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a b s t r a c t 

Modeling flow and solute transport in large-scale (e.g.) on the order of 10 3 m heterogeneous porous me- 

dia involves substantial computational burden. A common approach to alleviate the problem is to utilize 

an upscaling method that generates models that require less intensive computations. The method must 

also preserve the important properties of the spatial distribution of the hydraulic conductivity ( K ) field. 

We use an upscaling method based on the wavelet transformations (WTs) that coarsens the computa- 

tional grid based on the spatial distribution of K . The technique is applied to a porous formation with 

broadly distributed and correlated K values, and the governing equation for solute transport in the for- 

mation is solved numerically. The WT upscaling preserves the resolution of the initial highly-resolved 

computational grid in the high K zones, as well as that of the zones with sharp contrasts between the 

neighboring K , whereas the low- K zones are averaged out. To demonstrate the accuracy of the method, 

we simulate fluid flow and nonreactive solute transport in both the high-resolution and upscaled grids, 

and compare the concentration profiles and the breakthrough times. The results indicate that the WT 

upscaling of a K field generates non-uniform upscaled grids with a number of grid blocks that on aver- 

age is about two percent of the number of the blocks in the original high-resolution computational grids, 

while the concentration profiles, the breakthrough times and the second moment of the concentration 

distribution, computed for both models, are virtually identical. A systematic parametric study is also car- 

ried out in order to investigate the sensitivity of the method to the broadness of the K field, the nature 

of the correlations in the field (positive versus negative), and the size of the computational grid. As the 

broadness of the K field and the size of the computational domain increase, better agreement between 

the results for the high-resolution and upscaled models is obtained. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

It is of fundamental and practical importance to incorporate the

spatial heterogeneity of porous geological formations in the mod-

els of flow and transport in such media ( Dagan et al., 1989; Ru-

bin, 2003; Sahimi, 2011 ). At the field scale (e.g. orders of 10 2 − 10 3 

m), subsurface properties, such as the permeability, vary many or-

ders of magnitude across multiple length scales (e.g. from 1 m to

10 3 m or larger) ( Dagan et al., 1989; Rubin, 2003; Sahimi, 2011 ). It

is well recognized that the spatial fluctuations of the permeabil-

ity field, i.e. many orders of magnitude difference between per-

meability values, have a significant role in the spreading rates of
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olute plumes, as well as estimates of their early or late arrival

imes. Thus, neglecting the effect of subsurface heterogeneity, and

n particular the spatial distribution of the permeability, in numer-

cal simulation leads to erroneous prediction of solute transport,

hich will have severe consequences for health risk assessment

 de Barros and Rubin, 2008; Maxwell et al., 1999 ), the likelihood of

xtreme events ( de Barros and Fiori, 2014; Dentz and Tartakovsky,

010; Henri et al., 2015 ), and for reactive mixing ( Dentz et al.,

011; Luo et al., 2008 ). 

In general, to obtain accurate predictions for solute mixing at

he field scale and calculate the properties that characterize the

rocess, such as the distribution of travel times and the disper-

ion coefficients, numerical simulation of flow and transport in

arge-scale porous media requires a computational grid with high

nough resolution to represent the variability of the hydrogeologi-

al properties ( Ababou et al., 1989; de Dreuzy et al., 2007 ). Simula-

ion with such high-resolution computational grids entails solving

http://dx.doi.org/10.1016/j.advwatres.2016.07.013
http://www.ScienceDirect.com
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everal million discretized equations over thousands of time steps,

eading to a very high computational burden. The resolution of the

rid depends, of course, on the available data that are used to con-

truct the grid blocks. But, for the same of argument we consider

locks whose linear size is 1 m. Thus, numerical simulation of

olute transport at the field scale might become prohibitively ex-

ensive, particularly when such highly-resolved models are subject

o uncertainty and must be cast within a Monte Carlo sampling

 Rubin, 2003; Sahimi, 2011 ). As a result, a key aspect of the simu-

ation is how to distribute the limited computational resources in

n efficient manner in order to reduce the simulation cost ( Leube

t al., 2013; 2012; Moslehi et al., 2015 ). To alleviate the computa-

ional burden, upscaling methods are used. 

Upscaling flow and transport in heterogeneous porous forma-

ions has been studied intensively for several decades. One may

ivide the existing methods into those that are based on volume

 Wang and Kitanidis, 1999; Whitaker, 1999; Wood et al., 2003;

ood and Valdés-Parada, 2013 ), ensemble ( Koch and Brady, 1985;

ubinstein and Torquato, 1989 ), or stochastic averaging ( Attinger,

003; Dagan, 1984; Gelhar and Axness, 1983; Neuman et al., 1987;

ubin et al., 1999 ). In the context of stochastic averaging, many

nalytical methods have been developed to evaluate the effective

ransport properties in a coarse-scale heterogeneous model, includ-

ng analytical perturbation ( de Barros and Dentz, 2016; de Barros

nd Rubin, 2011; Gelhar and Axness, 1983; Gutjahr et al., 1978 )

nd self-consistent ( Dagan et al., 1989; Fiori et al., 2011; Rubin and

ómez-Hernández, 1990 ) methods. Alternatively, numerical simu-

ations ( Ababou, 1988; Desbarats, 1987 ; Warren et al., 1961 ) and

he renormalization group transformations ( King, 1989; King et al.,

993; Mukhopadhyay and Sahimi, 20 0 0 ) have been employed to

ompute the effective conductivity of field-scale porous media.

uch works were reviewed by Renard and De Marsily (1997) ,

en and Gómez-Hernández (1996) , and Sahimi (2011) . 

