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a b s t r a c t 

In a series of earlier papers the authors have proposed a unique approach for watershed modelling, which 

is based on developing watershed-scale balance equations for mass, momentum, energy and entropy by 

averaging the point-scale (microscale) equations over appropriate averaging regions or control volumes 

(megascale). The regions are referred to as Representative Elementary Watersheds (REWs), as they are 

considered to be invariant with respect to the spatial scale. Here, the REW-approach is generalized by 

developing balance equations and constitutive relationships for sub-REW units, referred to as Elements. 

Similar to an REW, Elements are divided into a series of zones to accommodate typical flow processes. 

The subdivision of an REW into Elements supports sub-REW-scale process representation. The proposed 

procedure yields exchange terms for mass, forces and thermal energy across phase and Element bound- 

aries. These terms constitute unknowns and require a systematic closure. The closure is addressed within 

a thermodynamic approach, in which the Clausius–Duhem inequality formulated for a watershed serves 

as a mathematical and physical constraint. The present paper represents a clear extension of earlier work, 

as it includes non-isothermal processes in presence of the conservative gravitational field. The subdivision 

of an REW into Elements also provides means for including sub-REW variability due to landuse, geology 

or presence of infrastructure in the watershed. The paper also shows how an REW Element-scale unsatu- 

rated flow equation and non-linear reservoir equations for overland and channel flow can be consistently 

derived within the thermodynamic theory framework. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Reggiani et al. (1999,1998,20 0 0) proposed a novel approach

or watershed modelling, whereby a watershed is subdivided into

iscrete three-dimensional units called Representative Elementary

atersheds (REWs). REWs are organized around the stream chan-

el network and constitute control volumes. The boundaries of an

EW coincide with topographic drainage divides. The REWs are de-

ned in a way as to be identified at various scales of observation

nd are therefore scale-invariant. Nevertheless, as also pointed out

y Beven (2006) , the appropriate closure relationship remain scale-

ependent and need to be developed case by case on the basis of

 generalized constitutive theory. 

A watershed for example may be considered a single large REW,

r can be split into a finite number of smaller REWs. A REW fills

 spatial region enclosed by a prismatic mantle surface delineated
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y the topographic REW boundary as shown in Fig. 1 . On the top,

he REW is delimited by the atmosphere, and at the bottom by an

ssumed depth boundary. The REW control volume contains the

ost common flow zones encountered in watersheds. In the origi-

al work by Reggiani et al. (1998) these were: (1) the unsaturated

one, (2) saturated zone, (3) saturated overland flow, (4) concen-

rated overland flow and (5) the river channel. In this extension of

he REW approach we add two additional zones: (6) saturated sub-

urface storm flow layer and (7) snow/ice pack. Flows within the

ones are characterised by vastly different time scales and include

ultiphase unsaturated and saturated porous media flow (subsur-

ace zones, snow) and single phase flow (overland and channel

ow). 

In traditional distributed physically-based watershed models 

 Abbott et al., 1986a,b ), partial differential equations governing wa-

er flow in various zones are discretized and solved at scales much

maller than the REW, i.e. at the nodal points of a computational

rid. In the REW approach, conservation equations for mass, mo-

entum, energy and entropy are averaged over each flow zone,

ielding global balance laws. The governing equations are Ordinary
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Fig. 1. An example of a single REW and the Cartesian reference system. 
Nomenclature 

Latin symbols 

A Element or REW boundary 

A Helmholtz free energy per unit mass 
ˆ A Extensive Helmholtz free energy 

B First-order expansion coefficient for mass exchange 

e Megascopic mass exchange term 

E Internal energy per unit mass 
ˆ E Extensive internal energy 

f External supply of generic property ψ 

F Megascopic entropy exchange term 

G Net production of generic property ψ 

g Gravity vector 

i Non-convective flux vector 

j Entropy flux vector 

J i α Specific moment of mass the i -subregion α-phase 

K First-order expansion coefficient for thermal ex- 

change 

l Length of the river channel 

L Length dimension 

m Channel average cross sectional area 

M Mass 

M First-order expansion tensor for momentum ex- 

change 

M̄ 

−1 Hydraulic conductivity of the soil 

n Manning hydraulic roughness 

p Phase pressure 

P w 

Wetted perimeter of channel reach 

q Heat vector 

Q Megascopic heat exchange term defined in equa- 

tions 

R Second-order expansion coefficient for momentum 

exchange 

R h Hydraulic radius of channel reach 

s Phase saturation 

S Phase interface 

S 0 Bed slope of channel reach 

t Time 

T Time dimension 

t Stress tensor 

T Momentum exchange term defined inequations 

( 12 a) and ( 12 b) 

v Velocity vector 

V Phase, Element or REW volume 

w Interface and boundary surface velocity vector 

W Work exerted on a phase 

x Position vector of a fluid particle with respect to a 

reference x o 
y Average vertical thickness of a zone 

z Vertical coordinate 

z o Reference datum 

Z � Multi-dimensional system state variable 

Greek symbols 

� Time increment 

ε Porosity 

η Microscopic entropy 

ˆ η Extensive entropy 

λ Water retention scaling exponent (Brooks–Corey) 

� Entropy production 

θ Temperature 

μ Chemical potential 

ρ Mass density 
� Horizontal area projection for the various zones, El- 

ements and REWs 

τ Time integration variable 

ψ Generic thermodynamic property mass, momentum, 

energy or entropy 

 Boundary surface of a generic volume 

Superscripts and subscripts 

α, β Indices indicating different phases 

i, j Superscripts indicating different zones 

I Superscript indicating Elements 

a Superscript indicating the atmosphere 

c Superscript indicating the concentrated (Hortonian) 

overland flow zone 

f Superscript indicating the snow/ice pack 

o Superscript indicating the saturated overland flow 

zone 

p Superscript indicating the saturated subsurface 

stormflow zone 

r Superscript indicating the river channel 

s Superscript indicating the saturated zone 

u Superscript indicating the unsaturated zone 

Special notation 

�α � = β Summation over all phases different from the α- 

phase 

�i � = j Summation over all Elements different from the El- 

ement i 

ifferential Equations (ODEs) which can be cast in a general form

 Reggiani et al., 1998 ): 

dψ 

dt 
= 

∑ 

i 

e 
ψ 

i 
+ U + G (1)

here ψ represents a generic thermodynamic property like mass,

omentum, energy, or entropy, e 
ψ 

i 
is a generic exchange term

or ψ , U is the external supply of ψ and G is the net produc-

ion rate. The exchange terms account for the transfer of ψ among

hases, and across zones and REWs. We emphasize that all equa-

ions of type (1) no longer contain any spatial information and are
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Fig. 2. Two closed adiabatic vessels containing equal quantities of an isothermal 

fluid. 
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alled megascale (or megascopic) equations by adopting the nota-

ion in Gray et al. (1993) . This terminology is used to distinguish

q. (1) from macroscale equations, which are commonly obtained

n the porous media literature by averaging microscale conser-

ation laws over a Representative Elementary Volume (REV). In

his context, the e 
ψ 

i 
terms are called megascale (or megascopic)

xchanges. These terms result from the averaging procedure, are

nknown quantities, and need to be closed through constitu-

ive relationships, in analogy to macroscale continuum mechan-

cs. Such constitutive equations were obtained by Reggiani et al.

