeX samples with the samples size 

( M ) and the percentages of these samples that can be represented by the 

gamma, lognormal and Weibull distribution or by none of them . 

HyMeX 

# gamma lognormal weibull none 

M ≤ 200 777 44.62% 41 .50% 30 .61% 39.6% 

200 < M ≤ 500 1115 24 .55% 17 .90% 13 .85% 61.4% 

500 < M ≤ 1000 537 5 .21% 2 .61% 3 .35% 89.8% 

10 0 0 < M ≤ 2500 344 0 .58% 0% 1 .45% 98.0% 

M > 2500 76 0% 0% 0% 100% 
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Table 7 

Percentage of samples that cannot be represented 

by any of the three models analyzed in this study, 

for MC3E, IFloods and IPHEx datasets and for dif- 

ferent sample sizes ( M ). 

MC3E IFloodS IPHEx 

M ≤ 200 41.9% 52.0% 39.5% 

200 < M ≤ 500 59.8% 69.2% 56.1% 

500 < M ≤ 1000 85.9% 91.0% 83.8% 

10 0 0 < M ≤ 2500 98.6% 99.0% 98.2% 

M > 2500 100% 100% 100% 
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amma distribution ( Marzuki et al., 2012 ); in other words, since

 1 is the mean and the gamma parameters have been estimated

y maximum likelihood method, by definition the gamma distribu-

ion will always be the best model if we assess the relative qual-

ty of models by � 1 . Results summarized in Fig. 5 suggest that the

election criterion might influence the choice of the best distribu-

ion. Specifically, the lognormal distribution could be selected as

he best one if we look at the performance of the model in terms

f the higher order moment (compare Adirosi et al., 2015 ). Since

-moments are essentially linear moments, although probability

eighted, as the likelihood they are influenced by the bulk of the

istribution. It means that we may expect even more contrasting

esults in the case the raw moments (instead of the L-moments)

re used; however, due to the strong uncertainty that specifically

haracterizes the high order moments ( ≥ 3), results would be of

ifficult interpretation. 

The use of a truncated approach for f V ( D ) parameter estimation

TML, Eq. (19) ) gives similar results with respect to those obtained

y the complete maximum likelihood (ML) approach in terms of

oth the parameter values ( Fig. 6 ) and the KS test pass rate. As

n example, Fig. 6 depicts the scatterplot between the distribution

arameters retrieved through complete (ML) and truncated (TML)

ethods in the cases the distributions estimated with both the

ethods are not rejected by the KS test. The figure shows that

he estimated parameters do not vary much when using the trun-

ated approach instead of the complete one. As for the KS test, the

ass rate only slightly increases for all the distributions (results not

hown). 

While the selected models represent good alternative hypothe-

es for some samples, last column of Table 5 shows that ∼65% of

he drop spectra measured during all the field campaigns cannot

e represented by any of the three models considered in this study.

s previously stated, the presence of ties as well as the inability

f the 2DVD to correctly detect the small drops ( D < 0.2 mm) are

ot sufficient to explain the fact that a distribution cannot be rep-

esented by any of the three tested models. Yet, this high rejec-

ion rate can be justified by the large sample size, M . As shown

n Table 6 for the HyMeX dataset, most of the drop spectra have

 relatively low number of drops ( M < 500), but, also many large

amples ( M > 10 0 0) are present (column 2). If we look at the per-

entage of samples for which none of the distributions passes the

S test ( Table 6 , last column), it is ∼ 40% for small sample sizes,

hile it tends to 100% when increasing M . Similar results are sum-

arized in Table 7 for the other datasets. We can also notice from

able 6 (columns 3–5) that for small samples the pass rate of each

istribution approaches that already obtained by Cugerone and De

ichele (2015) for f ( D ). Therefore, for the larger samples we can

rgue that all the distributions are rejected because the KS test be-

omes more and more strict for increasing M. More complex distri-

utions (e.g. with a higher number of parameters, such as the one

sed by Cugerone and De Michele, 2015 ) could be able to represent

hese large samples, being supported by statistical goodness-of-fit

ests, but, as explained in Section 1 , distributions with more than
wo parameters are hardly retrievable due to the limited number

f independent measurements available to common rainfall remote

ensing techniques. 

Finally, we show in Figs. 7 and 8 the frequency distributions

f the scale and shape parameters of the best models (according

o the log-likelihood criterion) for the four datasets. Although the

our datasets have been collected in four different regions, the dis-

ributions of the fitted parameters are similar to each other. More-

ver, their values are in good agreement with those shown by

dirosi et al. (2015) , who directly fit and compare the models to

ata records by a simple and straightforward method. Interestingly

nough, when the Weibull distribution is the best model, its shape

arameter is always greater than one (see Fig. 8 ), thus indicating

hat the distribution has a very light tail, i.e. the tail approaches

ero more rapidly than an exponential tail ( Teugels, 1975 ). Sim-

lar considerations apply to the gamma distribution; in fact, the

etrieved gamma shape parameters are always greater than one,

hich means that the gamma distribution never degenerates in the

xponential one. This is true also in the case the truncated max-

mum likelihood approach is used for parameter estimation (see

ig. 6 ). 

