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a b s t r a c t 

In this paper, a generalized lattice Boltzmann model for simulating fluid flow in porous media at the 

representative volume element scale is extended towards applications of hydraulically and naturally frac- 

tured reservoirs. The key element within the model is the development of boundary conditions for a ver- 

tical well and horizontal fracture with minimal node usage. In addition, the governing non-dimensional 

equations are derived and a new set of dimensionless numbers are presented for the simulation of a 

fractured reservoir system. Homogenous and heterogeneous vertical well and fracture systems are sim- 

ulated and verified against commercial reservoir simulation suites. Results are in excellent agreement to 

analytical and finite difference solutions. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

This paper will provide a numerical methodology for the sim-

ulation of fluid flow through a fractured reservoir system (FRS);

the goal of which is to optimize fluid production while reduc-

ing the cost associated with improper characterization of the sub-

surface environment. We will focus on two aspects of the FRS

considered most pivotal: first, the complex boundary geometries

present within the FRS between the fracture and surrounding

porous medium, and second, the various flow regimes present

within the FRS at various scales. 

The FRS, distinct from the porous rock matrix, provides high

conductive pathways for fluid flow. The majority of fluid produc-

tion comes from these high conductive pathways and the neigh-

boring porous matrix, and so, the geometry of the FRS is a primary

indicator of future fluid production ( King, 2016 , Warpinski and

Teufel, 2016 ). The rate of production is also heavily dependent

on the accelerating elements within the flow field. In a reservoir

where fluid flows only through the porous rock matrix, Darcy flow

is the primary flow regime ( Dake, 1978 ). However, in the FRS, in-

ertial flows and nonlinear damping flows play a significant part in

the evolution of the flow field ( Forchheimer, 2016 , Anwar, 2008, Liu

et al., 2016 ). It is necessary, therefore, for a FRS simulation tool to

address both the complex boundary geometries and the multiple

accelerating elements present in the flow field. 
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Fluid flow in porous media at the field scale is most pop-

larly modeled through finite element, finite volume, and finite

ifference methods ( Aziz and Settari, 1979 ). To capture the cross

ow between the porous rock matrix and the embedded fracture

etwork, these methods incorporate single-porosity, dual-porosity,

nd discrete fracture models ( Zidane and Firoozabadi, 2014, Moort-

at and Firoozabadi, 2010, McClure et al., 2016 ). However, due to

he challenges behind the implementation of these methods, and

he high computational cost associated with capturing the geome-

ry of the FRS, many in practice choose to idealize the fracture ge-

metry ( Mayerhofer et al., 2016, Cipolla et al., 2016, Fuentes-Cruz

t al., 2016 ). 

Instead of simulating the FRS within the finite ele-

ent/volume/difference framework, we propose a different

imulation paradigm for the FRS using the lattice Boltzmann

ethod (LBM). The LBM has fundamental properties, which make

he method an attractive alternative - including the ability to

apture multiple flow regimes of a slightly compressible fluid

 Succi, 2001 ) as well as fine grained system resolution, while

aintaining computational efficiency through simple paralleliza-

ion procedures ( Kandhai et al., 2016, Laniewski-Wollk and Rokicki,

016 ). Originally developed from the Lattice Gas Automata, the

BM has been successfully applied to fluid flow through porous

edium at the pore scale ( Succi, 2001 ). However, sufficient pore

eometry information is unavailable at the field scale, and so

he LBM was modified to simulate flow over the representative

olume element (REV) ( Dardis and McCloskey, 1998, Spaid and

helan, 1997, Freed, 1998 ). 
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Fig. 1. The Maxwell Boltzmann distribution, where T1 and T2 represent two dif- 

ferent system temperatures. The distribution indicates the most probable speed of 

a particle or the average speed of a fluid group. As the temperature of the system 

increases, the probability of higher particle velocities increases. 

Fig. 2. Two states of a system are pictured, before and after a collision event. Top: 

in the initial state, two distribution functions are located a distance away, each with 

a unique density distribution. Bottom: once streaming has completed and the par- 

ticle ensembles arrive at the same position, collision occurs and the combined dis- 

tribution relaxes to a state of local equilibrium. 
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Most recently, Guo and Zhao, (2002) developed a generalized

BM (GLBM) for the simulation of isothermal slightly compress-

ble porous flows at the REV scale. In comparison to previous REV

cale LBM, the GLBM includes convective accelerating elements in

ddition to linear and non-linear damping terms – perfect for the

imulation of fluid flow through a FRS. 

In this work, we extend the Guo et al. model to the FRS. To

ully integrate the GLBM into a reservoir simulation tool, a GLBM

RS is proposed, which addresses the development of boundary

onditions along the interface of the fracture network and the sur-

ounding porous media. In addition, the GLBM FRS also provides a

erivation of the governing dimensionless equations and a compre-

ensive methodology for the conversion between the lattice sys-

em and the physical system. 

The GLBM provides a numerical solution to a slightly compress-

ble fluid governed by a generalized Navier–Stokes equation, which

an be applied equally to aquifers or oil reservoirs. The groundwa-

er flow equations presented here have analogs in other fields of

tudy, and so for the purpose of inclusion, this material is general-

zed to all flows in porous media. 