1999) trough a physically consistent procedure using the 2nd law

f thermodynamics as a constraint. The REW-approach has been

mployed to simulate subsurface flow in a hillslope ( Reggiani et al.,

0 0 0 ) and channel network flow in watersheds ( Reggiani et al.,

001 ). Here we have refined the development of the REW-scale

quations and added new features. The chief aims of this paper

re: 

• The formulation of balance laws and constitutive equations in

terms of extensive quantities by introducing a generalised ther-

modynamic potential. The latter results in a more rigorous in-

clusion of gravity into the constitutive theory. The motivation

behind this development is explained in Section 2 . 
• The division of REWs into a number of REW Elements based on

the presence of sub-REW scale variability. The reason for this

additional discretisation is the need to account for hydrologi-

cal processes due to geological and topographical features or

land-use pattern at the sub-REW scale, or to describe effects of

reservoirs or hydraulic infrastructure. 
• Two additional zones are introduced, which were not present in

the original REW definition. These are the saturated subsurface

stormflow zone, a shallow layer in the upper soil, which hosts

fast saturated flow. According to the particular circumstances,

this zone can also be interpreted as a shallow perched water-

bearing body. Moreover, the presence of snowpack and/or ice in

a separate surface layer is also taken into account. 
• The exchange of thermal energy is included, allowing for phases

and zones to be at the non-isothermal state. In this con-

text, constitutive relationships for thermal energy fluxes among

phases and across Element and REW boundaries are pro-

vided. This extension is required in studies of snow, ice and/or

landsurface-atmosphere interaction processes. 

In the following sections we describe how the system is con-

eptualised, introduce the necessary notation and the concept of

EW Element, and show how spatio-temporal averaging is per-

ormed and constitutive equations for REW Elements are obtained.

. Thermodynamics at the REW-scale 

The development of equations for the thermodynamics of wa-

ersheds is complicated relative to smaller systems like porous me-

ia within an REV ( Hassanizadeh and Gray, 1979 ). The difficulty

ies in the presence of the conservative gravitational field and its

hermodynamic effect at large spatial scales. This is because in av-

raging point-scale equations over a region, the centroids of dif-

erent phases or zones may not be located at precisely the same

levation. The implications of this can be understood by consid-

ring two adjacent adiabatic vessels of unit depth, filled with an

sothermal incompressible fluid at temperature θ ( Fig. 2 ). The ves-

els contain the same fluid mass M and volume V and are isen-

ropic at entropy η. The fluid is free-surface, but the vessels are

ssumed to be closed, in order to preclude mass exchange with

he ambient. Due to the isothermal state and equal mass/volume

he two vessels should have the same internal energy E , and when

onnected, they should be at equilibrium. But as we can see, their
entroids c 1 , c 2 are positioned at different elevations. The aver-

ge (hydrostatic) pressure p 1 = (h 1 ρg) / 2 in the left vessel is lower

han the pressure p 2 = (h 2 ρg) / 2 in the right one, thus E 1 is appar-

ntly lower than E 2 . This is made visible by writing the internal

nergy of a vessel in the Euler form ( Callen, 1985 ): 

 = θ η + μ M − p V (2)

here μ is the chemical potential of the fluid. If the two vessels

re suddenly interconnected so that fluid can be interchanged, the

ifference in internal energy should cause a flow across the con-

ecting pipe to bring the two-vessel system to a new thermody-

amic equilibrium. From experience we know that this is not the

ase. From this we deduce that the internal energy of the two ves-

els must be equal, and an additional constitutive dependency of

 related to gravity must be included, to ensure that the two sys-

ems have the same internal energy. In this paper we address this

ssue and postulate a dependence of thermodynamic potentials at

he megascale on gravity, when developing constitutive relation-

hips for Elements or REWs. We note that the theory is general

nd applies to any megascopic system exposed to a conservative

eld. 

. Conceptualisation of the system and notation 

In Reggiani et al. (1999,1998) , a watershed is discretised into

EWs (Representative Elementary Watersheds), which represent

ontrol volumes and serve as averaging regions for conservation

quations. Here the approach is generalized by splitting the REW

nto smaller entities, called REW Elements (or in short, Elements ).

his procedure is necessary to describe parts of the REW in more

etail and address sub-REW-scale variability. For example, one may

efine REW Elements on the basis of geological, landuse or other

attern that have a direct impact on soil properties or ground-

ater flow, and thus on the hydrological response of an entity.

ig. 3 shows how a single REW is separated into such Elements.

e emphasise that the set of balance equations and constitutive

elationships derived in this paper are similar to those obtained

n Reggiani et al. (1999,1998) , and identical, if an REW contains

ne Element only. Each Element can include the same hydrological

ntities found in an REW. These host particular hydrological pro-

esses and occupy own spatial regions, referred to as zones . The

ones are denoted with superscripts as described below. The su-

erscript u identifies the portion of the Element (or REW) occu-

ied by the unsaturated zone, while the portion occupied by the

aturated zone is indicated with s . The volume associated with the
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Table 1 

The seven zones within an REW or an Element. 

Zone Phases Phase volumes Adjacent zones Zone boundaries Phase interfaces Ext. boun daries 

unsat. zone (u) water V u w , V 
u 

g u, s, c, p, a A us , A uc S u wg , S 
u 
wm A uu 

solid V u m A up , A ua S ug 
gm 

air 

sat. zone (s) water V s w , V 
s 

m u, o, s, r A su , A so S s wm A ss 

solid A sr 

river (r) water V r s, o, p, a, r A sr , A ro n/a A rr 

A rp , A ra 

sat. overland flow (o) water V o s, c, a, r A so , A oc n/a n/a 

A oa , A or 

Hortonian water V c o, a, r A oc , A ca n/a n/a 

overland flo w (c) A cr 

sat. subsurface water V p w , V 
p 

m c, f, r A pc , A pf S p wm n/a 

stormflow (p) solid A pr 

snow zone (f) water V f w , V 
f 

g p, a A pf , A fa S f wg , S 
f 
wm 

solid V f m S f gm n/a 

air 

Fig. 3. An REW separated into a finite number of Element s. 
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channel carries the superscript r , the one occupied by the satu-

rated overland flow the superscript o , the Hortonian overland flow

the symbol c , the saturated subsurface stormflow the symbol p and

the snow/ice pack the symbol f . On the land surface, the watershed

is in direct contact with the atmosphere, denoted with the super-

script a . All flow zones are summarised in Table 1 . Fig. 4 shows

a single Element and its zones. We also note that in the unsatu-

rated zone u or the snowpack f water, solid and gas (air) coexist

and are denoted with subscripts w, m , and g , respectively. The sat-

urated zone s or the subsurface stormflow zone p , consist of two

phases: water and solid. The remaining zones ( r, o and c ) contain

water only. The total volume occupied by the whole watershed is

the sum of volumes of all constituent REWs, Elements, zones and

phases: 