In general, most of the coarsening process is carried out by

omogenizing the aquifer’s model through, for example, its hy-

raulic conductivity or the permeability attributed to the blocks of

 highly-resolved computational grid such that the upscaled per-

eability or conductivity field has identical symmetries as those

f the fine-scale field, as defined earlier ( Desbarats, 1992; Durlof-

ky, 1991; Kitanidis, 1990 ). The size of the upscaled grid blocks is

etermined by considering the available computational resources.

 drawback associated with the homogenization techniques is that

hey coarsen the subsurface domain uniformly, which often leads

o large errors in the predictions for the flow and transport prop-

rties, especially in the presence of fractured regions or sink and

ource. This is because many homogeneization methods average

ut the effects of extreme events, such as fast flow paths or large

ow barriers. To address this issue, Durlofsky et al. (1997) pro-

osed to first scale up the permeability field by a homogenization

echnique and then identify the high-velocity regions by solving for

ingle-phase flow in the homogenized grid. Such regions are then

iscretized to the fine scale in order to capture the small-scale

ariability that the field contains. Although the issue of uniform

locks is addressed, the single-phase flow should still be computed

rior to the upscaling process. 

An alternative method for upscaling is based on the wavelet

ransforms (WTs) ( Ebrahimi and Sahimi, 20 02; 20 04; 20 06; Hei-

arinasab et al., 2004; Mehrabi and Sahimi, 1997; Rasaei and

ahimi, 20 08; 20 09; Sahimi, 20 03 ), which have been used to up-

cale heterogeneous porous media by coarsening the permeabil-

ty or hydraulic conductivity field. The method upscales the high-

esolution geological model of a porous formation non-uniformly,

hich leads to preserving the important information on the spa-

ial distribution of the permeability field at all the relevant length

cales, but coarsens those parts of the computational grid that con-

ribute little to the flow field. Thus, the number of grid blocks in
he computational grid and, hence, the number of flow and trans-

ort equations to be solved are reduced drastically without sac-

ificing any crucial information about the conductivity or perme-

bility field. Use of the WTs in various applications has been the

ubject of intensive research over the past 25 years ( Chui, 1992;

eidarinasab et al., 2004; Holschneider, 1995; Meyer, 1992; Niev-

rgelt and Nievergelt, 1999; Sahimi, 2003 ), including the simula-

ion of flow and transport in large-scale porous media, such as oil

eservoir ( Kikani et al., 1998; Lu et al., 20 0 0; Moridis et al., 1996;

asaei and Sahimi, 20 08, 20 09; Sahimi, 20 03; Sahimi and Hashemi,

001 ). 

The focus of this study is to extend the upscaling method by

he WTs, introduced originally by Mehrabi and Sahimi (1997) and

brahimi and Sahimi (2002) , to upscaling of solute transport in

isordered porous media. Their work focused on upscaling a per-

eability or conductivity field. In contrast, our primary goal is to

nvestigate the effect of multiple features, i.e. structural and geo-

etrical parameters, in the conductivity field on the overall trans-

ort behavior, such as the arrival time, peak concentration and

patial moments, and to demonstrate how geostatistical parame-

ers characterizing the heterogeneous fields influence the perfor-

ance of the upscaling using wavelet transformation. Furthermore,

e used the upscaled field to reconstruct the second central spatial

oment of the plume that represents global features of the trans-

ort process. The spatial moment analysis has not be been ana-

yzed in the previous works related to WTs. We show that upscal-

ng by the WTs efficiently coarsens the computational grid for sim-

lating solute transport in subsurface domains, and reduces sub-

tantially the number of grid blocks. To demonstrate the accuracy

f the upscaling procedure via the WTs, flow and transport are

imulated in both the fine-resolution and the upscaled computa-

ional grids, and the results are compared. 

The rest of this paper is structured as follows. In Section 2 we

ormulate the class of problem under investigation. Section 3 de-

cribes the details pertaining to the WTs and the methodology

sed for upscaling of the hydraulic conductivity or permeability

eld. We then present the details of the numerical simulations in

ection 4 . The results are presented and discussed in Section 5 ,

here we test systematically the performance of the WT upscal-

ng for a variety of disordered porous formations. The last section

ummarizes the paper. 