The format of this paper is as follows: an overview of the LBM

nd the GLBM at the REV scale is given. We then will present the

LBM FRS. All derivations can be found in the appendices. Results

or a homogenous and heterogeneous reservoir are presented and

alidated against a finite difference commercial reservoir simula-

ion software, Eclipse by Schlumberger, (2014 ). This is the first at-

empt to verify the GLBM in FRS against commercial reservoir sim-

lation software. 

. The lattice Boltzmann method 

.1. An overview 

Two approaches are employed in fluid simulations, commonly

lassified as bottom-up and top-down. In the top-down approach,

he governing macroscopic fluid equations are discretized in time

nd space ( Aziz and Settari, 1979 ). In the bottom-up approach,

ndividual particles are tracked and their sum behavior repre-

ents macroscopic fluid properties. The lattice Boltzmann method

s found to exist at a scale neatly between the two. The following

ection will provide an overview of the LBM. We will begin with

he kinetic description of a fluid. 

A fluid is characterized as a collection of particles. The LBM

reats this particle ensemble as a distribution function. The dis-

ribution states the number of particles moving with a specified

elocity for all possible velocities. The Maxwell Boltzmann distri-

ution, given by Eq. (1 ), provides the velocity distribution of a

article ensemble under the condition of point-like, structureless

articles, 

f ( u ) = 

√ (
m 

( 2 πKT ) 

)3 

4 πu 

2 e 
−mu 2 

2 KT (1) 

here f is the particle distribution, u is the velocity, m is the par-

icle mass, and KT is the product of the Boltzmann constant and

ystem temperature ( Succi, 2001 ). 

The Maxwell–Boltzmann distribution is both a probability dis-

ribution and also a density distribution. This difference in nomen-

lature arises from whether we apply the distribution to a sin-

le particle or a group. In the case of a single particle, the

axwell-Boltzmann distribution represents the most probable par-

icle speed. For the case of an ensemble, the integral of the distri-

ution function will yield the fluid density, shown in Fig. 1. 
The Boltzmann transport equation, shown in Eq. (2 ), is the time

volution of the distribution function ( Boltzmann, 1964 ). 

 i f = 

[ 
∂ t + 

p 

m 

· ∂ x + F · ∂ p 
] 

f ( x, p, t ) = � (2)

he evolution of the particle ensemble consists of streaming from

ne location to the next and the collision between other parti-

le ensembles. The left hand side of the transport equation is the

treaming step, or the spatial translation of the distribution func-

ion, under the influence of an external body force F , where p is

he particle momentum. The right hand side shows the effect due

o collision between particles, �. Collision results in a transfer of

omentum, also referred to as a relaxation to local equilibrium

 Wolf-Gladrow, 20 0 0 ). Fig. 2 is a visual representation of these in-

eractions. 

So far, we have only considered how particle ensembles move

nd interact within the continuous regime. However, we cannot

ompute for infinite degrees of freedom and so for the purposes

f numerical simulation, the density distribution function and the

oltzmann transport equation must be discretized. 

The process of discretization is shown visually in Fig. 3 . 

The lattice Boltzmann equation (LBE), shown in Eq. (3 ) is the

rst order discretization of the continuous Boltzmann transport
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Fig. 3. Top: The continuous Boltzmann distribution is discretized over a finite set 

of particle velocities. The red lines are the distribution functions associated with a 

discretized velocity. Bottom: The discretization process occurs over physical space. 

The volume to be simulated is sectioned into nodes. Each node has a set of veloc- 

ities, pictured above as the discretized velocity space – D2Q9 (dimension 2, veloc- 

ity 9). The continuous particle distribution (red) is mapped over the 2-dimensional 

velocity space to form a lattice distribution. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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equation. 

f i ( x + e i δt , t + δt ) = f i ( x, t ) − f i ( x, t ) − f eq 
i ( x, t ) 

τ
(3)

Here, the collision term � is approximated through a BGK oper-

ator ( Bhatnagar et al., 1954 ). This approximation states that the

rate at which the streamed distribution function relaxes towards

local equilibrium is governed by the relaxation parameter τ . The

subscript i indicates the direction associated with the D2Q9 lattice

( Succi, 2001 ). 

Next, the equilibrium distribution function is discretized over

velocity space, given by Eq. (4 ), 

f eq 
i 

= w i ρ

[ 

1 + 

e i · u 

c 2 s 

+ 

uu : 
(
e i e i − c 2 s I 

)
2 c 4 s 

] 

(4)

where c s is the speed of sound of the lattice and defined as c s =
δx 
δt 

1 √ 

3 
. Lattice velocities e i and lattice weights w i are chosen in ac-

cordance with the D2Q9 model, and given by Eqs. (5) and (6) . 

e i = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 i = 0 (
cos 

(
π

2 

( i − 1 ) 
)
, sin 

(
π

2 

( i − 1 ) 
))

i = 1 . . . 4 

√ 

2 

(
cos 

(
π

4 

+ 

π

2 

( i − 5 ) 
)
, sin 

(
π

4 

+ 

π

2 

( i − 5 ) 
))

i = 5 . . . 8 

(5)

w i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

4 

9 

i = 0 

1 

9 

i = 1 . . . 4 

1 

36 

i = 5 . . . 8 

(6)

The volume averaged density and volume averaged velocity are

calculated through Eq. (7) . 