 = 

∑ 

K 

∑ 

I 

∑ 

i 

∑ 

α

V 

iIK 
α = 

∑ 

K,I,i,α

V 

iIK 
α (3)
here α indicates a phase within a particular zone i , which forms

art of an Element I within the K -th REW. We note that the indices

 and K are mostly omitted for notational simplicity. We distinguish

wo types of boundaries for an Element: internal boundaries that

eparate either phases within a zone or zones within an Element;

xternal boundaries that separate either Elements of an REW or co-

ncide with REW or watershed boundaries. Two adjacent Elements

re separated by surfaces indicated with A 

ij . The portion of the sur-

ace occupied by the α-phase is indicated with A 

i j 
α . In the subsur-

ace or the snowpack we are in presence of multiphase flow, where

hree phases meet and an equal number of interfaces is generated:

he water-solid matrix interface S i wm 

, the water-gas interface S i wg ,

nd the gas-solid interface S i gm 

. In the saturated zone and the sub-

urface stormflow layer, solid and water exist and are separated by

he interface S s wm 

and S 
p 
wm 

respectively. In the channel and over-

and flow zones there are no phase interfaces. All possible internal

r external boundaries as well as phases within a zone are sum-

arized in Table 1 . 

. Balance laws 

General form: The averaged balance equation for a thermody-

amic property ψ of the α-phase in the i -zone of an Element is

btained by integrating the microscale balance equation spatially

ver V i α and integrating from t − �t to t + �t in time ( Reggiani

t al., 1998 ): 

1 

2�t 

d 

dt 

∫ t+�t 

t−�t 

∫ 
V i α

ρψd V d τ

+ 

∑ 

j � = i 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
A i j 

α

n 

i j · [ ρψ(v − w 

i j ) − i ] d A d τ

+ 

∑ 

β � = α

1 

2�t 

∫ t+�t 

t−�t 

∫ 
S i 
αβ

n 

αβ · [ ρψ(v − w 

αβ ) − i ] d S d τ

= 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
V i α

ρ f d V d τ + 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
V i α

Gd V d τ (4)

n this equation all variables inside the integrals represent mi-

roscale quantities. The first term expresses the total rate of change

f ψ . The second term is the sum of all convective and non-

onvective exchanges of ψ across the internal boundaries A 

i j 
α; the

um is performed over all neighbouring zones and Elements. The

hird term accounts for phase changes within an Element; it is the

um of all exchanges of ψ across the phase interfaces S i 
αβ

within

 zone. The interfaces S i 
αβ

form boundaries that exist exclusively
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Aor
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ΣΙ
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n sr

n rs

sat. subsurface
stormflow (p)

AA ss

Element boundary

Fig. 4. Detailed view of an Element including the flow zones. 

Table 2 

Comparison of the flow pathways (based on data by Dunne, 1978). 

Flow type Temporal scale Velocity [m/s] 

Groundwater flow days - years ≤ 10 −6 

Hortonian overland flow hours 10 −3 − 10 −1 

Subsurface flow hours - days 10 −7 − 10 −4 

Saturated overland flow hours 10 −2 − 10 −1 

Channel flow hours - days 1 − 10 
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Table 3 

Summary of the properties in the conservation 

equations. 

Quantity ψ i f G 

Mass 1 0 0 0 

Momentum v t g 0 

Energy E + 

1 
2 
v 2 t · v + q h 0 

Entropy η j b �

c

 

w

ρ

T  

α  

z  

t  

a  

a

e

e

I  

p  

j  

t  

t  

V  

e

a  

n  
ithin a particular zone and need to be clearly separated from

oundaries between zones or Elements. 

The first term on the r.h.s. of (4) represents the external sup-

ly of ψ , while the second term expresses the net generation of

. The vectors n 

ij and n 

αβ are unit normal vectors to the surfaces

 

ij and S i 
αβ

, respectively, and are pointing outwards. The vector i

enotes the non-convective flux of ψ . The symbol v denotes the

icroscale (or point-scale) velocity, while w 

ij and w 

αβ represent

he velocities of A 

ij and S i 
αβ

respectively. Further, ρ denotes the

icroscopic mass density, while f is the external supply of ψ . Fi-

ally, G is the net production of ψ , which is non-zero only in the

alance of entropy. 

Flow processes encountered within a zone can spread over a

ide range of temporal and spatial scales. Examples for velocity

nd associated time scales are reported in Table 2 from data pub-

ished by Dunne and Kirkby (1978) . This wide spectrum of time

cales must be acknowledged when upscaling balance equations

r deriving constitutive relationships and requires temporal aver-

ging. That is why Eq. (4) has been integrated over a characteristic

ime interval, where �t has to be chosen in line with the partic-

lar problem to be analysed. For example, if one is interested in

nstantaneous events, the averaging period is set equal to zero. If

nnual values of dynamic variables need to be simulated, the inter-

al must be chosen to be 6 months. Specific balance laws for mass,

omentum, energy and entropy are obtained from Eq. (4) by sub-

tituting the microscopic quantities listed in Table 3 . 

Balance of mass: The megascale balance of mass for the α-

hase in the i -zone is obtained by setting ψ = 1 and the non-

onvective flux i , the external supply f and the net production G

ero in the generic balance law (4) . The result in terms of megas-
ale quantities becomes: 

d 

dt 
(ρ i 

α V 

i 
α) −

∑ 

j � = i 
e i j 
α −

∑ 

β � = α
e i αβ = 0 (5)

here the average density ρ i 
α is defined a s: 

i 
α = 

1 

2�t 

1 

V 

i 
α

∫ t+�t 

t−�t 

∫ 
V i α

ρd V d τ and V 

i 
α = 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
V i α

d V d τ

(6) 

he second term on the left hand side of (5) are the sum of all

-phase mass fluxes across the boundary surfaces with adjacent

ones within the same Element or in neighbouring Elements. The

hird term represents the mass exchanges (due to phase change)

cross phase interfaces within a zone. The mass exchange terms

re defined in terms of time-averaged flux integrals: 

 

i j 
α = 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
A i j 

α

ρ(w 

i j − v ) · n 

i j d Ad τ (7) 

 

i 
αβ = 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
S i 
αβ

ρ(w 

αβ − v ) · n 

αβ d Sd τ (8) 

t must be noted that the order of indices ij and/or αβ is im-

ortant. For example, e 
i j 
α indicates a flux of the α-phase from the

 -zone to the i -zone, while e i 
αβ

indicates the phase change from

he α to the β-phase. For modelling purposes it is useful to in-

roduce the phase volume fraction ε i 
α, the ratio of phase volume

 

i 
α to total volume V 

i of a zone. The total zone volume V 

i can be

xpressed as the product of two quantities: the average depth y i 

nd the zone area projection �i , with the exception of the chan-

el zone. The channel volume is expressed as the product of the
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Table 4 

Element volumes, phase volumes and phase volume fractions. 