. Problem statement 

We consider a fully-saturated steady-state flow of an incom-

ressible and Newtonian fluid through a heterogeneous geological

ormation. The hydraulic conductivity K ( x ) is spatially distributed,

here x represents the Cartesian coordinate system. We assume

hat the flow is slow enough that the fluid velocity v ( x ) follows

he Darcy’s law 

 (x ) = 

K(x ) 

P 

∇ ϕ(x ) , (1)

here ϕ( x ) is the hydraulic head, and P is the porosity of the

edium, assumed to be uniform. As usual, the hydraulic head is

omputed by solving the flow equation 

 · [ K(x ) ∇ ϕ(x )] = 0 . (2)

 constant hydraulic gradient in the mean sense is imposed on the

ystem such that, on average, the flow is uniform along the lon-

itudinal direction. An inert solute is released and advected and

ispersed by the fluctuating velocity field and diffusion. The spa-

iotemporal evolution of the concentration field is governed by the

dvection-dispersion equation, 

∂C(x , t) 

∂t 
+ v (x ) · ∇ C(x , t) = ∇ · [ D o (x ) ∇ C(x , t)] , (3)
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where C ( x , t ) is the solute concentration at point x at time t , and

D o ( x ) is the local dispersion tensor. Alternatively, transport can be

formulated in terms of the Langevin equation ( Risken, 1984) , 

d x ( t| a ) 
d t 

= v [ x ( t| a ) ] + 

√ 

2 D o η( t ) , (4)

where x ( t ) is the position of the particles, a is the initial location of

the solute particle (i.e. x (0 | a ) = a ) and η( t ) is the Gaussian white

noise characterized by zero mean and covariance 〈 ηi (t) η j (t ′ ) 〉 =
δi j δ(t − t ′ ) where δij is the Kronecker delta, δ( t ) is the Dirac delta

distribution and 〈 · 〉 indicates the average over all noise realiza-

tions (i.e. η( t )). In order to obtain an accurate solution for C ( x , t ), a

highly-resolved (i.e. fine-scale) representation of K ( x ) is generated,

which is then upscaled while maintaining the key features of its

variations that produce the concentration field. 

3. Methodology 

Let us first briefly describe the WTs, and then explain the up-

scaling method. 

3.1. Wavelet transformations 

For an excellent introduction to the WTs and their properties

see Nievergelt (1999) . We define the WT of the spatially-varying

permeability or hydraulic conductivity K ( x ), also referred to as the

wavelet detail coefficient , by 

D(a, b ) = 

∫ ∞ 

−∞ 

K(x ) ψ ab (x ) dx = 

1 √ 

a 

∫ ∞ 

−∞ 

K(x ) ψ[(x − b ) /a ] dx , 

(5)

where ψ( x ) is usually called the mother wavelet . The choice of

ψ( x ) depends on the intended application and, in fact, the possibil-

ity of developing separate wavelets for each application is a great

advantage of the WT. Eq. (5) makes it clear that a > 0 is a rescal-

ing parameter, whereas b represents translation of the wavelet, and

that using the WT of K ( x ) enables one to analyze the spatial distri-

bution of the permeability at increasingly coarser ( a > 1) or finer

( a < 1) length scales. As is well-known, D(a, b ) contains infor-

mation on the differences between two approximations of K ( x ) in

two successive length scales. But, information about K ( x ) at a fixed

length scale is contained in another wavelet coefficient, the wavelet

approximate or wavelet scale coefficient , defined by 

S(a, b ) = 

∫ + ∞ 

−∞ 

φab (x ) K(x ) dx , (6)

where φab ( x ) is called the wavelet scaling function and is orthogo-

nal to ψ( x ), with its definition being similar to that of ψ ab ( x ). An

important property of the WTs, which is most useful to upscaling,

is that they are recursive ; that is, they can be applied in succes-

sion to any set of properties produced by using the wavelets, to

generate another level of averages and another level of details. 

Although we simulate and upscale two-dimensional (2D) com-

putational grids in this paper, they can be applied to 3D with equal

facility ( Pazhoohesh et al., 2006 ). We utilize a square grid to each

square block of which a permeability (or hydraulic conductivity) K

is attributed. A one-level discrete WT is then applied to the per-

meability field. This means that we upscale the computational grid

by a factor of 2 by joining the neighboring blocks, except that the

upscaling is not uniform. If the center of a block is at x = (i 1 , i 2 ) ,

we associate with the WT of the permeabilities of that block a set

of four wavelet coefficients, three of which are the wavelet detail

coefficients, with the fourth one being the wavelet scale coefficient.

More precisely, we compute 

D 

(d) 
j 

(i 1 , i 2 ) = 

∫ 
�

K(x, y ) ψ 

(d) 
j,i 1 ,i 2 

(x, y ) d xd y , (7)
nd 

 j (i 1 , i 2 ) = 

∫ 
�

K(x, y ) φ j,i 1 ,i 2 (x, y ) d xd y , (8)

here j is the upscaling level such that j = 1 represents the ini-

ial resolved grid that we begin the computations with, and �

epresents the domain of the problem or the computational grid.

 j (i 1 , i 2 ) carries information about K ( x ) associated with a block

ith its center at x in the coarser grid, whereas D 

(d) 
j 

(i 1 , i 2 ) is

 measure of the difference between K ( x ) in the current up-

caled grid and those of the block’s neighbors in the previous

ner scale grid, with d = 1 , 2 , and 3 corresponding to the con-

rasts, respectively, between the blocks in the x, y , and the diagonal

irections. 