ρ = 

∑ 

f i , and ρu = 

∑ 

e i f i (7)

Through the Chapman–Enskog expansion, an unmodified LBE re-

tains the Navier–Stokes Equation, given by Eq. (8 ), in the near-

incompressible limit ( Chapman and Cowling, 1960 ). 

∂( ρu ) + ∇ · ( ρuu ) = −∇P + ∇ · ( ρνe ( u ∇ + ∇u ) ) (8)

∂t 
here P is the fluid pressure and νe is the effective kinematic vis-

osity corresponding to the viscous stress that exists within the

uid itself (as opposed to kinematic viscosity ν , which relates to

he viscous stress near solid-liquid interfaces). We can group this

quation into accelerating elements. The left hand side of Eq. (8) is

he inertial element. The right hand side consists of the pressure

nd viscous elements. 

In summary, fluid is treated as a statistical ensemble of point

ike particles, the time evolution of which is governed by a series

f streaming and collision steps. Although many assumptions have

een made in this kinetic description, it is proven in the macro-

copic near-incompressible limit that the LBE retains the incom-

ressible Navier–Stokes solution. 

.2. The generalized lattice Boltzmann model 

Soon after its emergence, the LBE was successfully applied to

uid flow at pore scales ( Succi et al., 1989 ). A primary advantage

f the method is to simulate complex porous geometries without

enerating a complex lattice mesh. By adding more nodes within

he same volume, the resolution of the boundary between solid

nd fluid nodes is enhanced. This benefit, coupled with a simple

arallelization procedure of the LB algorithm, allows for the fast

nd accurate simulation of fluid flow through a complex geometry

 Punzo et al., 1994 ). 

However, a detailed description of the pore geometry is un-

vailable over a large flow domain. Based on currently available

easurement tools, only volume averaged rock properties (perme-

bility and porosity) are obtainable. The representative volume el-

ment (REV) is the spatial extent over which this upscaling occurs

 Nordahl and Ringrose, 2008 ). Therefore, the Navier–Stokes equa-

ion is generalized to include empirically derived damping forces,

hich are a function of these volume averaged rock properties.

qs. (9) and (10) reflect the resistance to flow due the presence

f porous medium. 

∂ ( ρu ) 

∂t 
+ ∇ ·

(
ρuu 

φ

)
= −∇P + ∇ · ( ρνe ( u ∇ + ∇u ) ) + ρF (9)

 = −φν

K 

u − φF e √ 

K 

| u | u + φG (10)

here F is the damping term, K is the permeability, ν is the fluid

iscosity due to sheer between fluid and solid boundaries, and φ
s the rock porosity. F includes the linear in velocity Darcy term,

he non-linear in velocity Forchheimer term and an external body

orce G . As φ → 1 in the absence of porous media, the general-

zed Navier–Stokes equation reverts to the Navier–Stokes equation.

t low flow velocities, the generalized Navier–Stokes equation re-

uces to Darcy flow, shown in Eq. (11) . 

φν

K 

u = −∇P (11)

ignificant variations of permeability and porosity over small dis-

ances require that the REV be treated as small as possible. Natural

nd induced fractures add another layer of complexity in modeling

ow. Fracture geometries require high spatial resolution. A gener-

lized LBM developed for the simulation of a slightly compressible

uid through porous media at REV scale is uniquely suited to in-

orporate these complexities. 

Several LB models have been developed to simulate fluid flow

hrough porous medium at the REV scale ( Dardis and McCloskey,

998, Spaid and Phelan, 1997, Freed, 1998 ). Selection of an opti-

al model should incorporate all relevant flow mechanisms, which

overn fluid flow in a highly heterogeneous medium. 

Within the LB framework, Guo and Zhao, (2002) proved

hrough the Champman–Enskog expansion that the generalized
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φ

avier–Stokes equation can be obtained from a generalized lat-

ice Boltzmann model (GLBM). To represent the presence of porous

edium at every lattice node, the LBE is expanded to include a

amping term, which is a function of the volume averaged perme-

bility and porosity shown in Eqs. (12) and (13) . 

f i ( x + e i δt , t + δt ) = f i ( x, t ) − f i ( x, t ) − f eq 
i ( x, t ) 

τ
+ δt F i (12) 

 i = w i ρ
(

1 − 1 

2 τ

)[ 

e i · F 

c 2 s 

+ 

uF : 
(
e i e i − c 2 s I 

)
φc 4 s 

] 

(13) 

here the particle distribution functions f i are treated as equilib-

ium distribution functions under the assumption of small devia-

ion from local equilibrium ( Succi, 2001 ). F is the hydrodynamic

amping force shown in Eq. (10 ). The discretized density distri-

ution function is also altered to reflect the presence of a porous

edium shown in Eq. (14) . 

f eq 
i 

= w i ρ

[ 

1 + 

e i · u 

c 2 s 

+ 

uu : 
(
e i e i − c 2 s I 

)
2 φc 4 s 

] 

(14) 

The equilibrium distribution function and the forcing term

ithin the generalized LBE are both a function of the macroscopic

uid velocity. To solve for this unknown, the fluid velocity is de-

ned by Eq. (15) . 

u = 

∑ 

e i f i + 

δt 

2 

ρF (15) 

 is also a function of u and so Eq. (15) is non-linear with respect

o velocity. Since the macroscopic velocity is quadratic, Eq. (15) can

e re-written as Eq. (16) . 

