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a b s t r a c t 

Nonlinear groundwater flow models have the propensity to be overly complex leading to burdensome 

computational demands. Reduced modeling techniques are used to develop an approximation of the 

original model that has smaller dimensionality and faster run times. The reduced model proposed is a 

combination of proper orthogonal decomposition (POD) and the discrete empirical interpolation method 

(DEIM). Solutions of the full model (snapshots) are collected to represent the physical dynamics of the 

system and Galerkin projection allows the formulation of a reduced model that lies in a subspace of the 

full model. Interpolation points are added through DEIM to eliminate the reduced model’s dependence on 

the dimension of the full model. POD is shown to effectively reduce the dimension of the full model and 

DEIM is shown to speed up the solution by further reducing the dimension of the nonlinear calculations. 

To show the concept can work for unconfined groundwater flow model, with added nonlinear forcings, 

one-dimensional and two-dimensional test cases are constructed in MODFLOW-OWHM. POD and DEIM 

are added to MODFLOW as a modular package. Comparing the POD and the POD-DEIM reduced models, 

the experimental results indicate similar reduction in dimension size with additional computation speed 

up for the added interpolation. The hyper-reduction method presented is effective for models that have 

fine discretization in space and/or time as well as nonlinearities with respect to the state variable. The 

dual reduction approach ensures that, once constructed, the reduced model can be solved in an equation 

system that depends only on reduced dimensions. 

© 2016 Published by Elsevier Ltd. 
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1. Introduction 

Reduced modeling has become a necessary field of research

given the near-complete scientific understanding of many physical

processes and the ensuing complexity of mathematical models. Re-

duced modeling techniques are commonly applied to decrease the

computational burden associated with high dimensionality. Tra-

ditionally, the proper orthogonal decomposition (POD) method is

used to formulate a low dimension basis for high-dimension dy-

namical systems ( Vermeulen et al., 2004 ; Antoulas et al., 2001 ).

The key advantage of using POD for model reduction is that the re-

duced model maintains the physics of the full model and captures

the dominating characteristics of the full model. Applications of

POD is also known in the literature as Empirical Orthogonal Func-

tions (EOF) ( von Storch and Hannoschöck, 1985 ; McPhee and Yeh,

2008 ), Coherent Structures (CS) ( Sirovich, 1987 ), Principal Compo-
∗ Corresponding author. 
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ent Analysis (PCA), Karhunen-Loéve (KL) methods ( Graham and

evrekidis, 1996 ), or Common Factor Analysis (CFA) ( Reyment and

oreskog, 1993 ). 

For groundwater flow specifically, most previous applications of

OD have utilized the confined flow equation, which is linear with

espect to the state variable of interest, namely, the hydraulic head

 Boyce and Yeh, 2014 ). To briefly describe this reduced model con-

truction: one selects a set of model simulation results at specific

nstances of simulation time, which is called a snapshot set. POD

s then applied to identify the singular values of the matrix com-

osed of the snapshots. Only a selected few of the singular values

re chosen such that most of the variance of the original system is

etained. A subspace basis is then constructed and Galerkin projec-

ion is applied to form the reduced model ( Vermeulen et al., 2004 ).

xtensions to this method for nonlinear problems include modifi-

ations to the Galerkin projection—such as using a Petrov–Galerkin

rojection for stabilization ( ̧S tef ̆anescu et al., 2015 ) or adaptive

itz vectors ( Nigro et al., 2015 )—or alternate strategies such as

inimization of the L 1 norm representing the reduced model ap-

roximation error ( Abgrall and Amsallem, 2016 ). Alternatively, lin-

arization techniques such as quasilinearization, can be utilized to

http://dx.doi.org/10.1016/j.advwatres.2016.09.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2016.09.005&domain=pdf
mailto:williamy@seas.ucla.edu
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acilitate POD reduced model construction for the case of nonlinear

arameter estimation ( Siade et al., 2012 ). 

While confined flow models have nice linear properties that

llow for flexible manipulation and superposition, nonlinearities

re unavoidable in many groundwater modeling projects. Requir-

ng unconfined flow creates nonlinear equations that are harder

o solve and hence more difficult to reduce successfully. Nonlin-

ar model reduction has been addressed thoroughly in ( Cardoso

t al., 2009 ), where a Markov chain Monte Carlo simulation

as performed for an inverse problem utilizing Bayesian infer-

nce. Boyce et al. (2015) also successfully reduced an unconfined

roundwater model using the Newton formulation of MODFLOW,

ODFLOW-NWT ( Niswonger et al., 2011 ). These examples of suc-

essful groundwater model reduction with reduced basis meth-

ds illustrate the added difficulty with nonlinearities and present

ethods that are only applicable in unique contexts. That is, the

olution scheme in both studies involves Newton’s method which

equires approximation of a Jacobian that may not be easy to ob-

ain. Also, approximating the Jacobian and formulating Newton’s

ethod can effectively linearizes the system since the Jacobian can

e evaluated at prior values of head. Lastly, there are more in-

erent memory requirements for a Newton solution than the tra-

itional MODFLOW (exactly twice as much), which may restrict

arge-scale applications ( Niswonger et al., 2011 ). 

The discrete empirical interpolation method (DEIM) is an ef-

ective approach to nonlinear approximations. Originally devel-

ped as the empirical interpolation procedure (EIP) ( Barrault et al.,

004 ), with the discrete form introduced in ( Chaturantabut and

orensen, 2010 ). It has been used in conjunction with POD for re-

ucing FitzHugh–Nagumo equations ( Chaturantabut and Sorensen,

010 ), shallow water equations ( ̧S tef ̆anescu and Navon, 2013 ),

nd an advection–diffusion–reaction system ( Cardoso et al., 2009 ).

hese model reduction procedures are also called reduced basis

RB) methods and an EIP has been developed in this context by

 Drohmann et al., 2012 ). Successful applications of RB methods to

arious forms of the Navier–Stokes equations (both steady and un-

teady) are demonstrated to have significant computational advan-

ages ( Quarteroni and Rozza, 2007 ). 