.2. Upscaling 

To implement the upscaling, we introduce two thresholds, εS 
nd εD . The value of εS is a measure of the permeability of the grid

locks associated with the wavelet scale coefficient. For a given

evel of upscaling [a given j in Eq. (7) ], we compute the scale co-

fficients, normalize them with the largest coefficient, and then

et εS between 0 and 1 (or set it to be a fraction of the largest

f such coefficients if we do not normalize them). Likewise, after

omputing the wavelet detail coefficients and normalizing them,

he threshold εD , which contains information on the contrast be-

ween the permeabilities of the neighboring blocks, is set between

 and 1 (or a fraction of the largest detail coefficient in the com-

utational grid, if the coefficients are not normalized). 

The upscaling procedure is as follows ( Ebrahimi and

ahimi, 2002 ; Mehrabi and Sahimi, 1997 ). The threshold εS is

ompared with the scale coefficient of each block with its cen-

er at ( i 1 , i 2 ). If (the normalized) S j (i 1 , i 2 ) > εS , it means that

he block’s permeability K is large and significant. Thus, we do

othing and move on to the next block. If, however, (the normal-

zed) S j (i 1 , i 2 ) < εS , the block’s (normalized) detail coefficients

 

(d) 
j 

(i 1 , i 2 ) are inspected and set to zero if they are smaller than

heir threshold εD . Doing so implies that the neighbor of the block

entered at ( i 1 , i 2 ) corresponding to the direction ( d ), which in the

ner-scale computational grid is just one horizontal, or vertical,

r diagonal block away from ( i 1 , i 2 ), is merged with that centered

t ( i 1 , i 2 ) to form a larger block. Therefore, depending on the

roadness and structure of the spatial distribution of K ( x ) and the

umerical values of the two thresholds, a number of blocks in the

ner-scale grid are upscaled. 

We then take advantage of the recursive property of the WTs,

nd upscale the new grid further by applying the discrete WT to

he scale coefficients obtained at the previous level j (recall that

he scale coefficient contain information about the spatial distribu-

ion of the permeabilities at a fixed scale), and computing a new

et of four wavelet coefficients for each block of the grid in its cur-

ent state. The newly-computed (normalized) detail coefficients are

gain set to zero if they are smaller than the threshold εD , and the

orresponding blocks in the grid are merged. The iterative process

or upscaling is repeated again until no significant number of the

rid blocks is upscaled (merged). Typically, for given values of the

wo thresholds, three or four levels of coarsening j suffice to gen-

rate an upscaled grid that can no longer be upscaled significantly.

herefore, the procedure yields very quickly the final upscaled grid.

t should be clear that larger thresholds result in larger number of

he grid blocks that are upscaled, and are set by both the required

ccuracy and the amount of computational time that one can af-

ord. 

The next step is computing the effective permeabilities of the

pscaled blocks. They may be computed by any of several meth-

ds. One way is by reconstructing the spatial distribution of the
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ε  
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e  

l  
ermeability of the upscaled grid. This means that we compute the

nverse WT of K ( x ) after upscaling the grid (given that many of the

etail and scale coefficients are now zero) and assign the perme-

bility of the enlarged upscaled blocks based on the reconstructed

istribution . What we use in this paper is based on the analogy be-

ween the laws of electrical circuits and fluid flow. Thus, for exam-

le, an enlarged upscaled block that consists of four neighboring

maller blocks, each having its own permeability, is replaced af-

er upscaling by a larger block with an equivalent permeability K e 

iven by 

 e = 

4(K 1 + K 3 )(K 2 + K 4 )[ K 2 K 4 (K 1 + K 3 ) + K 1 K 3 (K 2 + K 4 )] 

α( 
∑ 4 

i =1 K i ) + 3 ζ
, (9) 

ith 

= K 2 K 4 (K 1 + K 3 ) + K 1 K 3 (K 2 + K 4 ) 

ζ = (K 1 + K 2 )(K 3 + K 4 )(K 1 + K 3 )(K 2 + K 4 ) 

nd K i ( i = 1 − 4 ) are the permeabilities of the four blocks

 Ebrahimi and Sahimi, 2004 ). The key attribute of this method, in

ddition to its simplicity, is that no important information about

he permeability field is lost, because the permeabilities of the

maller blocks are used in a rigorous manner for computing K e .

f the permeabilities are direction-dependent, as in anisotropic

orous media, then Eq. (9) is used once for each direction in or-

er to compute the equivalent direction-dependent permeabilities. 

.3. The wavelets 

Because we work with 2D computational grids, we must spec-

fy 2D wavelets. One way of constructing 2D wavelets used in the

resent paper is by tensor products of 1D wavelets, which pro-

uces a 2D wavelet scaling function, φ j,i 1 ,i 2 
(x, y ) = φ j 

i 1 
(x ) φ j 

i 2 
(y ) ,

nd three wavelets: 

 

(1) 
j,i 1 ,i 2 

(x, y ) = φ j 
i 1 
(x ) ψ 

j 
i 2 
(y ) , 

 

(2) 
j,i 1 ,i 2 

(x, y ) = ψ 

j 
i 1 
(x ) φ j 

i 2 
(y ) , 

 

(3) 
j,i 1 ,i 2 

(x, y ) = ψ 

j 
i 1 
(x ) ψ 

j 
i 2 
(y ) . (10) 

he 1D discrete wavelets themselves are constructed by set-

ing a = 2 j and b = 2 j i in Eqs. (5) and (6) , where i and j are

oth integer. By rescaling and translating ψ( x ) and φ( x ) us-

ng ψ 

j 
i 
(x ) = 2 − j/ 2 ψ(2 − j x − i ) , and φ j 

i 
(x ) = 2 − j/ 2 φ(2 − j x − i ) , one

lso constructs orthonormal wavelets that are non-zero over

nly small intervals of x . The compact support of the wavelets

s important, because it makes the computations extremely

apid. 