 = 

v 

c 0 + 

√ 

c 2 
0 

+ c 1 | v | 
(16) 

here v is termed the temporal velocity and defined in Eq. 17 . 

v = 

∑ 

e i f i + 

δt 

2 

φρG (17) 

 0 and c 1 are shown in Eqs. (18) and (19) . 

 0 = 

1 

2 

[
1 + φ

δt 

2 

ν

K 

]
(18) 

 1 = φ
δt 

2 

F e √ 

K 

(19) 

he local density computation is identical to the unmodified LBM,

here lattice density is equivalent to the summation of indi-

idual density distribution functions. In a supplementary article

uo et al. (2002 ) shows how the governing macroscopic equations

re retained through the Chapman–Enskog expansion in the near-

ncompressible limit. Through this analysis, equations of state are

eveloped, shown in Eq. (20) . 

 = 

c 2 s ρ

φ
and νe = c 2 s 

(
τ − 1 

2 

)
δt (20) 

. LBM in a fractured reservoir system 

The following two sections will provide the reader with a com-

rehensive methodology for applying the GLBM ( Guo et al., 2002 )

owards the fractured reservoir system (FRS). Along with the GLBM

tself, we must also consider the boundary conditions between the

racture network system and the porous media. In addition a con-

istent method for converting between the lattice system and the

hysical system must be established. 
.1. Lattice to physical system conversions: dynamic similarity 

For two systems of different scales to exhibit identical flow evo-

utions, dynamic similarity must exist. Dynamic similarity ensures

hat two systems have identical length scale, time scale, and force

cale ratios ( Wolowicz et al., 1979 ). 

We will consider two geometries – the well and fracture. For

he lattice system and physical system to exhibit geometric simi-

arity, all three spatial dimension ratios of the reservoir as well as

he ratio of well and fracture length to reservoir length must be

dentical. 

A means to measure time scale and force scale ratios is by the

on-dimensionalization of the generalized Navier–Stokes equation, 

hrough which the relative magnitudes of each force are compared.

o derive the non-dimensional form of the generalized Navier

tokes equation, all flow dependent variables are substituted for a

inear combination of the associated nondimensional variables and

haracteristic system variables. A set of characteristic system pa-

ameters provide a constant measure of conversion between the

hysical and dimensionless systems.Typically, boundary conditions 

nform which parameters are suitable. 

The characteristic length r 0, p is the physical distance from the

nner boundary (well and fracture) to the edge of the reservoir. A

econd choice for the characteristic length is the node to node dis-

ance, or the resolution of the lattice, in physical units. The char-

cteristic time t 0, p is chosen to be the fastest time scale for which

 fluid can travel the characteristic length. This time scale occurs

hen the well is opened to production and exhibits the highest

ow velocities, providing a bright line measurement for the char-

cteristic velocity u 0, p . The characteristic time t 0, p can also be cho-

en for the time over which a boundary condition changes. The

hysical variables, r p , t p , and u p are listed in their dimensionless

orm as represented in Eq. (21) . 

 d = 

r p 

r 0 ,p 

, t d = 

t p 

t 0 ,p 

, u d = 

u p 

u 0 ,p 

(21)

q. (22) completes the set of dimensionless variables required for

he nondimensionalization of the generalized Navier–Stokes equa-

ion. 

 d = r 0 ,p ∇ p , ∇ 

2 
d = r 2 0 ,p ∇ 

2 
p , P d = 

P p 

μe 
u 0 ,p 

r o,p 

(22)

here the physical pressure is nondimensionalized by a character-

stic viscous sheer stress. The governing flow equation to be made

imensionless is an alternate form of the generalized Navier–

tokes equation, shown in Eq. (23 ), where only the Darcy term

ithin the damping force is considered. 

∂u 

∂t 
+ ∇ ·

(
uu 

φ

)
= − 1 

ρ
∇P + νe ∇ 

2 u − φν

K 

u (23)

q. (23) shows five forcing elements: the time dependent term

variation), convection, pressure, diffusion, and damping in the or-

er that they appear. A dimensionless form of the governing equa-

ion, shown in Eq. (24) , is obtained by substituting the dimension-

ess variables found in Eqs. (21) and (22) . The full derivation can

e found in Appendix A . 

Re 

St 

∂ u d 

∂ t d 
+ Re ∇ d ·

u d u d 

φ
= −∇ d P d + ∇ 

2 
d u d −

φ

J Da 
u d (24)

e = 

u 0 ,p r 0 ,p 

υe 
, J = 

νe 

ν
, Da = 

K 

r 2 
0 ,p 

(25)

= 

pore v olume 

total v olume 
, St = 

t 0 ,p u 0 ,p 

r 0 ,p 

(26) 
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Fig. 4. Pressure is interpolated from the boundary (red) to the nearest neighboring 

lattice nodes (yellow) at each time step. At these neighboring nodes, the density 

distribution functions are solved using a modified Zou–He boundary condition. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 5. The area pictured in red is the non-computational regime wherein the 

boundary lies. The yellow nodes are the nearest neighboring nodes to the bound- 

ary. The arrows represent the distribution components that stream from areas not 

within the computational regime. These distributions are solved through a modified 

Zou–He boundary condition. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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The final non-dimensionalized formulation shows that the evo-

lution of the flow field is government by five dimensionless

parameters - the Reynolds number Re , the Viscosity ratio J , the

Darcy number Da , porosity φ, and the Strouhal number St . 