.3. Practical implications 

In Section 5.2 , we show how well some widely used distribu-

ions fit the raindrop spectra measured by the two-dimensional

ideo disdrometers, which are the most accurate drop sampling

evices available nowadays. We develop our study by providing

orroborating evidence from analyses of several record raindrop

izes in four different regions worldwide. However, one of the most

seful and challenging issue related to the modelling of the natural

SD is to define “when” the assumption of the given distribution

s valid or not; i.e. under which conditions it is preferable to rep-

esent the natural DSD by a given functional form. This informa-

ion can be extremely helpful in the development of precipitation

etrieval algorithms from remote sensing measurements or numer-

cal weather prediction models. 

In order to shed some light on this important issue, we investi-

ate the behavior of some parameters directly obtained from mea-

ured DSD with respect to the distribution that best models the

ata. For a given minute, the best model is the one, among the dis-

ributions that pass the KS test, that provides the maximum value

f likelihood. The selected dependent variables are the maximum

rop diameter ( D max ), the total number of detected drops ( M ), the

ercentage of small ( D < 1 mm) and midsize (1 < D < 3 mm) drops,

he rain rate ( R ) and the raindrop mass spectrum mean diameter

 D mass ). Such variables are indeed commonly used to characterize

he natural DSD in the literature, because, for instance, they are di-

ectly related to different physical processes occurring during the

ormation and evolution of the precipitation such as coalescence,

reak-up, accretion and evaporation ( Rosenfeld and Ulbrich, 2003 ),

nd can be used to classify the different precipitation types. 
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Fig. 6. Scatterplot between the distribution parameters retrieved through complete and truncated ML method in the cases the distributions estimated with both the methods 

are not rejected by the KS test. 
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We recall here that the rain rate can be directly obtained from

disdrometer DSD as 

R = 6 π 10 

−4 

∫ D max 

D min 

v ( D ) N ( D ) D 

3 dD 

(
mm h 

−1 
)

(27)

while D mass can be obtained as the ratio of the fourth and third

moment of the drop size distribution and it is one of the three

parameters of the normalized gamma distribution ( Testud et al.,
001 ) often employed to estimate the DSD parameters ( Bringi

t al., 2002 among others). From a physical point of view, D mass is

he first moment of the mass spectrum that represents the mass

f liquid water as a function of the drop diameter ( Williams et al.,

014 ) and is correlated to the percentage of large drops and to

 max . In fact, for a given rain rate, higher D mass corresponds to a

pectrum with larger drops ( Tokay et al., 2001 ). 
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Fig. 7. Distribution of the scale parameter for all the minutes best fitted by the (a) 

gamma, (b) lognormal and (c) Weibull distribution, for each dataset taking into ac- 

counts only the distributions that pass the test. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article). 
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Fig. 8. As Fig. 7 but for the shape parameters. For the gamma distribution a small 

plots shows the distribution of the shape parameters greater than 20. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article). 
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In Fig. 9 the pdfs of the dependent variables are plotted for the

rop spectra best fitted by the gamma distribution (red lines), the

ognormal distribution (green lines) and the Weibull distribution

blue lines) respectively. For brevity, the results are shown only for

he HyMeX dataset, since similar conclusions can be drawn for the

ther datasets. We also show in Fig. 9 the pdfs of the dependent

ariables for the samples that are not represented by any of the

robability models (black lines). 

Fig. 9 a shows that if the Weibull distribution (i.e. a light-tailed

istribution) has the best fit (i.e. the maximum likelihood value),

hen the maximum diameters of the corresponding samples are

enerally lower than those of the samples that are best repre-

ented by the lognormal or gamma distributions. In fact, the cor-

esponding pdf (blue line of Fig. 9 a) is shifted toward lower di-
meters (for HyMeX the mode corresponds to D max 
∼= 

1.5 mm). The

pposite reasoning holds for the lognormal model, which is indeed

 heavy-tailed distribution. Therefore, it can be argued that if drop

pectra spread out over a wide range of diameters, then it is likely

hat the lognormal distribution fits better the data. Conversely, nar-

ower drop spectra tend to be better modelled by a Weibull distri-

ution. 