Zone Phase volume V i α Zone volume V i Phase volume fraction ε i 
α

unsaturated zone (u) V s α = εu 
α s u α y u �u V u = y u �u εu s u α

saturated zone (s) V s α = εs y s �s V s = y s �s εs 

river zone (r) V r α = l r m 

r V r = l r m 

r 1 

sat. overland flow zone (o) V o α = y o �o V o = y o �o 1 

Hortonian overland flow zone (c) V c α = y c �c V c = y c �c 1 

sat. subsurface flow zone (p) V p α = ε p y p �p V p = y p �p εp 

snow zone (f) V f α = ε f 
α s f α y f � f V f = y f � f ε f s f α
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T  
average cross-section area m 

r with the reach length l l . These con-

cepts are summarised in Table 4 for all seven zones. In this table,

εu , εs , εp and εf denote the average porosities of the unsaturated

( u ), the saturated ( s ), the saturated subsurface stormflow ( p ) and

the snow/icepack ( f ) zone, respectively. The variable s i α denotes the

α-phase saturation of the i -zone; obvioulsy s i α = 1 in case of full

saturation. To obtain the mass balance equations for a particular

phase within a zone, we need to replace the phase volume in Eq.

(5) by the products indicated in Table 4 . For example, the megas-

cale mass balance equation for water in the unsaturated zone is

written as: 

d 

dt 
(ρu 

w 

s u w 

εu y u �u ) = e uu 
w 

+ e us 
w 

+ e uc 
w 

+ e u wg + e u ws (9)

where e uu 
w 

represents the water influx from the unsaturated zone

of all neighbouring Elements across A 

uu , e us 
w 

is the influx from the

saturated zone within the same Element across the water table A 

us ,

and e uc 
w 

is the infiltration flux across the land surface A 

uc from the

Hortonian overland flow. The last two terms, e u wg and e u ws , represent

the water-gas phase change (evaporation, condensation) across the

water-gas interface S u wg , and the water- solid phase change (disso-

lution, deposition) across the corresponding interface S u wm 

, respec-

tively. This last term is zero in most cases, unless dissolution or

erosion is considered and freezing or thawing of soil water is oc-

curring. 

Balance of momentum: To obtain the balance equation for mo-

mentum, we substitute the appropriate microscopic properties v ,

t , and g from Table 3 into the generic balance Eq. (4) . To obtain

specific balance equations for the various zones, the integration

needs to be carried out over the respective boundary surfaces, A 

i j 
α,

and phase interfaces, S i 
αβ

, as listed in Table 1 . Next, we define the

volume-average velocity v i α as: 

v i α = 

1 

2�t 

1 

ρ i 
αV 

i 
α

∫ t+�t 

t−�t 

∫ 
V i α

ρv d V d τ (10)

For statistically stationary flows, the microscopic velocity at a point

can be expressed as the sum v i α plus a deviation term 

˜ v with zero

mean: 

v = v i α + ̃

 v (11)

After invoking the definition of the mass exchanges (7) and (8) ,

and collecting some terms, we obtain the following equation of

momentum balance: 

d 

dt 
(ρ i 

α v i αV 

i 
α) = 

∑ 

j � = i 

[
e i j 
αv i α + T 

i j 
α

]
+ 

∑ 

β � = α

[
e i αβv i α + T 

i 
αβ

]
+ ρ i 

α g 

i 
α V 

i 
α

(12)

where the megascale interaction forces T 
i j 
α and T i 

αβ
are defined

as: 

T 

i j 
α = 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
A i j 

α

n 

i j · [ t − ρ ˜ v (v − w 

i j )] d Ad τ (13)

T 

i 
αβ = 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
S i 
αβ

n 

αβ · [ t − ρ ˜ v (v − w 

αβ )] d Sd τ (14)
ith ρ ˜ v (v − w 

αβ ) apparent Reynolds stresses. Application of the

hain rule of differentiation to the first term on the l.h.s. and ex-

loitation of the mass balance Eq. (5) yields the following final

orm of the momentum balance: 

(ρ i 
α V 

i 
α) 

d 

dt 
v i α = 

∑ 

j � = i 
T 

i j 
α + 

∑ 

β � = α
T 

i 
αβ + ρ i 

α g 

i 
α V 

i 
α (15)

alance of energy: In analogy to the momentum balance equa-

ion, the balance of energy is obtained by substituting the respec-

ive microscopic quantities from Table 3 into (4) . Successive intro-

uction of megascopic quantities yields: 

d 

dt 

{
ρ i 

α

[
E i α + 

(v i α) 2 

2 

]
V 

i 
α

}

= 

∑ 

j � = i 
e i j 
α

[
E i α + 

(v i α) 2 

2 

]
+ 

∑ 

β � = α
e i αβ

[
E i α + 

(v i α) 2 

2 

]

+ 

∑ 

j � = i 
Q 

i j 
α + 

∑ 

β � = α
Q 

i 
αβ + 

∑ 

j � = i 
T 

i j 
α · v i α

+ 

∑ 

β � = α
T 

i 
αβ · v i α + ρ i 

α(g 

i 
α · v i α + h 

i 
α) V 

i 
α (16)

here h i α is the external energy supply by radiation (see Table 3 )

nd the terms arising from velocity and energy deviation have

een accommodated as apparent heat fluxes in the thermal energy

xchange terms: 

 

i j 
α = 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
A i j 

α

n 

i j ·
[

q + t · ˜ v − ρ

(
˜ E + 

˜ v 2 

2 

)
(v − w 

i j ) 

]
d Ad τ

(17)

 

i 
αβ = 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
S i 
αβ

n 

αβ

·
[

q + t · ˜ v − ρ

(
˜ E + 

˜ v 2 

2 

)
(v − w 

αβ ) 

]
d Sd τ (18)

ubstitution of the equations of mass and momentum balance in

16) , after some manipulations, results in the conservation of ther-

al energy equation: 

d ̂  E i α
dt 

= 

∑ 

j � = i 

[
e i j 
αE i α + Q 

i j 
α

]
+ 

∑ 

β � = α

[
e i αβE i α + Q 

i 
αβ

]
+ ρ i 

αh 

i 
αV 

i 
α (19)

ith 

ˆ E i α = ρ i 
α E i α V i α the extensive α-phase internal energy of the

 -zone. 