The joint application of POD and DEIM is a form of hyper-

eduction for nonlinear equations. This type of model reduction in

he literature of other fields is also gaining popularity. In electrical

ngineering, the methods have been successfully applied to a mag-

etostatic problem coupled to an electric circuit ( Henneron and

lenet, 2014 ) and in mechanical engineering, the methods were

sed for a solid mechanics problem involving nonlinear elasticity

 Radermacher and Reese, 2015 ). However, unconfined groundwa-

er flow models have not yet been reduced in this manner. In this

tudy, we propose a combined model reduction approach that: (1)

erforms POD on an unconfined groundwater flow model; (2) ap-

lies DEIM to the nonlinear component of the governing equation;

nd (3) implements the procedure within MODFLOW. 

By enabling model reduction within MODFLOW, a very large

ssortment of existing MODFLOW models—many have single run

imes on the order of hours or even days—can be reduced

o increase computational efficiency. Reducing the dimension of

hese models would permit large-scale applications—such as multi-

bjective optimization ( Reed et al., 2013 ) or Monte Carlo uncer-

ainty analysis ( Kasprzyk et al., 2009 ; Tonkin and Doherty, 2009 ;

iade et al., 2015 )—that can require hundreds of thousands, or even

illions of groundwater model runs. 

More robust reduced modeling techniques are needed for non-

inear dynamics in groundwater flow. Methods developed previ-

usly have resorted to using strategies designed for linear equa-

ions and do not address the additional time required to solve

 system of nonlinear equations. In large-scale simulations, hav-

ng nonlinear calculations that still have the computational com-
lexity of the full model dimension greatly inhibits the value of

eveloping the reduced model, which can have significant over-

ead itself. Application of POD-DEIM to the unconfined ground-

ater flow equations presents an opportunity to develop a hyper-

educed model utilizing controllable accuracy and computer run-

imes that scale with reduced dimensions only. 

. Methods 

The following methodology introduces unconfined groundwater 

ow equations and expands upon recent developments in POD and

EIM reduced modeling. The implementation of these methods

ithin the commonly used MODFLOW software will be described.

ll variable definitions are compiled in Table 1 with the following

onvention: uppercase letters for scalar variables; bold lowercase

or one-dimensional vectors; bold uppercase for two-dimensional

atrices. 

.1. Unconfined groundwater flow 

The general three-dimensional governing equation for constant-

ensity groundwater flow in an unconfined aquifer is given by

 Keating and Zyvoloski, 2009 ): 

 · ( Kh ∇h ) ± q = S y 
∂h 

∂t 
(1) 

here ∇ 

• is the divergence operator, ∇ is the gradient operator,

 is the isotropic hydraulic conductivity tensor [L/T], h is the hy-

raulic head [L], q is a volumetric flux per unit volume in or out

f the system [L/T], t is the time [T], and S y is the specific yield

–]. For the case of a two-dimensional flow and under the Dupuit

ssumptions (essentially horizontal flow), the governing equation

or an unconfined aquifer then becomes the Boussinesq equation

 Willis and Yeh, 1987 ): 

∂ 

∂x 

[
K xx h 

dh 

dx 

]
+ 

∂ 

∂y 

[
K yy h 

dh 

dy 

]
± W = S y 

∂h 

∂t 
(2) 

here K xx and K yy are the hydraulic conductivity parameters as-

umed to align with the x and y , and coordinates, respectively. In

his case, W is the net source/sink into the aquifer (including areal

echarge and point source wells) [L T −1 ]. Note that Eq. (2) is non-

inear as it involves the product terms of the state variable h . 

Applying a finite difference approximation scheme to the spatial

ariables ( x, y ) yields the following system of nonlinear ordinary

ifferential equations, represented in matrix form as Eq. (3) : 

h + f = B 

dh 

dt 
(3) 

here A , B ∈ R 

n ×n and h , f ∈ R 

n ×1 , n being the number of finite

ifference nodes on the model domain. A contains all coefficients

f head that are internally calculated as functions of head at each

ime step, making the product term ( Ah ) nonlinear. B contains

onstant coefficients for the temporal head change and constant

patial discretization values and f contains all head-independent

ources or sinks of water and head-independent boundary condi-

ions. The head at any time is then calculated using a backward-

ifference approach to ensure stability. After reordering some

erms and multiplying through by −1, the following matrix equa-

ion ( Eq. (4) ) is calculated to represent the flow system at each

ime step: [ 
B 

�t 
− A 

] 
h 

t+1 = 

B 

�t 
h 

t + f 

r 

A h 

( t+1 ) = b (4) 
h 
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Table 1 

Variable symbols and definitions along with appropriate units and initial default values. 

Symbol Dimension Units Description 

h n ×1 [m] Vector of groundwater head 

A h n ×n [–] Matrix containing nonlinear coefficients for the groundwater flow equation (elements that are functions of head) 

B n ×n Matrix containing linear coefficients for the groundwater flow equation (elements that are not a function of head) 

b n ×1 [–] Right-hand side vector of the groundwater flow equation 

K Scalar [m/day] Hydraulic conductivity in the x and y principal directions 

q n ×1 [m/day] Sources/sinks of water in flow per unit volume 

S y Scalar [–] Specific yield coefficient 

ε max Scalar [m] Maximum difference in head in two consecutive iterations. 