An important set of wavelets, developed by Daubechies (1988) ,

onsists of orthonormal wavelets of order M , and referred to as the

BM. Their first M moments are zero, hence the name. Moreover, 

φ(x ) = 

√ 

2 

L −1 ∑ 

i =0 

h i φ(2 x − i ) , (11) 

ψ(x ) = 

√ 

2 

L −1 ∑ 

i =0 

g i φ(2 x − i ) , (12) 

here L = 2 M, with h i and g i - referred to as the filter coeffi-

ients - are related by, g i = (−1) i h L −i −1 , with i = 0 , 1 , · · · , L − 1 .

hese coefficients are usually nonzero for only a few values of

 . For example, for the DB2 wavelet, one has, (h 0 , h 1 , h 2 , h 3 ) =
(1 / 4 

√ 

2 )(1 + 

√ 

3 , 3 + 

√ 

3 , 3 − √ 

3 , 1 − √ 

3 ) , and (g 0 , g 1 , g 2 , g 3 ) =
(−h 3 , h 2 , −h 1 , h 0 ) . Note that in both cases the extra factor

 / 
√ 

2 is necessary to ensure the orthonormality of φ and

. Press et al. (2007) provide the numerical values of h k 
or many wavelets. Based on our previous work for upscal-
ng of flow and transport ( Ebrahimi and Sahimi, 2002, 2004,

006, Heidarinasab et al., 2004; Mehrabi and Sahimi, 1997;

asaei and Sahimi, 20 08, 20 09; Sahimi, 20 03 ), the results

eported in this paper were computed by using the DB4

avelet, for which the filter coefficients ( h 0 , h 1 , h 2 , h 3 ) are,
1 
8 [( 

√ 

2 + 

√ 

6 ) , (3 
√ 

2 + 

√ 

6 ) , (3 
√ 

2 − √ 

6 ) , ( 
√ 

2 − √ 

3 )] . We have

reviously shown that the use of more complex wavelets will

ot result in much improved results. Note that the scale and

ranslation parameters of the model wavelet, i.e. a and b , are set

y the physical constraints that one imposes on the wavelets,

hich in turn depend on the particular application. 

. The spatial distribution of the permeability and numerical 

imulation 

We consider flow and transport in a spatially-heterogeneous

quifer, and generate several broad distributions of the hydraulic

onductivity in an initially uniform computation grid with square

locks of size �x = �y = � and various grid sizes L × L (i.e. size

f the computational domain). In all the simulations and for all

omain sizes L , we set � = 1 m. We opt to generate the con-

uctivity fields according to a fractional Brownian motion (fBm),

hich is a stochastic process that induces long-range correlations

n the hydraulic conductivity field. Our choice is not a limitation;

ny other field with other types of correlation functions may be

dopted. It is important to note that the methodology described

n this paper is completely general and can be used with any

onductivity field, such as multi-Gaussian fields ( Kitanidis, 1997;

ubin, 2003 ), non-Gaussian fields ( Zinn and Harvey, 2003 ) and

omposite medium ( Winter and Tartakovsky, 2002 ). It can also

e used with random fields characterized by Gaussian or expo-

ential covariance models. At the same time, we point out that

any field data acquired for oil reservoirs and aquifers display

he fBm-type correlations ( Benson et al., 2002; Di Federico and

euman, 1998; Hewett et al., 1986; Molz et al., 2004; Neuman

t al., 2008; Riva et al., 2015; Sahimi, 2011; Sahimi and Tajer,

005 ), after the original work of Hewett et al. (1986) who demon-

tated the existence of such long-range correlations in the poros-

ty logs. The two-point correlation function of the fBm is given

y 

(r ) − C(0 ) ∼ r 2 H , (13)

here r is the lag-distance and H is the Hurst exponent. For 0 < H

 0.5, the field’s hydraulic conductivities are negatively correlated,

hereas for 0.5 < H < 1 they are positively correlated. Negative

orrelations imply that a grid block with a high or low conduc-

ivity is less likely to be a neighbor to another grid block with a

igh or low conductivity. The opposite is true for positive correla-

ions. To study the effect of the nature of the correlations - posi-

ive versus negative - simulations were carried out for four values

f H that are listed in Table 1 and referred to as the “First sce-

ario.” Note that a conductivity field with H < 0.5 represents a

uch more heterogeneous porous medium than one with H > 0.5.

urthermore, in order to examine the effect of the broadness of

he conductivity distribution on the effectiveness of the upscaling

ethod, three distinct orders of magnitude variations, S in the K

alues were considered in the numerical experiments, which are

lso listed in Table 1 and referred to as the “Second scenario.” Fi-

ally, the performance of the WT upscaling was investigated with

arious domain sizes listed in Table 1 and referred to as the “Third

cenario.”