In proposing the GLBM, Guo et al. mentioned only four nondi-

mensional parameters governing the evolution of the flow. Shown

in the non-dimensional form of the generalized Navier–Stokes

equation above, the Strouhal number is also a necessary compo-

nent when considering the equivalency between physical and lat-

tice systems. The Strouhal number is the ratio of the characteris-

tic flow time scale, r 0, p / u 0, p , normalized by the reference time, t 0, p .

If boundary conditions are changing quickly compared to the flow

itself, which can be the case if the bottom-hole pressure rapidly

drops, then the Strouhal number will highlight the difference in

magnitude between the convective term and the temporal terms.

For the purposes of the simulations posed in this paper, the bound-

ary conditions are constant. Therefore, the Strouhal number will be

at unity. 

To simulate Darcy flow, a choice in parameters must be made

such that the magnitude of the Reynolds number is negligible, the

Strouhal number is at unity and the combination of the Viscos-

ity ratio and the Darcy number minimized. Under these conditions,

the non-dimensionalized governing equation given in Eq. (24) re-

duces to the dimensionless Darcy equation, shown in Eq. (27) . 

φ

J Da 
u d = −∇ d P d (27)

We have determined a set of dimensionless parameters, which

govern fluid flow evolution by nondimensionalizing the momen-

tum balance equation. Let us apply the same technique to the

continuity equation given by Eq. (28 ) for the case of a near-

incompressible fluid with no sinks or sources. 

∂ 

∂t 
( ρφ) = −∇ · ( ρu ) (28)

Eq. (29 ) is the dimensionless form of Eq. (28 ). The derivation can

be found in Appendix B . 

∂ 

∂t d 
ρd = − 1 

φ
Da St · ∇ d 

2 
( P d ) (29)

The rate at which density changes over the flow field is propor-

tional to the combined magnitude of the porosity, Darcy and the

Strouhal number. This dimensionless grouping allows for a scaling

of the characteristic time step. Any scale up to the characteristic

time can be absorbed into the permeability term. 

To conclude the discussion on dimensionless numbers, a meso-

scopic description of a fluid can simulate identical flow evolutions

to a system several orders of magnitude in size larger by ensuring

that the ratio of forces acting on a volume of fluid is identical and

dynamic similarity is maintained. Dimensionless numbers are the

measure by which we ensure this similarity. 

3.2. Well and fracture boundary conditions 

Although high variations in permeability and porosity require

the node to node length be minimized, the dimensions of the well

and fracture are often smaller than the imposed unit node length.

Therefore, it is often necessary to treat system boundaries with

as few lattice nodes as possible. However, to retain the govern-

ing macroscopic flow equations through the Chapman–Enskog ex-

pansion, there must be suffcient node resolution to distinguish be-

tween the hydrodynamic and kinetic regimes ( Chapman and Cowl-

ing, 1960 ). The Chapman–Enskog analysis depends on the expan-

sion through the smallness parameter, which is the ratio between
he kinetic mean-free-path length and the hydrodynamic (small-

st macroscopic) length. When the LBE simulates fluid flow over a

ew lattice nodes, there is no separation between the kinetic and

ydrodynamic scales, calling the method’s validity into question

 Lallemand and Luo, 20 0 0 ). 

A low resolution boundary of the well and fracture boundary is

chievable, however, through a combination of the damping term

nherent to the GLBM and a modified Zou–He boundary condi-

ion applied to the well and fracture system. This section will con-

ain the derivation and the procedure to apply a modified Zou–He

oundary. 

First, to establish the geometry of a constant pressure well and

inear fracture, the boundary nodes should be set upon the nearest

eighboring nodes of the boundary. In this way, the size of the well

nd the width of the fracture is incorporated. Pressure is interpo-

ated linearly between the boundary and the nearest neighboring

odes extending radially from the boundary, as shown in Fig. 4. 

From the interpolated pressure, the lattice neighboring node

ensity is calculated through an equation of state, given by Eq.

20 ). The interpolated density is used to solve for the unknown

ensity distribution functions ( Zou and He, 2016 ). 

Pictured in Fig. 5 is the area in which the well and fracture

oundary lies. On the face of these boundaries, a direct application

f the Zo–He boundary condition will yield all unknown distribu-

ions that are in the direction of fluid flux. At the corner nodes of

he fracture boundary, the flux is neither normal nor parallel to the

ontaining boundary surfaces and therefore the Zou–He boundary

ust be modified to capture the distribution functions which are

n the true direction of fluid flux. 

As an example calculation, consider the bottom left corner node

f the fracture in Fig. 5 b. The unknown distribution functions, f ,
3 
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Fig. 6. Simulation of homogenous well reservoir in Darcy flow. Top: comparison 

plot between generalized LBM (line) and commercial simulation software (box). 

Bottom: visualized pressure profile of well through production life of reservoir. 