i , j Indices for the model cells in the x and y direction 

k Index for the iteration of the nonlinear solver 

t Index for the model time steps 

n Scalar [–] Number of finite difference cells of the model domain 

r Scalar [–] Number of singular values retained from POD to create the reduced model 

s Scalar [–] Number of snapshots taken of the full model 

d Scalar [–] Number of interpolation points used for the POD-DEIM reduced model 

�t Scalar [days] Uniform time step length 

�h s ×n Snapshot set of h 

�b s ×n Snapshot set of b 

σ i Scalar The i th singular value 

P n × r Projection matrix formed from POD on �h 

D n ×d Projection matrix formed from POD on �d 

Z n ×d Permutation matrix to select the dominant rows of the system 

z j Scalar The j th interpolation index 

c d ×1 Vector of reduced variables in DEIM formulation 

h r r ×1 Vector of state variables in the reduced space 

z d ×1 Vector of interpolation indices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

t  

o

P  

2

 

s  

d  

p  

e  

s  

n  

n  

n  

(  

w  

p  

w  

t  

a

A  

w  

b  

a  

E  

f  

t  

N  

t  

t  

o  

c

Z  

 

s  
Defining [ B 
�t 

− A ] as the nonlinear system matrix, A h , and

[ B 
�t 

h 

t + f ] as the right hand side vector of constants, b . A va-

riety of indirect methods can be used to solve for h 

t + 1 at

each time step. For the full model, the current study uti-

lizes the preconditioned conjugate-gradient solver (PCG), doc-

umented in ( Hill, 1990 ) and Picard iteration for every time

step, stopping when max 
1 <i<n 

( h k 
i 

− h k +1 
i 

) ≤ ε max (the maximum head

difference from iteration k to k + 1 is sufficiently small) or

max 
1 <i<n 

( in f low 

k +1 
i − out f low 

k +1 
i ) ≤ r max (the maximum flow residual

is sufficiently small). These methods are already programmed into

MODFLOW and the recently updated MODFLOW-OWHM ( Hanson

et al., 2014 ), which served as the base code for the POD-DEIM

development and includes the Newton Formulation of MODFLOW.

Eq. (4 ), which is called the full model, lies in the dimension n ×n ,

since there are n equations and n unknowns. 

2.2. POD 

A brief derivation of POD begins by approximating h 

t + 1 with

P h 

t+1 
r . The matrix P ∈ R 

n ×r is generated by applying singular value

decomposition (SVD) on �h ∈ R 

n ×s , a matrix composed of a set

of simulated values of h , called solution snapshots, for s selected

time steps. h r ∈ R 

r×1 is then a reduced vector of dependent vari-

ables, where r � n is chosen based in the r largest singular val-

ues ( σ ) of �h that account for nearly all (e.g., 99.99% or 99.999%)

of the matrix’s embedded information, called percent energy. An

error threshold of percent energy ( ε energy ) is used to specify the

amount of information retained in the reduced basis 

P ercent Energy = 

∑ r 
i =1 σi ∑ rank ( �h ) 

i =1 
σi 

× 100 ≥ ε energy . 

Galerken Projection is then used to project the full model space

onto a reduced subspace by pre-multiplying both sided by P 

T , re-

sulting in Eq. (5) . This process is described more thoroughly in

Vermeulen et al. (2004) and as applied to a newton formulation of

MODFLOW in Boyce et al. (2015) . Eq. (5) is called the POD-reduced

model and still requires matrix multiplication with a dimension of
 when P 

T A h is computed at each time step. Due to nonlineari-

ies, each element of A h must be recomputed each time step; an

peration that also scales with n . 

 

T A h P h 

t+1 
r = P T b (5)

.3. DEIM 

The discrete empirical interpolation method is implemented

pecifically to reduce the nonlinear term’s dependency on the full

imension of the original model. At each time step, it may be com-

utationally burdensome and unnecessary to compute any nonlin-

ar approximations in the POD formulation using the full system’s

tate space. To approximate nonlinearities in a reduced space, the

onlinear term is evaluated at selected interpolation points. The

onlinear projection basis is obtained via POD on snapshots of the

onlinear components only. The initial DEIM approximation ( Eq.

6) ) is made by approximating the nonlinear operation ( A h h 

t + 1 )
ith a linear interpolation. The selection algorithm for the inter-

olation indices chooses points that have the largest residual error

hen iteratively approximating the nonlinear term with basis vec-

ors (selected columns of D ) times a vector of new reduced vari-

bles, c . 

 h h 

t+1 ∼= 

Dc (6)

here D ∈ R 

n ×d is generated by performing POD on snapshots of

 from Eq. (4) (taken at the same s time steps as snapshots of h )

nd c ∈ R 

d×1 is a vector of coefficients still to be determined. Since

q. (6) is overdetermined, only d equations are required to solve

or c . The retained rows of the system are the interpolation indices

hat are selected through the process described in Ş tef ̆anescu and

avon (2013) . Defining Z ∈ R 

n ×d as a diminished permutation ma-

rix that retains only the columns corresponding to the interpola-

ion indices. Premultiplying by Z 

T effectively selects only the rows

f A h and D that correspond to interpolation points and Eq. (6) be-

omes: 

 

T A h h 

t+1 = Z 

T Dc (7)

Eq. (7) can be inverted to solve for c ( Eq. (8) ) and subsequently

ubstituted back into Eq. (6) to obtain the final approximation of
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Fig. 1. Algorithm for selecting the interpolation indices z j for j = 1, …, d . 
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he nonlinear term ( Eq. (9) ). Finally, POD and Galerkin projection

an be applied, as in Eq. (5) , to achieve a new reduced model ( Eq.

10) ) 

 = 

[
Z 

T D 

]−1 
Z 

T A h h 

t+1 (8) 

 h h 

t+1 ∼= 

D 

[
Z 

T D 

]−1 
Z 

T A h h 

t+1 (9) 

 

T D 

[
Z 

T D 

]−1 
Z 

T A h P h 

t+1 
r = P T b (10) 

All calculations dependent on the dimension n can be precom-

uted and the final POD-DEIM reduced model ( Eq. (10) ) is solved

or h 

t+1 
r at each time step entirely within the reduced dimension.

n other words, there are no nonlinear operations that must be

arried out in the full n -dimension allowing the reduced model to

e solved at each iteration depending only on dimensions r and d .

ote that since A h is a sparse matrix that results from finite differ-

nce discretization, the complexity of A h P scales with the dimen-

ion r , not n . 