All the conductivity fields were upscaled with the thresholds

S = εD = 0 . 9 . Such high thresholds imply that a very large frac-

ion of the blocks are upscaled but, as we demonstrate below,

ven they produce very accurate results. In the numerical simu-

ations described below the maximum level of upscaling was 3,
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Fig. 1. Comparison of (a) the conductivity field in the high-resolution model of size L = 512 m with the Hurst exponent H = 0 . 2 and the order of magnitude variations of 

the K values, S = 3 , and (b) the corresponding upscaled field. 

Table 1 

Summary of the parameters used in the simulations. R is 

the measure of the reduction in the number of grid blocks 

defined by R = (n f − n c ) /n f × 100 % and x CP is the location 

of the control plane where the concentration breakthrough 

curves are evaluated. 

Scenarios L H S R (%) x CP 

First Scenario 512 0 .2 3 97 .80 350 

512 0 .4 3 98 .08 350 

512 0 .6 3 98 .11 350 

512 0 .8 3 98 .27 350 

Second Scenario 512 0 .7 3 98 .20 350 

512 0 .7 5 96 .57 350 

512 0 .7 7 98 .23 350 

Third Scenario 256 0 .7 3 97 .71 150 

512 0 .7 3 98 .40 350 

1024 0 .7 3 97 .45 500 
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since higher levels of upscaling did not result in much coarser

computational grids. As an example, Fig. 1 presents a fine-scale

conductivity field used in the study with L = 512 m, H = 0 . 2 and

S = 3 , together with the corresponding upscaled model. Let n c and

n f denote, respectively, the number of grid blocks in the coars-

ened field and in the initial fine-grid structure. We define R =
(n f − n c ) /n f × 100 % as the measure of the reduction in the num-

ber of grid blocks that we achieve by the WT upscaling. This quan-

tity is also listed in Table 1 . 

Flow is simulated by solving Eq. (2) in both the fine and coarse

permeability fields. No-flow boundary conditions along the trans-

verse boundaries are used, and a constant longitudinal head gra-

dient is imposed between the leftmost and rightmost sides of the

grid with their values being, respectively, 2 m and 1 m. As for

the transport simulation, we solve for the case in which we inject

a non-reactive tracer along a transverse line source. The tracer is

released with constant flow rate, q = 40 m 

2 /d, at the left side of

the computational grid. 

We evaluate the breakthrough concentration of the plume at

a control plane (CP) with a longitudinal location x CP from the

line source. For each scenario, the value of x CP is listed in

Table 1 . Solute transport is simulated by solving Eq. (3 or 4 ) by

a random walk method, with its detailed description reported in

Araktingi et al. (1993) ; Ebrahimi and Sahimi (2004) ; King and

Scher (1987) . The longitudinal and transverse dispersion at the

local-scale were 0.546 m 

2 /d and 0.0045 m 

2 /d, respectively. For

each case, several realizations of the conductivity fields were gen-

erated and the results were averaged over all of them. 
. Results and discussion 

Fig. 2 compares the plume’s snapshots in both the high-

esolution and upscaled computational grids for two distinct times.

he temporal evolution of the concentration is expressed in terms

f pore volume injected (PVI). The PVI is the fractional volume of

he fluid injected relative to the total pore volume of the pore

pace. With uniform injection, as we do in this work, the PVI is

he dimensionless time. The size of the grid is L = 512 m with the

urst exponent being H = 0 . 2 . The order of magnitude variations

n the hydraulic conductivity is S = 3 . As Fig. 2 indicates, the con-

entration profiles in the upscaled field reproduce very accurately

he results obtained with the corresponding fine-scale geological

odel. 

We also analyzed systematically the influence of three impor-

ant parameters of the upscaling, namely, the Hurst exponent H ,

he order of magnitude variations in the conductivities, S , and the

ize L of the computational grid. The travel time of plumes is con-

rolled by the correlations and contrast between the conductivities

f the different zones of a porous medium. Thus, we highlight the

ffects of H and S , as the Hurst exponent characterizes the nature

f the correlations between the conductivities, while S quantifies

he broadness of their spatial distribution. 

Fig. 3 compares quantitatively the concentration profiles at the

P in the highly resolved and coarsened computational grids for

our values of H . There is very little, if any, difference between the

rofiles, demonstrating the accuracy of the upscaling algorithm.

urthermore, in order to demonstrate the agreement between the

esults obtained from the fine-scale and upscaled fields, goodness-

f-fit analysis was carried out and depicted in Fig. 4 for the case

ith L = 512 m, H = 0 . 8 and S = 3 . The equation of the straight

ine fitted to the contaminant concentration data in Fig. 4 is y =
 . 99 x + 1 . 7 with R 2 = 0 . 9997 , where y and x are associated with

he upscaled and fine-scale data, respectively. As Fig. 3 demon-

trates, for the K fields with H > 0.5, in which the conductivi-

ies are positively correlated and better connected flow and trans-

ort paths exist, the breakthrough occurs earlier than that in the K

elds with H < 0.5. Note also the ability of the algorithm for cap-

uring the precise first arrival times (in the PVIs), which are critical

or risk analysis ( Henri et al., 2015 ). 