Balance of entropy: The balance of entropy is obtained

y substituting the corresponding microscopic properties from

able 3 into the general balance Eq. (4) . After introducing appro-
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riate symbols for the megascale properties, we obtain: 

d ̂  ηi 
α

dt 
= 

∑ 

j � = i 

[
e i j 
αηi 

α + F i j 
α

]
+ 

∑ 

β � = α

[
e i αβηi 

α + F i αβ

]
+ ρ i 

αb i αV 

i 
α + ρ i 

α�i 
αV 

i 
α

(20) 

here ˆ ηi 
α = ρ i 

α ηi 
α V i α denotes the extensive entropy of the phase

nd b i α is the external entropy supply (see Table 3 ). The terms F 
i j 
α

nd F i 
αβ

are the megascale exchange terms for entropy across the

lement boundary A 

i j 
α and the phase interfaces S i 

αβ
, respectively.

hese are defined via the following two integrals respectively: 

 

i j 
α = 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
A i j 

α

n 

i j · [ j − ρ ˜ η(v − w 

i j )] d Ad τ (21) 

 

i 
αβ = 

1 

2�t 

∫ t+�t 

t−�t 

∫ 
S i 
αβ

n 

αβ · [ j − ρ ˜ η(v − w 

αβ )] d Sd τ (22) 

. Jump conditions 

The flux continuity of a thermodynamic property across Ele-

ent, zone or phase boundaries must be correctly accounted for,

hen combining phases, zones, Elements and REWs in the entropy

nequality. To derive these relationships, which are as important as

he balance laws, we adopt the approach by Eringen (1980) . He

tates the general balance law for two portions of a continuum

eparated by a surface of discontinuity. The two portions are sub-

equently assembled, yielding megascopic jump conditions for the

alance equations across an interface. The detailed derivations are

mitted here for reasons of brevity, and only the final results are

resented. 

Jump condition for mass: The jump condition for mass across

n interface A 

i j 
α simply states that: 

 

i j 
α + e ji α = 0 (23)

n analogous expression holds for the mass exchange across phase

nterfaces S i 
αβ

: 

 

i 
αβ + e i βα = 0 (24)

ump condition for momentum: The jump condition for momen-

um across a boundary A 

i j 
α is expressed as follows: 

(e i j 
αv i α + T 

i j 
α ) + (e ji αv i α + T 

ji 
α ) = 0 (25)

pon substituting from (23) we can recast this equation into the

orm: 

 

i j 
α + T 

ji 
α = −e i j 

αv i, j 
α (26)

hereby a comma in the indices denotes a relative quantity, de-

ned as follows: 

 

i, j 
α = v i α − v j α (27) 

imilarly, a jump condition for momentum across a phase interface

s obtained by using (24) : 

 

i 
αβ + T 

i 
βα = −e i αβv i α,β (28)

here: 

 

i 
α,β = v i α − v i β (29) 
a  
ump condition for energy: The jump condition for total en-

rgy across a boundary A 

i j 
α is expressed as: 

 

i j 
α · v i α + Q 

i j 
α + e i j 

α

[
E i α + 

(v i α) 2 

2 

]
+ T 

ji 
α · v j α + Q 

ji 
α

+ e ji α

[
E j α + 

(v j α) 2 

2 

]
= 0 (30) 

he use of the jump conditions for mass (23) and (24) and those

or momentum (25) and (28) allows to recast Eq. (30) into the

orm: 

 

i j 
α + Q 

ji 
α = −T 

i j 
α · v i, j 

α − e i j 
α

[
E i, j 
α + 

(v i, j 
α ) 2 

2 

]
(31)

here E 
i, j 
α is defined similarly to v 

i, j 
α in Eq. (27) . The jump condi-

ion across a phase interface S i 
αβ

becomes: 

 

i 
αβ + Q 

i 
βα = −T 

i 
αβ · v i α,β − e i αβ

[ 

E i α,β + 

(v i 
α,β

) 2 

2 

] 

(32)

ith E i 
α,β

defined similarly to v i 
α,β

in Eq. (29) . 

Jump condition for entropy: As entropy is not a conservative

uantity, the jump condition across the generic boundary surface

 

i j 
α would require: 

(e i j 
αηi 

α + F i j 
α ) + (e ji αηi 

α + F ji 
α ) ≥ 0 (33)

ubstitution from (23) gives: 

 

i j 
α + F ji 

α + e i j 
α ηi, j 

α ≥ 0 (34)

ith ηi, j 
α defined in analogy to Eq. (27) . Similarly, the jump condi-

ion across a phase interface S i 
αβ

becomes: 

 

i 
αβ + F i βα + e i αβ ηi 

α,β ≥ 0 (35)

. Entropy inequality 

The 2nd law of thermodynamics states that the total entropy

roduction of the system must be non-negative. The entropy pro-

uction of the i -zone α-phase of Element I and REW K is the quan-

ity �i 
α appearing in Eq. (20) . To obtain the entropy production

f the entire watershed, Eq. (20) must be added over all phases,

ones, Elements, and REWs to obtain : 

= 

∑ 

K,I,i,α

θ i 
αρ i 

α�i 
α V 

i 
α = 

∑ 

K,I,i,α

θ i 
α

d ̂  ηi 
α

dt 
−

∑ 

K,I,i,α

∑ 

j � = i 
θ i 
αe i j 

αηi 
α

−
∑ 

K,I,i,α

∑ 

β � = α
θ i 
αe i αβηi 

α −
∑ 

K,I,i,α

∑ 

j � = i 
θ i 
αF i j 

α −
∑ 

K,I,i,α

∑ 

β � = α
θ i 
αF i αβ

−
∑ 

K,I,i,α

θ i 
αρ i 

αb i αV 

i 
α ≥ 0 (36) 

n arriving at this result, each single entropy conservation equation

s multiplied by the absolute temperature θ i 
α of the phase and then

dded. Moreover the intensive Helmholtz free energy potential for

he i -zone α-phase, A 

i 
α, is introduced: 

 

i 
α = E i α − θ i 

αηi 
α (37) 

imilarly, the extensive Helmholtz free energy ˆ A 

i 
α is defined as: 

i 
αV 

i 
αA 

i 
α = 

ˆ A 

i 
α = 

ˆ E i α − θ i 
α ˆ ηi 

α (38) 

o express the entropy inequality in terms of ˆ A 

i 
α, the thermal en-

rgy Eq. (19) is summed over all system components and then

dded to the inequality (36) . Then (38) and the chain rule of dif-
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ferentiation are employed to yield: 

� = 

∑ 

K,I,i,α

θ i 
αρ i 

α�i 
αV 

i 
α = 

−
∑ 

K,I,i,α

(
d ˆ A 

i 
α

dt 
+ ˆ ηi 

α

dθ i 
α

dt 

)
+ 

∑ 

K,I,i,α

∑ 

j � = i 
e i j 
αA 

i 
α + 

∑ 

K,I,i,α

∑ 

β � = α
e i αβA 

i 
α

+ 

∑ 

K,I,i,α

∑ 

j � = i 

[
Q 

i j 
α − θ i 

αF i j 
α

]
+ + 

∑ 

K,I,i,α

∑ 

β � = α

[
Q 

i 
αβ − θ i 

αF i αβ

]

+ 

∑ 

K,I,i,α

θ i 
αρ i 

α

(
h 

i 
α

θ i 
α

− b i α

)
V 

i 
α ≥ 0 

(39)

Following common practice in thermodynamics (for reference see

Eringen (1980) ), the external supply of entropy b i α is assumed to

be attributable only to external supply of internal energy h i α: 

b i α = 

h 

i 
α

θ i 
α

(40)

Eq. (40) and the jump conditions (23), (24) for mass, (31), (32) for

energy and (34), (35) for entropy are used to further manipulate

(39) and eliminate the thermal exchanges Q 

i j 
α , Q 

i 
αβ

: 