Fig. 1 shows the algorithm for selecting the interpolation in-

ices and the steps involved in the DEIM procedure. 

.4. MODFLOW framework 

The hyper-reduction within MODFLOW is performed via tra-

itional online-offline paradigm. An additional MODFLOW pack-

ge, MRED, has been created for MODFLOW-OWHM ( Hanson

t al., 2014 ) and it contains all model reduction subroutines. To

urther enhance the unconfined reduction capabilities, the DEIM

lgorithm was added to this package. The structure of the MRED

ackage mirrors that of other MODFLOW packages. The POD-DEIM

lgorithm is demonstrated in the flow chart of Fig. 2 . The offline

ortion need only be executed once for the entire simulation and

he online portion is required for each iteration of the model’s

olver. The LAPACK LU-decomposition routine is used as the re-

uced solver (documented: https://software.intel.com/en-us/node/ 

20973 ) and the MODFLOW implementation of the preconditioned

onjugate gradient (PCG) method is used as the full model solver.

hen implementing solvers for reduced models, additional factors

ught to be considered yet this is beyond the scope of this project;

ee Forstall (2015) for more thorough analysis of linear and nonlin-

ar reduced model solvers. 

.5. Model development 

First, a simple one-dimensional (1D) groundwater model was

eveloped to test the proposed methodology. 200 finite difference

ells, with a discretization of �x = 10 m, compose the model do-

ain. There are a total of 90 1-day time steps in the transient

odel, which is divided into three 30-day uniform pumping pe-

iods (referred to as stress periods). The well begins extracting
n day 30, pumps for 30 days, and then shuts off for 30 days.

onstant-head boundaries are set to zero units of head at nodes

 and 200 and a pumping well is placed at node 107. The ini-

ial condition is set to zero head everywhere and a saturated

hickness of 50 m. Two hydraulic conductivity zones were used

 K x 1 =0.4 and K x 2 =1.9 m/day) to introduce minimal heterogeneity.

he pumping rate was varied to account for uncertain pumping.

he reduced model was generated with 180 snapshots: 90 snap-

hots with Q = 100 m 

3 /day and 90 snapshots with Q = 200 m 

3 /day.

ig. 3 displays the one-dimensional model domain with two zones

nd the water table contour after 30 days of pumping (i.e. at day

0) for pumping rates of 100 and 200 m 

3 /day. The reduced model

as then tested with Q = 150 m 

3 /day to evaluate its effectiveness

t pumping values not used to generate snapshots. 

After the 1D case has been successfully verified, we then extend

he methodology to a more realistic 2D case. The square model

omain has sides of length 24,750 m and a discretization of 198

ows and 198 columns, resulting in a model grid with 39,204 uni-

orm square cells (125 m by 125 m). The 395-day simulation has 14

tress periods: an initial 5-day period with zero pumping; 12 30-

ay periods with variable extractions; and a final 30-day period

ith zero pumping to simulate the aquifer recovery. The 5-day pe-

iod has 19 time steps while other stress periods each have 13 time

teps for a total of 188 time steps per simulation. The head starts

t −5.0 m everywhere, creating unconfined conditions in the single

ayer with a thickness of 100 m. Constant head boundaries com-

ose the top and bottom (via CHD package) while general head

GHB package) and no-flow boundaries compose the left and right

oundaries. Two additional head-dependent boundary conditions—

 river and a drain—were added with the RIV and DRN packages,

espectively. Pumping at five production wells begins to drawdown

he water table after five days. Six zones of hydraulic conductivity,

ll assumed to be isotropic, span four orders of magnitude. The

odel domain is shown in Fig. 4 with its zonation pattern and

ell locations. Parameter values and pumping rates for the tested

odel are shown in Table 2. 

.6. Snapshot selection 

To mitigate for the reduced model’s dependence on snapshot

election, the snapshots were taken at each time step of a simu-

ation. Overall six simulations were used to develop the 2D snap-

hot set: one with all pumping rates at their respective maximums

see Table 2 ) and one for each of the five wells pumping at quar-

erly (three month) rates while all other wells are shut off. Quar-

erly rates for each well are 50, 75, 100, and 75% of the maxi-

um rate for quarter 1, 2, 3, and 4, respectively. The total snapshot

ount is then 1128, making the snapshot sets ( �h and �b ) matrices

ith dimension 39,204 × 1128. Truncated SVD on this matrix with

 energy =99.999% produces the projection matrix P and the same

https://software.intel.com/en-us/node/520973
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Fig. 2. The flow chart describes the process of collecting snapshots for both traditional POD and DEIM; constructing the snapshot sets and obtaining the bases; and solving 

with the POD-DEIM reduced model. 

Table 2 

Parameter and pumping values for the 2D test case. 

Parameter 

Value 

[m/day] 

Pumping 

well 

Location 

[row, col] 

Max extraction 

[m 

3 /day] Quarterly rates [10 0 0 m 

3 /day] 

K x 1 0 .08 1 (63, 31) 10 ,0 0 0 5 7 .5 10 7 .5 

K x 2 5 .60 2 (147, 63) 16 ,0 0 0 8 12 16 12 

K x 3 8 .20 3 (135, 165) 28 ,0 0 0 14 21 28 21 

K x 4 10 .00 4 (78, 103) 18 ,0 0 0 9 13 .5 18 13 .5 

K x 5 18 .10 5 (141, 92) 24 ,0 0 0 12 18 24 18 

K x 6 22 .80 
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ethod on �b produces D to which DEIM is applied to obtain Z .

nce built, the reduced model is first tested with pumping rates at

2.5% of the maximum. Then, 50 random samples were generated

o allow the pumping rates to vary between 0 and 100% for each

umping quarter. 