Fig. 5 presents the dependence of R , the percentage of the re-

aining grid blocks in the final upscaled computational grid, on

he Hurst exponent H . R is slightly larger for H < 0.5, since the

onductivity fields with negative long-range correlations represent

ore heterogeneous porous media. But, overall, for all 0 < H <

 the upscaled grid is extremely coarsened, having a very small

umber of enlarged grid blocks and yet, as Figs. 2 and 3 indi-

ate, the accuracy of the concentration profiles in such grids is
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Fig. 2. Solute plume snapshots for the high-resolution and coarse-scale conductivity fields. The concentration C ( x , t ) was computed in both high-resolution and coarse-scale 

conductivity fields for the parameters, L = 512 m, H = 0 . 2 and S = 3 , and for (a) high-resolution field at PVI = 0 . 2 ; (b) coarsened field at PVI = 0 . 2 ; (c) high-resolution field 

at PVI = 0 . 8 , and (d) coarsened field at PVI = 0 . 8 . 
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Fig. 3. The results for the first scenario (see Table 1 ): Concentration breakthrough curves for the high-resolution fields with S = 3 and dimension L = 512 m and the 

corresponding coarsened fields. Results shown for (a) H = 0 . 2 ; (b) H = 0 . 4 ; (c) H = 0 . 6 , and (d) H = 0 . 8 . 
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Fig. 4. Goodness-of-fit analysis between the concentration profiles obtained from 

fine-scale and upscaled fields for the case with L = 512 m, H = 0 . 8 and S = 3 . The 

straight line is represented by y = 0 . 99 x + 1 . 7 with R 2 = 0 . 9997 . 

Fig. 5. The percent reduction, R , of the number of grid blocks in the upscaled fields 

and that of the grid representing the corresponding high-resolution fields, and its 

dependence on the Hurst coefficient H in the first scenario (see Table 1 ). 
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Fig. 6. Results obtained for the second scenario (see Table 1 ). Comparison between 

the concentration breakthrough curves for coarsened and fine scale conductivity 

fields for H = 0 . 7 and grid size L = 512 m. Results reported for (a) S = 3 ; (b) S = 5 , 

and (c) S = 7 . 
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completely comparable with that of the fine-scale grids. As pointed

out by Ebrahimi and Sahimi (20 02 , 20 04 , 20 06) , the wavelet

scale coefficients preserve the distribution of the high permeabil-

ity paths, while the wavelet detail coefficients preserve the grid

resolution where the permeability contrasts are high, such as the

interface between the low and high permeabilities. These are,

of course, precisely what are expected of any accurate upscaling

scheme. Thus, the WT upscaling is completely suitable for geolog-

ical domains displaying fast flow paths induced by the persistence

of high conductivities, but also for more heterogeneous porous for-

mations in which slow transport paths may develop. 

Next, we examine the sensitivity of the upscaling scheme to

S , the order of magnitude variations in the hydraulic conductiv-

ity field, referred to as the second scenario in Table 1 . Fig. 6 com-

pares the concentration profiles for S = 3 , 5 and 7. Even when

there are seven orders of magnitude variations in the values

of K , the breakthrough points (BTPs) are predicted accurately

by the upscaled scheme, and the concentration profiles in all

three cases in the coarsened and fine-resolution grids agree ex-

cellently. There is only a slight discrepancy between the fine-

and coarse-scale fields for S = 7 around PVI = 0 . 7 , but all other

main features of the profiles are captured (including the first ar-

rival times) even for S = 7 . In their study of frequency-dependence

conductivity in highly heterogeneous semiconducting materials in

which the local conductivities vary up to 15 orders of magnitude,

Pazhoohesh et al. (2006) demonstrated that, in fact, broader con-

ductivity distributions lead to more accurate results and more ef-

ficient computations, because only a very small fraction of highly
eterogeneous media contribute significantly to transport, and the

T upscaling identifies them accurately. 

We present in Fig. 7 the effect of the domain’s size L on the

pscaling procedure. It presents comparisons of the concentration

rofiles in three computational grids with increasing sizes. Increas-

ng the size of grid results in more accurate, and hence computa-

ionally more efficient results. For L = 1024 m, the two profiles are

irtually identical. 