� = −
∑ 

K,I,i,α

(
d ˆ A 

i 
α

dt 
+ ˆ ηi 

α

dθ i 
α

dt 

)
−

∑ 

K,I,i,α

∑ 

j � = i 
T 

i j 
α · v i α −

∑ 

K,I,i,α

∑ 

β � = α
T 

i 
αβ · v

+ 

∑ 

K,I,i,α

∑ 

j � = i 
e i j 
α

[
(v j α) 2 

2 

− (v i α) 2 

2 

]

+ 

∑ 

K,I,i,α

∑ 

β � = α
e i αβ

[ 

(v i 
β
) 2 

2 

− (v i α) 2 

2 

] 

+ 

∑ 

K,I,i,α

∑ 

j � = i 
θ j,i 
α F i j 

α −
∑ 

K,I,i,α

∑ 

β � = α
θ i 
β,αF i αβ ≥ 0 (41

where θ j,i 
α and θ i 

β,α
are the differences of phase temperature across

the zone boundaries or phase interfaces. The following step is the

development of constitutive equations. 

7. Constitutive equations 

The equations of conservation of mass, momentum, and energy

presented in the previous sections are very general and in fact ap-

ply to any arbitrary volume, whether part of a watershed or just a

continuum body. These equations must be supplemented with con-

stitutive relationships for mass, force and thermal exchange terms

defined in Section 4 . This is also needed because the number of

equations is much less than the number of unknowns. For exam-

ple, for the water phase of the unsaturated zone, there are three

equations ( 1 mass balance, 1 (vectorial) momentum balance and

1 energy balance), whereas there are 25 unknowns ( ρu 
w 

, V u w 

, e uu 
w 

,

e us 
w 

, e uc 
w 

, e u wg , e u wm 

, v u w 

, T uu 
w 

, T us 
w 

, T uc 
w 

, T u wg , T u wm 

, ˆ E u w 

, Q 

uu 
w 

, Q 

us 
w 

, Q 

uc 
w 

,

Q 

u 
wg , Q 

u 
wm 

, ˆ ηu 
w 

, F uu 
w 

, F us 
w 

, F uc 
w 

, F u wg and F u wm 

), where we count vecto-

rial quantities as one unknown too. Thermodynamically consistent

constitutive relationships can be found by using the entropy in-

equality as a constraint. This requires us to focus on the internal

energy of the system first. 

In classical thermodynamics, the total energy available to per-

form “useful” work by a system is considered to depend on ex-

tensive system properties such as total mass, volume, and entropy.

Consequently the internal energy potential can be stated as a func-

tion of independent extensive state variables: 

ˆ E i α = 

ˆ E i α( ̂  ηi 
α, V 

i 
α, M 

i 
α, . . . ) (42)

whereby the internal energy (or for that matter any other exten-

sive thermodynamic potential) is additive. For example, if the mass
f the system is doubled, then 

ˆ E i α will also double. This is known

o be valid for small-scale systems (for example at the scale of

EV for porous media flow) or for homogeneous large-scale sys-

ems. For a homogeneous system, a given amount of mass has the

ame volume, entropy and energy, regardless of where in the sys-

em it is located. Obviously, this does not hold for a heterogeneous

ystem. For example, in a large body of fluid, which is under the

nfluence of gravity, a given volume of the fluid can have a larger

ass density at a lower depth than higher up; this is because of

he pressure gradient over depth due to gravity. For such a system

s a whole, the assumption of additivity no longer holds ( Landberg

t al., 1978 ). A REW (or any i -zone or Element for that matter) is

ffectively a large-scale system within a gravitational field. As such,

t may be considered as a system featuring microstructure. Eringen

nd Suhubi (1964) have studied such systems and have suggested

o include various moments to account for the effect of such mi-

rostructure. With the aim to address effects of gravity, we include

n additional extensive property in the list of internal energy de-

endencies (42) . For this purpose we first recall the definition of

he centroid position of a phase with respect to a reference point

 0 : 

 

i 
α − x 0 = 

1 

ρ i 
αV 

i 
α

1 

2�t 

∫ t+�t 

t−�t 

∫ 
V i α

ρ (x − x 0 ) d V d τ (43)

hen we introduce the specific moment of mass denoted as J i α, ef-

ectively a moment of volume with dimension [ L 4 ]: 

 

i 
α = (x − x 0 ) V 

i 
α (44)

he moment J i α is a vectorial property characterizing the phase on

he basis of its spatial mass distribution with respect to a refer-

nce point. The differential dJ i α represents the moment change by

oving the ensemble of phase particles along a distance d x . The

roperty is extensive and directly proportional to the volume of

he system. An infinitesimal work dW exerted on the system by

he gravitational force can be written as the inner product of d J i α
ith g , i.e. dW = ρ i 

α g · d J i α . Here, ρ i 
α g [ ML −2 T −2 ] is the volume-

pecific gravity, an intensive parameter conjugate ( Callen, 1985 ) of

he extensive property J i α . Including the work of a conservative

orce as a component of the megascale internal energy is analo-

ous to considering the energy state change of a phase due to the

rientation of the magnetic dipole moment of its particles in a di-

ection parallel to an external magnetic field. The total dipole mo-

ent of a system is in that case analogous to the moment J i α, a

eneralized thermodynamic force, while the magnetic flux density

ssumes the same role as the gravity density ρ i 
α g . In light of this

nalysis, we propose the following constitutive relation for the ex-

ensive Helmholtz free energy, which is a thermodynamic poten-

ial. It was defined by Eq. (38) and introduced in the inequality

41) instead of the internal energy, to replace entropy with tem-

erature as the independent variable: 

ˆ 
 

i 
α = 

ˆ A 

i 
α(θ i 

α, M 

i 
α, V 

i 
α, J i α) (45)

ll other system unknowns (that is, all mass, momentum, energy,

nd entropy exchange terms) are assumed to be functions of flow

elocity v i α, as well as θ i 
α, M 

i 
α, V i α, J i α . A dependence of ˆ A 

i 
α on the

hase velocity is ruled out a priori as it would violate the 2nd law

 Eringen, 1980 ). The first term on the r.h.s. of (41) is expanded by

pplying the chain rule of differentiation to (45) : 

d ˆ A 

i 
α

dt 
= 

∂ ˆ A 

i 
α

∂θ i 
α

∣∣∣
M,V, J 

dθ i 
α

dt 
+ 

∂ ˆ A 

i 
α

∂M 

i 
α

∣∣∣
θ,V, J 

dM 

i 
α

dt 
+ 

∂ ˆ A 

i 
α

∂V 

i 
α

∣∣∣
θ,M, J 

dV 

i 
α

dt 

+ 

∂ ˆ A 

i 
α

∂J i α

∣∣∣
θ,M,V 

· dJ i α
dt 

(46)
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o simplify the notation we introduce a series of symbols for the

onditional partial derivatives, so that (46) can be written as: 

d ˆ A 

i 
α

dt 
= ∂ θ ˆ A 

i 
α

dθ i 
α

dt 
+ ∂ M 

ˆ A 

i 
α

dM 

i 
α

dt 
+ ∂ V ˆ A 

i 
α

dV 

i 
α

dt 
+ ∂ J ˆ A 

i 
α · dJ i α

dt 
(47)

he term d M 

i 
α/d t is replaced using the mass conservation Eq.