.7. Error analysis 

The error for any reduced model is henceforth defined as the

ifference between the original full-model solution and the re-

uced model solution. This error is calculate for both the final head

olution in the full model dimension as well as the nonlinear re-

ult of the operation A h h , which is the same as the vector b for

he governing equation under consideration. Absolute error is pre-

ented in meters of hydraulic head. Since, the significance of the

bsolute error depends on the precision of the model, the location

f the maximum error is also shown in terms of the model cell

umber where it occurs. This information allows for quick iden-

ification of model features that may not be sufficiently captured

ith the current set of snapshots or interpolation points. It is not

ecessary for the reduced dimensions, r and d , to be the same for

he POD and POD-DEIM models, they are chosen experimentally

ased on what is required for acceptable error. For the purposes

f this paper, errors less than 1 cm are deemed insignificant. Root

ean squared errors (RMSE), and normalized root mean squared

rror (NRMSE) are calculated for each case so the errors can be

eighted by the span of head values ( Eq. (11) ) 

RMSE = 

‖ full − redu ced ‖ 2 √ 

n ∗ ( h max − h min ) 
= 

RMSE 

( h max − h min ) 
. (11) 

. Results 

The full model ( Eq. (4) ) is compared to both the POD ( Eq. (5) )

nd the POD-DEIM model ( Eq. (10) ) to investigate errors in the 1D

est case. The absolute residual errors (| h −h r |) between the sim-

lated head of the full model and the POD-DEIM model are illus-

rated with the simulation time on the y -axis ( Fig. 5 ). The begin-

ing of each stress period (day 30 and day 60) can be seen to have
 sharp increase in error. The maximum errors occur in the first

ime steps of a new stress period near the interface between the

wo hydraulic conductivity zones. However, the maximum error of

.566 cm is less than 0.03% of the minimum simulated head value

f −26.23 m and can be deemed insignificant. The errors dimin-

sh as the stress periods progress and the head values stabilize to

 smooth gradient. A cross-section of head is also shown for the

wo time steps with the largest error. The reduced model head

rofile is indistinguishable from the full model head. Fig. 5 also

hows that the full model’s head distribution at the end of the first

umping period and at the beginning of the recovery period is well

atched by the reduced model. 

The performance of the nonlinear reduction is analyzed by

omparing the result of the nonlinear operation. Fig. 6 shows the

esidual error (| b −b r |) between A h h for the full and POD-DEIM re-

uced models. While minor errors still occur near the onset of a

ew stress period, the maximum errors now appear only at the

umping cell and persist through the entire model horizon. Dis-

ance is shown on the x -axis and time on the y -axis with shading

o represent residual error. Some space and time results are omit-

ed to focus on the only noticeable errors. Again, the errors are

mall with respect to the values being compared. Fig. 6 also shows

 time series of head at the well and a time series of nonlinear

rror at the well. A very slight increase in error is observed in the

quifer recovery period over the pumping period. 

Two to three orders of dimension reduction is achieved with

oth the 1D and 2D test problems. This reduction is quite signifi-

ant, particularly for a highly discretized model. In Table 3 , a sum-

ary of the reduced model’s performance is compared to the full

odel using several metrics. The minimum head value, which is

lso corresponds to the maximum drawdown, is recorded to show

he head range magnitude that is used to normalize the RMSE.

he maximum error, maximum error location, and NRMSE are pre-

ented for both the head results and the values of the nonlinear

peration A h h . The location of the maximum error informs of the

ime step and cell location that would be the next choice for an

dded snapshot or interpolation index, respectively. The DEIM al-

orithm selected 5 interpolation indices for the 1D model with
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Fig. 4. The domain of the 2D test case is shown with a model grid of 198 rows and 198 columns and six conductivity zones that span several orders of magnitude. There 

are five wells that pump at various rates and head-dependent features (river and drain) are included. 

Table 3 

Model reduction results are displayed in comparison to the full, unreduced model. 

h A h ∗ h 

Dim h min [m] max error [m] max loc (t, row, [col]) NRMSE [m] max error max loc (t, row, [col]) NRMSE 

1D Full model 200 −26 .23 – – – – – –

1D POD 4 −26 .23 5 .66E −3 (61, 69) 9 .70E −2 – – –

1D POD-DEIM 5 −26 .23 5 .66E −3 (61, 69) 9 .70E −2 0 .331 (61, 106) 1 .64E −2 

2D Full model 39 ,204 −13 .95 – – – – – –

2D POD 65 −13 .95 9 .3E −4 (188, 143, 153) 5 .6E −6 – – –

2D POD-DEIM 200 −13 .95 3 .2E −3 (188, 62, 90) 4 .4E −5 62 .9 (163, 93, 117) 1 .1E −6 

2D POD-DEIM 250 −13 .95 5 .6E −3 (178, 30, 12) 7 .1E −5 111 .4 (176, 30, 12) 1 .8E −6 
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ε energy =99.99%. For the 2D model, two sets of indices were se-

lected experimentally: one with 200 interpolation points and one

with 250. The indices indicate a diverse spread across the well’s

capture zone in the domain’s interior. Points near wells, which

capture drawdown information, are often selected. Points near the

boundaries are only selected if there is difficulty in resolving head-

dependent boundary conditions, such as near the GHB. 

For the two-dimensional case, the RMSE is calculated for each

model cell over all time steps to obtain an overall assessment of

the reduced model’s performance. Fig. 7 displays the error in head
or two versions of the 2D model: one with 200 interpolation

oints ( d = 200) and one with 250 interpolation points ( d = 250).

he maximum RMSE is less than 0.02% of the span in head val-

es (NRMSE = 0.0 0 02) for d = 200 and occurs at between Well 3

nd Well 4. The RMSE for d = 250 is distributed differently yet

till extremely low throughout the entire domain. The ripple pat-

erns emanating from some regions are a typical oscillatory be-

avior of POD errors. Dots mark the interpolation points identified

y the DEIM algorithm. Zones with larger regions of darker shades

ay indicate that additional snapshots or interpolation points are
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Fig. 5. (Left) The results from the 1-D test are shown as a residual between full model head and reduced model head, for each of the 90 time steps in the POD-DEIM 

reduced model. (Right) A cross-section of head also shows a match between the full and reduced models. 
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Fig. 6. (Left) The error in the nonlinear approximation is shown to be at a maximum where the well is located, cell 107, and at the beginning of each time step. (Right) A 

time series of head at the well is also shown above a time series of nonlinear error at the well. 
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eeded to capture more of a response from a particular model

eature. 