On the other hand, it seems that the sample size does not af-

ect the selection of the best model ( Fig. 9 b). Note that we restrict

ur analyses to samples with at least 100 drops. Considering the

ercentage of small and midsize drops, we can claim that if the

ample is mainly composed of small drops ( D < 1 mm), then the

eibull distribution is more likely to best fit the data ( Fig. 9 c). By

ontrast, if midsize drops are more frequent in the sample, then

he lognormal and the gamma models are favorites ( Fig. 9 d). 
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Fig. 9. Pdfs of (a) the maximum drop diameter ( D max ), (b) the total number of detected drops ( M ), (c) the percentage of small ( D < 1 mm) and (d) midsize (1 < D < 3 mm) 

drops, (e) rain rate ( R ) and (f) raindrop mass spectrum mean diameter ( D mass ) for each minute of the HyMex dataset best fitted by the gamma (red lines), the lognormal 

(green lines) and the Weibull distribution (blue lines), or by any of the latter three distributions (black lines). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article). 
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In Fig. 9 e, the pdfs of the retrieved rain rate from the sam-

les best fitted by gamma, lognormal and Weibull distributions

re plotted. Again, the Weibull distribution fits best the samples

haracterized by a low rain rate ( R < 1 mm h 

−1 ), while the other

wo models fit well the remainder. Finally, we show the behavior

f D mass in Fig. 9 f. Samples with higher D mass (with mean equal

o 1.76 mm) – i.e. samples with a greater number of large drops

seem to be better fitted by a lognormal distribution. The sam-

les with a lower D mass (with mean equal to 1.11 mm) are best

odelled by a Weibull distribution, while the samples best repre-

ented by a gamma distribution have a mean value of D mass equal

o 1.34 mm. 

Results shown in Fig. 9 indicate that a heavy-tailed distribu-

ion (i.e. the lognormal model) is more appropriate to represent

he variability of drop sizes in the presence of high rainfall rates

nd large drops. This has a strong practical implication, since the

eparture from a light-tail behavior may imply a dramatic increase

f uncertainty in the statistical estimation of high-order DSD mo-

ents, as already discussed in detail in Adirosi et al. (2015) . For

ven larger rain rates ( Fig. 9 e) and amount of large drops ( Fig. 9 a),

nd more generally of collected drops ( Fig. 9 b), the measured drop

pectra cannot be statistically represented by any of the three

odels considered in this study (black lines). 

. Conclusions 

The raindrop size distribution can be expressed as the product

f the concentration of the raindrops and the probability distribu-

ion of drop sizes in a volume of air. The former can be directly

btained from disdrometer data by calculating the zeroth moment

f the DSD, while determining the latter is the focus of this paper.

As follow-up of Adirosi et al. (2015) , in this study three

ell known and widely adopted theoretical distributions (namely

amma, lognormal and Weibull) have been fitted to almost 42.0 0 0

-minute drop spectra measured by two-dimensional video dis-

rometers. The main purpose of this work is to assess how often

nd how good the most commonly used models fit the empirical

ata, searching for the conditions under which each model per-

orms best. 

In order to achieve such an objective, we follow an up-to-

ate statistical approach based on the maximum likelihood fitting

ethod and the Kolmogorov–Smirnov goodness-of-fit test. Further-

ore, we carry out two different fitting procedures by using (i) the

robability distribution of drop diameters at ground, and (ii) the

ore commonly used probability distribution of drop diameters

er unit volume. The availability of large drop-by-drop datasets

rom four different regions in USA and Italy has allowed us to

erform a robust statistical analysis whose findings are not site-

pecific. The main conclusions drawn in this work are summarized

n the following. 

In general, the gamma, lognormal and Weibull distributions are

ppropriate models to represent the distribution of drop diame-

ers both at the ground and per unit volume of air; however, those

istributions are adequately supported by statistical goodness-of-

t tests only for limited samples sizes. The discrepancy between

he DSD and the drop distribution at the ground is due the ef-

ect of the size-fall velocity relation adopted to obtain the DSD, as

ointed out in Section 2.2 . 

The Gamma distribution is ranked as first in fitting the data

ecords, thus indicating that the probability distributions whose

ails are exponentially bounded, i.e. light-tailed distributions, seem

o be adequate to model the natural variability of DSDs. How-

ver, the lognormal distribution is the best model in a signifi-

ant number of cases. The analysis of some dependent variables

elated to the DSD suggests that the lognormal distribution best

epresents the samples characterized by high values of the max-
mum diameter ( D max ), rainfall rate ( R ) and raindrop mass spec-

rum mean diameter ( D mass ). While the opposite is generally valid

or the Weibull distribution. Hence, in line with our previous study,

he frequency distributions of empirical DSDs can be heavy-tailed,

hus potentially yielding a severe uncertainty in estimating statis-

ical moments and bulk variables. 

Finally, it is worth noting that in ∼ 60% of the samples the use

f the distributions considered in this work is not statistically sup-

orted by the KS goodness-of-fit test; such an issue is directly re-

ated to the sample size, but not to the instrumental limitations for

mall drop size, or to the percentage of ties. The clear identifica-

ion of the reasons for this behavior and the analysis of alternative

-parameter models deserve further investigations that we leave

or future works. 
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