Pressure measured in lattice units. 
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 4 , and f 7 are calculated in Eqs. 30 –32 : 

f 3 = f 1 + 

2 

5 

( ρ − ( f 0 + f 6 + f 8 + 2( f 1 + f 2 + f 5 ) ) ) + 2( f 6 − f 8 ) 

(30) 

f 4 = f 2 + 

2 

5 

( ρ − ( f 0 + f 6 + f 8 + 2 ( f 1 + f 2 + f 5 ) ) ) + 2 ( f 8 − f 6 ) 

(31) 

f 7 = f 5 + 

1 

5 

( ρ − ( f 0 + f 6 + f 8 + 2 ( f 1 + f 2 + f 5 ) ) ) (32) 

he full derivation is found in Appendix C . We can apply the mod-

fied Zou–He boundary to the well for a more robust treatment of

he unknown distribution functions of the well boundary. 

To summarize, minimal node usage of the inner boundary is

ikely in the case of a sparse grid lattice configuration. There have

een concerns over low resolution boundaries not respecting the

hapman–Enskog assumptions. In addition, low resolution bound-

ries can pose problems including the development of lattice ef-

ects (flow evolutions that are a result of the underlying grid ge-

metry) ( Succi, 2001 ). A modified Zou–He boundary condition is

stablished to counteract unrealistic flow evolutions and provide

table and accurate simulation results. 

.3. Reservoir edge boundary conditions 

Two outer boundary conditions are considered in reservoir sim-

lation: the no-flow boundary condition and the constant pressure

oundary condition. The no-flow boundary condition simulates a

olumetric reservoir (no external sources of flow on the outer

oundary). The constant pressure boundary simulates a reservoir

hat is bounded by another aquifer system. 

Within the LB framework, a direct application of the Zou–He

oundary condition on these outer nodes is sufficient. For the sim-

lations posed in this paper, a no-flow boundary condition is used.

. Results 

.1. Homogenous simulation 

The homogenous simulation inputs for the well and the frac-

ure for both the LBM and commercial simulation are as follows:

he reservoir is segmented into a 2D array of 200 ×200 nodes/grid

locks. The node to node distance (or length of the grid block) is

 m. 

The fluid is treated as slightly compressible and the reservoir is

ully saturated. Rock compressibility is omitted. The permeability

 = 1 darcy and porosity φ is set at 20%. 

The diameter of the well is 0.2 m set directly upon the center

ode. The fracture is treated as a line source positioned equidis-

antly from the surrounding nodes. Three fracture lengths are con-

idered for simulation – 80 m, 120 m, and 160 m. 

The initial pressure of the reservoir is 100 kPA and the bottom-

ole flowing pressure is set to be 95% of the initial reservoir pres-

ure. The inner boundary is treated as a constant pressure bound-

ry and the edge of the reservoir maintains a no flow boundary

ondition. Refer to section: lattice to physical system. Conversions:

ynamic Similarity for converting physical parameters into lattice

arameters. 

Figs. 6 and 7 show the simulation results for a constant pres-

ure well and fracture producing from a homogenous reservoir.

hese results are compared against the commercial simulation

uns. For both the well and fracture simulations, the results are

n excellent agreement for the case of Darcy flow. 

We have also compared the GLBM of a linear fracture of various

engths with the Joshi model ( Joshi, 1988 ). The simulation ran un-

er identical conditions as the homogenous simulations presented
ithin this section, aside from a constant pressure boundary con-

ition applied to the reservoir outer boundary. The Joshi model

rovides an analytical solution for horizontal well flow, but the

ame solution can be extended to that of a linear fracture. The

ode of comparison is the productivity coefficient. The produc-

ivity coefficient is calculated as the ratio between the flow rate

o the pressure difference at steady state conditions. Results show

xcellent agreement at small fracture lengths. However, a diver-

ence between the analytical Joshi model and the GLBM develops

t larger fracture lengths. This divergence is attributed to the inner

oundary approaching the limits of the reservoir ( Fig. 8 ). 

.2. Heterogeneous simulation 

The heterogeneous simulation inputs for the well and the frac-

ure for both the LBM and commercial simulation are as follows:

he reservoir is segmented into a 2D array of 220 ×60 nodes/grid

locks. The node to node distance (length of the grid block) is 3m.

The fluid is treated as slightly compressible and the reservoir

s fully saturated. Rock compressibility is omitted. The permeabil-

ty and porosity arrays are taken from the 10th layer of the SPE-10

ollaborative solution project, shown in Fig. D.1 in the Appendix

 Spe comparative solution project 2001 ). The largest permeability

alue in the array is 2 Darcy and the minimum is 3.8 ∗ 10 −6 Darcy.
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Fig. 7. Simulation of homogenous linear fracture reservoir in Darcy flow. Top: com- 

parison plot of three fracture lengths (80 m, 120 m, 160 m) between generalized 

LBM (line) and commercial simulation software (box). Bottom: visualized pressure 

profile of linear fracture through production life of reservoir. Pressure measured in 

lattice units. 

Fig. 8. Comparison of GLBM simulation of linear fracture with Joshi formula for 

various fracture lengths. Productivity coefficient is calculated as the ratio between 

flow rate and pressure difference between linear fracture and surrounding reser- 

voir. Divergence from analytical solution is due to fracture approaching boundary 

of reservoir. 

Fig. 9. Simulation of heterogeneous well reservoir in Darcy flow. Top: compari- 

son plot between generalized LBM (line) and commercial simulation software (box). 