Errors are most likely to occur where the head changes signif-

cantly from one time step to another or one model cell to an-

ther. Large head gradients are present in the vicinity of the wells

nd in the time step following a change in pumping rate. To test

he model with these situations, Fig. 8 shows the water table plot-

ed for two regions of the model that capture the drawdown from

ells 2 and 3 (row 147 and 135, respectively). Even with signifi-

ant drawdown inducing a steep head gradient toward the wells

t the end of the third pumping quarter (day 305), the reduced

odel produces a head indistinguishable from the full model. Af-
er 395 days, the end of the simulation, the large temporal changes

n head, as the water table recovers, does not produce discernable

rror either. 

Further analysis of the error at specific time steps reveals differ-

nt spatial distribution patterns. Examples of error in head and in

he nonlinear term are illustrated in Fig. 9 . On day 305, the largest

rrors in head are concentrated between Well 2 and the boundary,

et remain less than five millimeters. At 395 days, where pumping

tops, the error pattern is similar, with maximum errors occurring

n similar locations. A head error less than 5 mm is occurs through-

ut the domain. For the nonlinear error, similar spatial patterns

merge at the corresponding time steps. Even though interpolation
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Fig. 7. The RMSE in head for each model cell is calculated over all time steps and shown over the model domain with DEIM interpolation points shown as dots. (a) Errors 

in h and (b) errors in Ah for the reduced model with d = 200 are shown. Also shown are the (c) errors in h and (d) errors in Ah for the reduced model with d = 250. 
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points are clustered around the wells, maximum nonlinear errors

occur around the wells. The magnitude of the error in the non-

linear term has no physical interpretation but still identifies areas

where the nonlinear approximation is relatively better than others.

With enough interpolation points, the error pattern in the nonlin-

ear operation closely follows that of the error in the head. 

The error statistics propagate over time yet remain well below

a reasonable threshold. The oscillatory error patterns are observed

as small fluctuations in the time series of absolute errors shown

in Fig. 10 . This phenomena is commonly observed in POD-based

model reduction and the propagation of error results in the largest

errors occurring at the end of the simulation. The absolute error in

head is shown for row 62 and column 90 (the location of the max-

imum error) at each time step for POD-DEIM 200 (the dual-reduced

model using 200 interpolation points). The maximum absolute er-

ror spikes to 32 mm at the end of the simulation but is still within

an acceptable error tolerance. For the POD-DEIM 250 model (250

interpolation points with the same dual-reduced approach), addi-

tional interpolation points level out the maximum errors at 56 mm,
which now occurs at row 30 column 12. Oscillations in absolute er- s  
or are attenuated as time progresses and are reduced with added

nterpolation points. The MAE (mean absolute error) tends to grow

teadily over time but remains below 1 mm and is deemed negli-

ible for the purposes of this study. 

For a more robust test of the reduced model error, 50 model

uns were performed using randomly generated pumping rates (as

 fraction of the maximum). The RMSE is calculated for the head

olution at each time step of each model run. Fig. 11 illustrates

he exceedance curve of the RMSE for each of the reduced models.

ere, another version of the reduced model, POD-DEIM 225 , is also

ncluded. The POD-DEIM models are shown to reach a maximum

MSE below 1 cm a small percentage of the time and the major-

ty of the RMSE ( > 60%) are below 1 mm. For the POD-DEIM 250 

odel, the RMSE is always less than or equal to the two other

OD-DEIM versions. All RMSEs approach those of the traditional

OD approach yet have superior speed. 

The detailed statistical results of the 50 model runs are shown

n Tables 4 and 5 . Timing experiments show significant speed im-

rovements, even for small test problems. Timing is calculated by

umming the time for each call to the solver. Since both the POD
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and the POD-DEIM reduced models utilize the same solver, these

times are comparable. The average speed up for the POD-DEIM 250 

model over the POD model is 9.5 s while nearly equal error is ob-

tained. Timing is not improved as additional interpolation points

are added to the POD-DEIM reduced model. Though the full model

utilizes a different solver, the mean total time for all calls to the

PCG routine was about 3.6 s. This result indicates that for this

model application, the POD reduced model causes an increase in

CPU time compared to a near two-second decrease in CPU time

for the POD-DEIM models. The maximum, minimum, and mean er-

rors mostly decrease as more interpolation points are added. Sim-

ilarly with the nonlinear errors, there is a unanimous decrease

in errors between the POD-DEIM 200 model and the POD-DEIM 250 

model. 

4. Discussion 

Both POD and POD-DEIM models perform well and have rel-

atively insignificant errors. The nonlinear reduction with DEIM is

obtained with only a small loss in accuracy but a gain in compu-
ational speed ( Table 4 ). With both the 1D and 2D numerical ex-

eriments, the slight increase in approximation error is negligible

hen adding DEIM with an appropriate number of interpolation

oints. Thus, performing the nonlinear operation in the reduced

pace is preferable. The simplicity of the examples allows for satis-

actory proof-of-concept in the 1D and 2D unconfined groundwa-

er flow applications. Obtaining even smaller error would be feasi-

le with additional snapshots, larger reduced dimension, or with

dded interpolation indices. More importantly, the dimension of

he POD-DEIM 250 model reduction is from 39,204 to 250. Conse-

uently, with POD alone, matrix calculations with a dimension on

he order of 10 4 still must be performed at each iteration of the

olver. The highest dimension of any matrix calculation with the

OD-DEIM approach is on the order of 10 2 . 