5) and, as common in thermodynamics, we assume that the en-

ropy fluxes are only due to thermal energy exchange (for refer-

nce see Eringen (1980) ), eliminating these from the entropy in-

quality: 

 

i j 
α = 

Q 

i j 
α

θ i 
α

(48) 

 

i 
αβ = 

Q 

i 
αβ

θ i 
α

(49) 

ubstitution of (47) –(49) into the inequality (41) and application of

he jump conditions (23) and (24) for mass yields: 

= −
∑ 

K,I,i,α

(
∂ θ ˆ A 

i 
α + ˆ ηi 

α

)dθ i 
α

dt 
−

∑ 

K,I,i,α

∂ V ˆ A 

i 
α

dV 

i 
α

dt 
−

∑ 

K,I,i,α

∂ J ˆ A 

i 
α · dJ i α

dt 

−
∑ 

K,I,i,α

[ ∑ 

j � = i 
T 

i j 
α + 

∑ 

β � = α
T 

i 
αβ

] 

· v i α,o 

+ 

∑ 

K,I,i,α

∑ 

j � = i 
e i j 
α

[
∂ M 

ˆ A 

j 
α − ∂ M 

ˆ A 

i 
α + 

(v j α,o ) 
2 

2 

− (v i α,o ) 
2 

2 

]

+ 

∑ 

K,I,i,α

∑ 

β � = α
e i αβ

[ 

∂ M 

ˆ A 

i 
β − ∂ M 

ˆ A 

i 
α + 

(v i 
β,o 

) 2 

2 

− (v i α,o ) 
2 

2 

] 

+ 

∑ 

K,I,i,α

∑ 

j � = i 

θ j,i 
α

θ i 
α

Q 

i j 
α −

∑ 

K,I,i,α

∑ 

β � = α

θ i 
β,α

θ i 
α

Q 

i 
αβ ≥ 0 (50) 

ith v i α,o = v i α − v o the relative velocity of the phase with respect

o the velocity v o of the reference frame in Fig. 1 , to express the

otal entropy production � independently of a potentially moving

bserver. As a next step the term d J i α/d t is expanded by applying

he following equation: 

dJ i α
dt 

= (x 

i 
α − x o ) 

dV 

i 
α

dt 
+ (v i α − v o ) V 

i 
α (51)

here x i α has been defined via Eq. (43) . The proof of this equal-

ty is provided in Appendix A . Eq. (51) is substituted back into the

nequality (50) and terms are collected. By applying the mass con-

ervation Eq. (5) to eliminate the rate of change of volume, the

nequality can be cast into the following form: 

= −
∑ 

K,I,i,α

(
∂ θ ˆ A 

i 
α + ˆ ηi 

α

)dθ i 
α

dt 
+ 

∑ 

K,I,i,α

[
∂ V ˆ A 

i 
α + ∂ J ˆ A 

i 
α (x 

i 
α − x o ) 

]dρ i
α

dt 

−
∑ 

K,I,i,α

[ ∑ 

j � = i 
T 

i j 
α + 

∑ 

β � = α
T 

i 
αβ + ∂ J ˆ A 

i 
α V 

i 
α

] 

· v i α,o 

+ 

∑ 

K,I,i,α

∑ 

j � = i 
e i j 
α

[
∂ V ˆ A 

j,i 
α + ∂ J ˆ A 

j,i 
α + ∂ M 

ˆ A 

j,i 
α + 

(v j α,o ) 
2 

2 

− (v i α,o ) 
2 

2 

]

+ 

∑ 

K,I,i,α

∑ 

β � = α
e i αβ

[ 

∂ V ˆ A 

i 
β,α + ∂ J ˆ A 

i 
β,α + ∂ M 

ˆ A 

i 
β,α

+ 

(v i 
β,o 

) 2 

2 

− (v i α,o ) 
2 

2 

] 

+ 

∑ 

K,I,i,α

∑ 

j � = i 

θ j,i 
α

θ i 
α

Q 

i j 
α −

∑ 

K,I,i,α

∑ 

β � = α

θ i 
β,α

θ i 
α

Q 

i 
αβ ≥ 0 (52
his expression constitutes the megascopic (or REW-scale)

lausius–Duhem inequality for a watershed, which can be used as

 framework to verify the thermodynamic consistency of constitu-

ive equations in continuum mechanics ( Coleman and Noll, 1963 ). 

. Equilibrium analysis 

The entropy inequality (52) needs to be analysed in a situation

f thermodynamic equilibrium. Equilibrium is reached when veloc-

ties of various phases are zero, the volumes are no longer subject

o expansion or contraction, the system is isothermal at a refer-

nce temperature, and mass exchanges are zero. This means that

t thermodynamic equilibrium the following set of variables van-

shes: 

 � = 

(
e i j 
α, e i αβ, v i α,o , θ

i, j 
α , θ i 

α,β , 
dθ i 

α

dt 
, 

dρ i 
α

dt 

)
= 0 (53) 

loser examination of (52) reveals that the net entropy production

s zero at equilibrium. As � cannot be negative, it reaches its ab-

olute minimum at equilibrium. There are two necessary and suf-

cient conditions for � to be at its absolute minimum: i) the first

erivative of � with respect to Z � must be zero: 

∂�

∂Z �

∣∣∣∣
Z �=0 

= 0 (54) 

nd ii) the Hessian matrix of the associated quadratic form 

∂ 2 �

∂ 2 Z �

∣∣∣∣ (55) 

ust be positive semi-definite. Application of (54) shows that the

rst term between brackets in the inequality (52) yields an iden-

ity between entropy and partial derivative of the Helmholtz free

nergy with respect to temperature: 

∂ ˆ A 

i 
α

∂θ i 
α

= ∂ θ ˆ A 

i 
α = − ˆ ηi 

α (56) 

his is a relationship of classical thermodynamics ( Callen, 1985 ).

or the second term in brackets, the following relationship holds

t equilibrium: 

∂ V ˆ A 

i 
α + ∂ J ˆ A 

i 
α · (x 

i 
α − x o ) 

]
= 0 (57) 

e also recall that the partial derivative of the Helmholtz free en-

rgy with respect to volume equals the pressure: 

 V ˆ A 

i 
α = p i α (58) 

lso, on the basis of the dependency of the free energy on J i α, the

artial derivative with respect to J i α must equate the product of

ass density and gravity vector, ρ i 
α g , an intrinsic thermodynamic

roperty of the phase defined in analogy to magnetic systems, as

xplained in Section 7 : 

 J ˆ A 

i 
α = −ρ i 

α g (59) 

he negative sign indicates that the free energy ˆ A 

i 
α increases by

isplacing the centre of mass of the phase against the orientation

f the conservative field g . In association with (57) and in view of

he fact that g = −g e z , the latter two relationships indicate that

he average phase pressure at equilibrium is as expected, equal to

he hydrostatic pressure: 

p i α = ρ i 
α g (z i α − z o ) (60)

ith z i α = x i α · e z the vertical position of the phase centroid and

 o = x o · e z is a reference datum. 