Bottom: visualized pressure profile of well in heterogeneous medium through pro- 

duction life of reservoir. Pressure measured in lattice units. 
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he maximum porosity value is 48% and the minimum is 0%. How-

ver, the generalized equilibrium distribution function, given in Eq.

14) , cannot take porosity values of 0%. Therefore, all null values of

orosity are treated as 10 −6 %. 

For well simulations, the diameter of the well is 0.2 m set in

he center of the reservoir. For fracture simulations, the fracture

idth is treated as a line source and is centrally positioned. Three

racture lengths are considered for simulation −80 m, 120 m, and

60m. 

The initial pressure of the reservoir is 100 kPA and the bottom-

ole flowing pressure is set to be 95% of the initial reservoir pres-

ure. The inner boundary is treated as a constant pressure bound-

ry and the edge of the reservoir maintains a no flow boundary

ondition. Refer to the methodology section for physical to lattice

onversion methodology. 

Figs. 9 and 10 show the results for the simulation of fluid

ow in a heterogeneous porous material under production from

 constant pressure well and fracture. The LBM results are com-

ared against the commercial simulation results and show excel-

ent agreement for both cases. 

The GLBM FRS simulation shows excellent agreement in the re-

overy factor over the life of the reservoir for both homogenous

nd heterogeneous cases. The agreement in simulation results sup-
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Fig. 10. Simulation of heterogeneous linear fracture reservoir in Darcy flow. Top: 

comparison plot of three fracture lengths (80 m, 120 m, 160 m) between general- 

ized LBM (line) and commercial simulation software (box). Bottom: visualized pres- 

sure profile of linear fracture in heterogeneous medium through production life of 

reservoir. Pressure measured in lattice units. 
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orts the use of a modified Zou–He boundary condition for corner

odes of the well and linear fracture. 

. Conclusion 

To summarize this work, we have shown that the lattice Boltz-

ann method can be accurately applied to the case of porous

edia flows at the REV scale within a fracture network envi-

onment. To do so, the original lattice Boltzmann method is ex-

ended through the Guo et al. method to incorporate damping

erms present within the flow field due to the presence of porous

edia. A modified Zou–He boundary condition is then developed

o model the interface between the well and fracture system with

he surrounding porous media. The treatment of the boundary is

mportant because the largest pressure drop exists immediately

round the wellbore and fracture system and therefore the ma-

ority of the producible fluid is in this region. Lastly, a system of

on-dimensional governing equations are derived for the case of

he FRS such that the conversion between the lattice and physical

ystem is consistent. 

We present results for a homogenous and heterogeneous

orous system for the geometries of a well and linear fracture and
ompare our results with commercial simulation software suites

or the case of Darcy flow. Results are in excellent agreement with

nalytical and finite-difference solutions. 

The choice in using a lattice Boltzmann based reservoir simu-

ation tool over other CFD techniques is often viewed as a matter

f economics. The LBM can capture a wide range of flow regimes

n highly disordered porous media at the REV scale with minimal

ost associated with implementation - in other words, the LBM is

ery easy to implement. Not only is the underlying algorithm sim-

le, but if one chooses a parallel implementation of the codebase

or cases of simulating fine grained heterogeneities and complex

racture geometries, it is quick to develop. 

In future work, a more complex fracture network will be sim-

lated over multiple flow regimes. Our intention is to examine

he differences in production that result from assuming alternative

ow regimes and whether these elements make significant contri-

utions to the evolution of the flow field. In addition, rock com-

ressibility will be considered for high pressure reservoirs. Lastly,

n analysis of the parallel LBM algorithm will be performed to be

ompare with other prominent CFD techniques for porous media

ows. 
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ppendix A. Non dimensionalization of generalized Navier 

tokes 

Eqs. (A.1) and (A.2) represent the set of non-dimensional sys-

em parameters used in the non-dimensionlization of the govern-

ng macroscopic fluid equation, shown in Eq. (A.3) . The dimension-

ess variables are formed through the reference of a characteristic

ystem variable, which can be found in the text of this paper. 

 d = 

r p 

r 0 ,p 

, t d = 

t p 

t 0 ,p 

, u d = 

u p 

u 0 ,p 

(A.1)

 d = r 0 ,p ∇ p , ∇ 

2 
d = r 2 0 ,p ∇ 

2 
p , P d = 

P p 

μe 
u 0 ,p 

r 0 ,p 

(A.2)

∂u 

∂t 
+ ∇ ·

(
uu 

φ

)
= − 1 

ρ
∇P + υe ∇ 

2 u − φν

K 

u (A.3)

fter substitution of Eqs. (A.1) and (A.2) into Eq. (A.3) : 

u 0 ,p 

t 0 ,p 

∂ u d 

∂ t d 
+ 

u 

2 
0 ,p 

r 0 ,p 

∇ d ·
u d u d 

φ
= −υe u 0 ,p 

r 2 
0 ,p 

∇ d P d + 

υe u 0 ,p 

r 2 
0 ,p 

∇ 

2 
d u d 

− νu 0 ,p 

K 

φu d (A.4) 

ach accelerating element within Eq. (A.4) is composed of a group

f characteristic system parameters and a non-dimensional group,

hich is of the order 1 everywhere within the flow field. The rel-

tive magnitudes of these forces (accelerating elements) are dic-

ated by the characteristic system parameter group. These coeffi-

ients have units of length/time 2 . We therefore can compare the

elative magnitudes of each forcing element to one another to de-

ermine the dominating flow regime. 