More than the magnitude of the errors, the structure and dis-

ribution of the error are of interest. The results presented analyze

imes and zones of maximum error, which frequently occur at the

eginning of stress periods. However, it is not common to require

imulations to be accurate in the first few time steps of a stress

eriod. Since it takes a few iterations for the solution to smoothly
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Fig. 10. Absolute error at the location found to have the largest error for the (a) 

POD, (b) POD-DEIM 200 , and (c) POD-DEIM 250 reduced models. The MAE for the en- 

tire domain is computed for each time step and shown as a time series. 
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Table 4 

Hydraulic head error statistics over 50 random samples for each of 

the 2D reduced models. 

Model 

type 

Minimum head 

Min. Max. Mean Std. dev. 

POD −18 .6081 −11 .3691 −14 .9834 1 .5532 

POD-DEIM 200 −18 .6083 −11 .3680 −14 .9838 1 .5532 

POD-DEIM 225 −18 .6117 −11 .3684 −14 .9847 1 .5536 

POD-DEIM 250 −18 .6080 −11 .3693 −14 .9847 1 .5525 

Maximum absolute error 

Min. Max. Mean Std. dev. 

POD 2.00E −03 7.48E −03 3.82E −03 1.45E −03 

POD-DEIM 200 4.37E −03 1.76E −02 8.17E −03 3.25E −03 

POD-DEIM 225 6.07E −03 1.76E −02 9.48E −03 2.41E −03 

POD-DEIM 250 4.32E −03 1.22E −02 7.27E −03 1.82E −03 

Overall time-averaged RMSE 

Min. Max. Mean Std. dev. 

POD 7.42E −05 1.89E −04 1.41E −04 2.41E −05 

POD-DEIM 200 4.90E −04 1.93E −03 1.00E −03 2.89E −04 

POD-DEIM 225 6.79E −04 1.46E −03 9.93E −04 1.68E −04 

POD-DEIM 250 5.05E −04 1.14E −03 7.78E −04 1.33E −04 

NRMSE 

Min. Max. Mean Std. dev. 

POD 2.23E −02 6.70E −02 4.02E −02 1.09E −02 

POD-DEIM 200 3.86E −05 1.60E −04 8.50E −05 2.70E −05 

POD-DEIM 225 5.15E −05 1.35E −04 8.45E −05 1.90E −05 

POD-DEIM 250 3.50E −05 9.85E −05 6.64E −05 1.56E −05 

Time in solver 

Min. Max. Mean Std. dev. 

POD 1.02E + 01 1.23E + 01 1.12E + 01 3.83E −01 

POD-DEIM 200 1.49E + 00 2.49E + 00 1.70E + 00 1.28E −01 

POD-DEIM 225 1.54E + 00 1.76E + 00 1.64E + 00 5.43E −02 

POD-DEIM 250 1.53E + 00 1.82E + 00 1.66E + 00 5.91E −02 
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djust heads when new forcings are introduced, it is toward

he end of a stress period where results are trusted most, even

n the full model. This fact allows further confidence in the

educed model’s adequacy. Structurally, the oscillatory appear-

nce of very minor errors appears as ripples in Figs. 7 and

 and as oscillations in Fig. 10 . This effect may be produced

y the nature of the basis functions generated from POD and

he Galerkin projection. If the errors approach levels that pro-

ibit the application of the reduced model, alternative meth-

ds may be necessary. With careful error assessment, a new re-

uced model could be constructed to enhance accuracy at spe-

ific points in space and time. The error introduced from the POD-

EIM reduction is quantifiable and controllable, giving the mod-

ler choices according to the tradeoff between reduced model
ize, time to construct, and relative importance of some model

esults (time and location of head observations, for instance) more

han others. 

Additional strategies could be implemented to construct a more

obust reduced model using the POD-DEIM method. The DEIM in-

ices that were selected by the algorithm were unique for each

pecified reduced dimension. Though the specific DEIM indices

ere not modified, using prior knowledge of the system could al-

ow specification of desired indices. Changes to the mesh refine-

ent, snapshot selection, and temporal discretization could also

ontribute to a more accurate reduced model. Optimizing these

ariables is outside the scope of this study, though it is prudent

o consider the amount of flexibility one would have when con-

tructing a reduced model for more complex projects. If parameter

ncertainty is a concern, systematic variation of any parameters

hen collecting snapshots can generate a parameter-independent

educed model ( Boyce and Yeh, 2014 ). 

For models with additional nonlinear processes, this POD-DEIM

pproach can be used. For more complex unconfined flow mod-

ling in MODFLOW, these additional nonlinearities might come

rom more head-dependent boundary conditions (MNW, RCH, GHB,

RN, RIV) or more drawdown with additional wells. As more of

hese features are modeled, the simulation requires more nonlin-

ar computations at each time step and reducing the dimension of

he nonlinear term has increased benefit. If the model needs to be

alled 50,0 0 0 or 10 0,0 0 0 times—such is the case with many global

euristic search algorithms, such as a genetic algorithm—savings of
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Fig. 11. A comparison of the RMSE for the residual error in head (| h −h r |) for each of the reduced models, POD, POD-DEIM 200 , POD-DEIM 225 , and POD-DEIM 250 when 

measured against the full model. 

Table 5 

Nonlinear error statistics over 50 random samples for each of the 2D 

reduced models. 

Model 

type 

Maximum absolute error 

Min. Max. Mean Std. dev. 

POD-DEIM 200 8.08E + 01 3.07E + 02 1.48E + 02 5.32E + 01 

POD-DEIM 225 1.17E + 02 2.92E + 02 1.77E + 02 4.14E + 01 

POD-DEIM 250 8.42E + 01 2.37E + 02 1.36E + 02 3.16E + 01 

Average RMSE 

Min. Max. Mean Std. dev. 

POD-DEIM 200 3.59E + 00 1.38E + 01 7.26E + 00 2.02E + 00 

POD-DEIM 225 4.92E + 00 1.03E + 01 7.23E + 00 1.22E + 00 

POD-DEIM 250 3.74E + 00 8.30E + 00 5.70E + 00 9.74E −01 

NRMSE 

Min. Max. Mean Std. dev. 