Since the dispersion coefficients essentially represent the sec-

nd spatial moments of the concentration distribution, we also

omputed S xx , the second central moment of the plume in the lon-

itudinal direction that represents the spread of the solute body

round its centroid. The second central spatial moment S xx is given

y 

 xx (t) = μxx (t) − [ μx (t)] 2 , (14)
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Fig. 7. Results for the third scenario (see Table 1 ): The breakthrough curves for the 

high-resolution conductivity fields with H = 0 . 7 and S = 3 and the corresponding 

coarsened fields with (a) L = 256 m; (b) L = 512 m and (c) L = 1024 m. 

w

w  

d  

p  

t  

a  

I  

c  

g  

v

 

s  

b  

p  

s  

r  

i  

a  

t  

a  

i  

a

 

a  

e  

d  

e  

t  

c  

6

 

i  

m  

r  

a  

g  

s  

i  

t  

r  

t  

a  

o  

s  

d  

m  

l  

i  

p  

p

7

 

i  

a  

p  

o  

t  

i  

p  

p  

m  

c  

t  

c  

t  

s  

t  

t  

g  

r  

i  

m  

i  

t

here 

μxx (t) = 

1 

μ0 (t) 
P 

∫ ∫ 
�

x 2 C(x, y, t) d xd y , (15) 

μx (t) = 

1 

μ0 (t) 
P 

∫ ∫ 
�

xC(x, y, t) d xd y , (16) 

ith μ0 (t) = P 

∫ ∫ 
� C(x, y, t) d xd y , which equals to the mass in the

omain, and the rest of the notation is as before. In Fig. 8 we

resent the results for two cases. Fig. 8 (a) depicts the results for

he case, H = 0 . 2 and S = 3 , while Fig. 8 (b) shows those for H = 0 . 7

nd S = 7 . The linear size of the grid for both cases was L = 512 .

t is clear that there is very little, if any difference between the

omputed second moments in the high-resolution and upscaled

rids, implying that the longitudinal dispersion coefficient is pro-

ided highly accurately by the upscaling method. 

Note that in all the cases discussed, flow and transport were

imulated in the absence of sinks and sources. As demonstrated

y Rasaei and Sahimi (20 08 , 20 09 ), who studied upscaling of two-

hase flow in oil reservoirs, in the presence of sinks and sources,
uch as injection and production wells in such reservoirs, the grid

esolution strategy should be adaptive since, due to the high veloc-

ty gradients in their vicinity, more refined grid blocks are required

round them. Likewise, fully-refined grid blocks are required close

o the boundaries where we need to capture the details of the flow

nd transport processes. To implement this, a simple constraint

s imposed on the upscaling process that prevents marked areas

round sources, sinks and boundaries from being coarsened. 

The results reveal that the wavelet-based upscaling method is

ccurate for a single disordered porous medium. This is not, how-

ver, a limitation as the method can be extended to stochastic hy-

rogeology. Using a Monte Carlo framework one can, after gen-

rating multiple realizations of the heterogeneous fields, upscale

he conductivity fields. Then, simulation of flow and transport pro-

esses can be carried out through the upscaled conductivity fields.

. Efficiency of the calculation 

One purpose of the present work was to demonstrate that

f one upscales a heterogeneous conductivity field by the WT

ethod, simulation of solute transport in the upscaled field yields

esults for the characteistics of the transport phenomenon that

re as accurate as those obtained with the original high-resolution

rid. This is independent of the numerical method that one uses to

olve the ADE. Clearly, if one uses an efficient and accurate numer-

cal scheme for solving the ADE, then the speed-up in the compu-

ations will be very large. In the present work, we used a simple

andom walk method to solve the ADE, which is not necessarily

he most efficient method, but has the advantage that it avoids to

 large extent numerical dispersion associated with other meth-

ds that are used to solve the ADE. The previous work on up-

caling of flow of two-immiscible fluids in large-scale porous me-

ia ( Rasaei and Sahimi, 2008, 2009 ), which used a finite-volume

ethod, demonstrated that the speed-up in the computations is as

arge as a factor of 5,0 0 0. We expect the same order of speed-up

f a similar numerical scheme is used. It was also demonstrated in

revious works ( Rasaei and Sahimi, 2008, 2009 ), how to eliminate

ossible numerical dispersion. 

. Summary 

This work presents the application of a methodology for upscal-

ng of the spatial distribution of a hydraulic conductivity or perme-

bility field in a computational grid for simulation of solute trans-

ort in spatially-heterogeneous geological formations. The method-

logy is based on the wavelet transforms that preserve the resolu-

ion of the high-conductivity paths, as well as that of the regions

n which there are sharp contrasts between the conductivities. The

erformance of the method was tested for a wide range of the im-

ortant parameters of the simulations, ranging from the order of

agnitude variations in the conductivities and the nature of their

orrelations (positive versus negative), to the size of the computa-

ional grid. We demonstrated in all cases that the upscaled grid

onstructed by the wavelet transform reproduces the concentra-

ion breakthrough curves very accurately when compared with the

ame in the initial highly-resolved grids. In particular, the break-

hrough times are predicted extremely accurately. From a compu-

ational point of view, the wavelet transform upscaling method

enerates non-uniform grids with a number of grid blocks that

epresent, on average, only about 2.1% of the number of grid blocks

n the original high-resolution models. Thus, given any reasonable

ethod of solving the advection-dispersion equation, the upscal-

ng method results in an enormous reduction in the computational

ime of such simulations. 
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Fig. 8. Comparison of the second central spatial moment S xx ( t ) of the concentration distribution in the high-resolution and upscaled conductivity fields. The results are for 

(a) H = 0 . 2 and S = 3 , and (b) H = 0 . 7 and S = 7 (see Table 1 ). The size of the numerical grid is L = 512 and the porosity is equal to 0.54. 
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