Let us compare the relative magnitude of the viscous force,

iven by υe u 0 ,p / r 
2 
0 ,p 

in Eq. (A.4) to all other elements by dividing

hroughout by the viscous coefficient. 

u 0 ,p r 0 ,p 

υe 

r 0 ,p 

u 0 ,p t 0 ,p 

∂ u d 

∂ t d 
+ 

u 0 ,p r 0 ,p 

υe 
∇ d ·

u d u d 

φ

= −∇ d P d + ∇ 

2 
d u d − φ

ν

νe 

r 2 0 ,p 

K 

(A.5) 
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Fig. D.1. SPE-10 permeability (top) and porosity (bottom) data. Permeability values are scaled logarithmically for viewing. SPE-10 data is used to compare the generalized 

LBM with commercial simulation software. The 10th layer of the permeability and porosity field were used for simulation of 2D reservoir. 
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St 
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∂ t d 
+ Re ∇ d ·

u d u d 

φ
= −∇ d P d + ∇ 

2 
d u d −

φ

J Da 
u d (A.6)

Re = 

u 0 ,p r 0 ,p 

νe 
, J = 

νe 

ν
, Da = 

K 

r 2 
0 ,p 

(A.7)

φ = 

pore v olume 

total v olume 
, St = 

u 0 ,p t 0 ,p 

r 0 ,p 

(A.8)

Appendix B. Non dimensionalization of the continuity 

equation 

∂ 

∂t 
( ρφ) = −∇ · ( ρu ) (B.1)

By substituting in the Darcy correlation for fluid velocity in porous

media, 

∂ 

∂t 
( ρφ) = −∇ ·

(
K 

ν
( ∇P ) 

)
(B.2)

Using the variable assignments in A and ρd = ρp / ρ0 ,p , where ρ0, p 

is a characteristic system density, a simple substitution yields: 

ρ0 ,p 

t 0 ,p 

∂ 

∂t d 
( φρd ) = −K 

ν

μu 0 ,p 

r 0 ,p 

1 

r 2 
0 ,p 

· ∇ d 
2 
( P d ) (B.3)

By dividing the above equation throughout by the coefficient of the

time dependent term, we arrive at the following: 

∂ 

∂t d 
( φρd ) = − K 

r 2 
0 ,p 

u 0 ,p t 0 ,p 

r 0 ,p 

· ∇ d 
2 
( P d ) (B.4)

∂ 

∂t d 
ρd = − 1 

φ
Da St · ∇ d 

2 
( P d ) (B.5)

Appendix C. Modified Zou–He boundary formulation 

We assume that the bounce-back condition is valid for the non-

equilibrium part of the distribution functions, given by Eqs. (C.1) –

(C.3) (Zou and He, 2016) . 

f 3 = f 1 + f eq 
3 

− f eq 
1 

(C.1)

f 4 = f 2 + f eq 
4 

− f eq 
2 

(C.2)

f 7 = f 5 + f eq 
7 

− f eq 
5 

(C.3)

If we solve for the equilibrium contributions in Eqs. (C.1) –(C.3) us-

ing Eq. (14) , Eqs. (C.4) –(C.6) are formed. 

f 3 = f 1 − 2 

ρu x (C.4)

3 
f 4 = f 2 − 2 

3 

ρu y (C.5)

f 7 = f 5 − 1 

6 

( ρu x + ρu y ) (C.6)

By the definition of ρ we have: 

= f 0 + f 1 + f 2 + f 3 + f 4 + f 5 + f 6 + f 7 + f 8 (C.7)

urther substitution of Eqs. (C.4 )–( C.6 ) into Eq. (C.7 ) leads to Eq.

C.8 ): 

u x + ρu y = −6 

5 

( ρ − ( f 0 + f 6 + f 8 + 2 ( f 1 + f 2 + f 5 ) ) ) (C.8)

ext, we will employ the definition of the temporal macroscopic

elocity, given by Eq. 17 . 

u x = f 1 − f 3 + f 5 − f 7 + f 8 − f 6 (C.9)

hrough the substitution of Eqs. (C.4) –(C.6) into Eq. (C.9) , we form

q. (C.10) . 

u x − ρu y = 6 ( f 8 − f 6 ) (C.10)

ow, all the relevant information has been derived to solve for f 3 ,

 4 , and f 7 . The rearrangement and combination of Eqs. (C.8) and

C.10) yield: 

f 3 = f 1 + 

2 

5 

( ρ − ( f 0 + f 6 + f 8 + 2 ( f 1 + f 2 + f 5 ) ) ) + 2 ( f 6 − f 8 ) 

(C.11)

f 4 = f 2 + 

2 

5 

( ρ − ( f 0 + f 6 + f 8 + 2 ( f 1 + f 2 + f 5 ) ) ) + 2 ( f 8 − f 6 ) 

(C.11)

f 7 = f 5 + 

1 

5 

( ρ − ( f 0 + f 6 + f 8 + 2 ( f 1 + f 2 + f 5 ) ) ) (C.13)

ppendix D. SPE-10 permeability and porosity field 

Fig. D.1 
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