POD-DEIM 200 1.11E −06 4.27E −06 2.24E −06 6.24E −07 

POD-DEIM 225 1.52E −06 3.17E −06 2.23E −06 3.76E −07 

POD-DEIM 250 1.15E −06 2.56E −06 1.76E −06 3.00E −07 
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just a few seconds in one model run can translate to a total time

savings on the order of hours or days. 

Hyper-reduction with POD-DEIM is an improvement over POD

when it comes to versatility, efficiency and robustness. A wider

range of groundwater flow processes can now be modelled in a re-

duced space with POD-DEIM. With only one POD projection, errors

might grow too large when propagated over a long time horizon of

a complex nonlinear model. To build a robust reduced model with

traditional POD alone, a very large set of snapshots might be nec-

essary to adequately approximate the nonlinear system. This often

leads to only moderate dimension reduction and can increase com-

putational cost as shown in Table 4 . If reduced models are going

to be used in practice, certainly online run times must be shorter

than the full model. However, to decrease the overall online

runtime of a full model, the online plus the offline computational

cost of a reduced or hyper-reduced model ought to be considered.

When snapshot selection and reduced basis construction become

challenging for large-scale models, the overhead investment in the

reduced model could be substantial. Therefore, POD-DEIM method

allows the dimension of the online calculations to be as small as

possible while still maintaining acceptable error. 
Timing comparisons illustrate the practical result of dimension

eduction within the context of this specific synthetic experiment.

t is the reduction in dimension that has more implications for

ther applications. The POD-DEIM model takes about half as much

ime within the solver as the full model. The specific result may

eem insignificant on this relatively small 2D application but when

ystems approach millions of nodes and decadal time horizons, any

peed and dimensionality improvement will be highly beneficial.

he time comparison between the full and reduced model is not

ntirely meaningful since different solvers are used. The PCG used

or the full model is optimized for the type of problem it sees

hereas the reduced model solver is more generic. Regardless of

his fact, the time comparison between the reduced models is valid

ince they utilize the same solver. If a more efficient solver were to

e used by the reduced models, the smaller dimensional complex-

ty of the POD-DEIM model will almost always be faster to solve

han the POD model. 

Contrary to what one might expect, fewer interpolation points

oes not always lead to a faster reduced model, even though the

omputational complexity is less. An insufficient number of in-

erpolation points induces more error and requires more internal

olver iterations for convergence. In practice, keeping the volumet-

ic water budget percent error below a nominal value set by MOD-

LOW has been a good indication of a robust interpolation. 

While construction of the POD-DEIM reduced model can still be

ime intensive, the possible applications to a variety of problems

an exploit the superior speed. For example, multi-objective op-

imizations or large computer experiments involving Monte Carlo

an require thousands or millions of model calls. For many devel-

ped groundwater models, run times for a single simulation can

pproach days. Consequently, some types of optimizations or un-

ertainty analyses would be infeasible without model reduction.

ny opportunity to reduce the dimensionality of model’s calcu-

ations may permit what was previously infeasible. The method-

logy proposed could specifically be used within parameter esti-

ation techniques used to estimate unknown pumping rates to

atch drawdown observations—a problem encountered during a

alibration process when wells that lack pumping data are mod-

led within a groundwater basin. It may also be necessary to quan-

ify the uncertainty of the pumping rate estimates to supplement

ny model predictions. If the proposed POD-DEIM methodology is

sed within an uncertainty analysis—such as the null-space Monte

arlo used by Siade et al. (2015) —further time savings could be
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chieved. For more versatile applications to parameter estimation,

he following steps can be taken: (1) take snapshots to capture a

ange of any parameter; (2) add them to the snapshot set; and (3)

e-compute the basis. 

There are some aspects that still need to be explored with POD-

EIM models as the size of the application scales up. For mod-

ls that would not permit taking snapshots at every time step,

ethods for optimal snapshot selection ought to be considered.

he choice of snapshots could be the difference between a reduced

odel that converges in the solver and one that does not. In cases

here groundwater flow models are coupled to transport, rainfall-

unoff, and/or atmospheric models, the reduced model’s solution

erves as input to these other models. The oscillatory nature of the

educed model’s errors would have an unknown effect on models

o which it may be coupled. Further research could also explore

he trade-off in the size of dimensions r and d ; the appropriateness

f the percent energy criteria used to select the reduced dimen-

ions; and applications of more efficient solvers for the reduced

odels. 

. Conclusion 

A traditional model reduction technique for groundwater flow

as been combined with an interpolation scheme to further reduce

onlinear components. The result is a reduced model of an uncon-

ned flow equation that can be solved entirely in the reduced di-

ension with no dependence on the original, full model complex-

ty. This additional approximation allows for faster calculations of

onlinear operations at each time step while sacrificing a tractably

mall amount of accuracy. As simulation models get more complex,

ith finer discretization, larger domains, and more nonlinear pro-

esses, faster calculations become more important. The combined

odel reduction approach with POD and DEIM greatly improves a

odeler’s ability to obtain solutions quickly. The results from the

wo test problems show a two to three orders of dimension re-

uction. A key advantage of the POD-DEIM model is that nonlin-

ar operations are carried in the reduced space. The faster over-

ll simulation times are critical when embedding within or linking

he model to any form of optimization (e.g., parameter estimation,

xperimental design, resource allocation) or extensive uncertainty

nalysis (e.g., Monte Carlo). While more and more optimization al-

orithms are taking advantage of parallel computing power, long

imulation runtimes still inhibit the attainment of optimal solu-

ions in reasonable amounts of time. Therefore, reduced models

uch as those developed with POD-DEIM can be used within paral-

el architectures to facilitate searching very large feasible regions—

egions with dimensions so large that they would otherwise be im-

ossible to explore. 
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