Next, we analyse the third term in (52) . At equilibrium, when

ll relative velocities are zero, the stress tensor in the megascopic

omentum exchange terms T 
i j 
α and T i 

αβ
reduces to t = p i α I , where
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p i α is the average phase pressure. The sum of all terms between

square brackets must therefore satisfy the relation: ∑ 

j � = i 
p i α A 

i j 
α + 

∑ 

β � = α
p i α S i αβ = g ρ i 

α V 

i 
α (61)

where A 

i j 
α and S i 

αβ
are areal vectors. Eq. (61) states that at equi-

librium the weight of the phase must be balanced by the pressure

forces acting on the phase boundaries. Finally, the last four terms

in the inequality are all zero at equilibrium due to absence of mass

fluxes and the isothermal state of the system, at which no thermal

fluxes are admissible. 

9. Near-equilibrium analysis 

Under non-equilibrium conditions, yet close to thermodynamic

equilibrium, closure expressions for mass, momentum and ther-

mal exchange terms need to be sought, which respect the entropy

inequality and ensure for condition (55) to be met. This can be

achieved by expanding the various exchange terms to the first or

higher order terms around equilibrium. 

Linearization of mass exchange terms: Under non-equilibrium

conditions, the mass exchange terms become non-zero and the

system is non-isothermal, thus we need to examine the fourth and

fifth term in (52) . First we expand the second term in (52) by ex-

ploiting the mass balance Eq. (5) with the aim to eliminate d V i α/d t .

We substitute into (52) and collect the mass exchange terms to ob-

tain: 

� = −
∑ 

K,I,i,α

(
∂ θ ˆ A 

i 
α + ˆ ηi 

α

)dθ i 
α

dt 
−

∑ 

K,I,i,α

[
p i α
ρ i 

α

+ g(z i α − z o ) 

]
V 

i 
α

dρ i 
α

dt 

−
∑ 

K,I,i,α

[ ∑ 

j � = i 
T 

i j 
α + 

∑ 

β � = α
T 

i 
αβ − g ρ i 

α V 

i 
α

] 

· v i α,o 

+ 

∑ 

K,I,i,α

∑ 

j � = i 
e i j 
α

[
p j α

ρ j 
α

− p i α
ρ i 

α

+ g z j,i α + μ j,i 
α + 

(v j α,o ) 
2 

2 

− (v i α,o ) 
2 

2 

]

+ 

∑ 

K,I,i,α

∑ 

β � = α
e i αβ

[ 

p i 
β

ρ i 
β

− p i α
ρ i 

α

+ g z i β,α + μi 
β,α

+ 

(v i 
β,o 

) 2 

2 

− (v i α,o ) 
2 

2 

] 

+ 

∑ 

K,I,i,α

∑ 

j � = i 

θ j,i 
α

θ i 
α

Q 

i j 
α −

∑ 

K,I,i,α

∑ 

β � = α

θ i 
β,α

θ i 
α

Q 

i 
αβ ≥ 0 (62)

where μ j,i 
α and μi 

β,α
express the differences in chemical potentials

(or molar Gibbs free energies) of the phases across the respective

interfaces. We recall that in classical thermodynamics the chemical

potential is defined as μi 
α = ∂ ˆ A 

i 
α/∂M 

i 
α| θ,V, J in (46) . The quantities

z 
j,i 
α and z i 

β,α
are the differences of the centroid elevation of the

phase relative to those in adjacent zones or phases. In summary,

under non-equilibrium conditions, mass exchanges between phases

and zones are driven by differences in total piezometric heads

p i α/ρ i 
α + g (z i α − z o ) , chemical potentials, and kinetic energy across

interfaces. We note that under non-equilibrium conditions, when

mass exchanges, phase motion and compression/decompression

occur, z i α varies in time, and the pressure is as a result non-

hydrostatic. By looking at the multipliers of the mass exchange

terms, it is natural for those to be approximated at the first-order

through linearisation in terms of the thermodynamic forces driving

the exchange: 

e i j 
α = B 

i j 

[
p j α

ρ j 
− p i α

ρ i 
α

+ g z j,i α + μ j,i 
α + 

(v j α,o ) 
2 

2 

− (v i α,o ) 
2 

2 

]
(63)
α

 

i 
αβ = B αβ

[ 

p i 
β

ρ i 
β

− p i α
ρ i 

α

+ g z i β,α + μi 
β,α + 

(v i 
β,o 

) 2 

2 

− (v i α,o ) 
2 

2 

] 

(64)

here the linearisation coefficients B ij and B αβ need to be positive

nd can depend non-linearly on independent system variables such

s saturation, mass density, velocity or temperature. 

Closure of force terms: Under non-equilibrium conditions we

an approximate the deviatoric part of the stress tensor acting on

he respective interfaces at the second-order by expanding around

he hydrostatic equilibrium pressure (61) in terms of the phase ve-

ocity v i α: 
 

j � = i 
T 

i j 
α + 

∑ 

β � = α
T 

i 
αβ = g ρ i 

α V 

i 
α + M 

i 
α · v i α + R 

i 
α · v i α | v i α| (65)

he tensors M 

i 
α and R 

i 
α relate to first- and second-order flow re-

istivities, which can be non-linear functions of the remaining in-

ependent variables such as saturation, temperature etc.: 

 

i 
α = M 

i 
α(s i α, θ i 

α, . . . . ) (66)

he inclusion of the second-order term may be required to accom-

odate situations, in which there is a clearly non-linear depen-

ence of the resistance on the velocity, such as for overland and/or

hannel flow. For subsurface flows a linear approximation may suf-

ce, as enshrined by Darcy’s law ( Hassanizadeh and Gray, 1980 ). 

Linearization of thermal energy exchanges: Under non-

sothermal conditions, the thermal energy fluxes can be linearised

n terms of temperature differences across the phase boundaries: 

 

i j 
α = K 

i j θ j,i 
α (67)

 

i 
αβ = K αβ θ i 

β,α (68)

he linearisation coefficients K 

ij and K αβ are known as thermal

onductivities which can also depend on remaining system state

ariables. 

By inserting the expanded exchange terms into (62) , it is easy

o prove that r.h.s. terms 3 through 7 are always non-negative,

hile the non-negativity of the 1st term is ensured by equality

56) , which is valid also under non-equilibrium conditions. The

nd term is only relevant for compressible fluids; to ensure non-

egativity outside equilibrium, the pressure must adjust in a situ-

tion of density variations to changes of z i α, such that the expres-

ion between brackets remains always zero, as d ρ i 
α/d t can assume

rbitrarily large positive or negative values. The substitution of the

inearised terms (63) –(68) and the quadratic term (65) into the

alance equations for mass (5) , momentum (15) and thermal en-

rgy (19) , leads to a set of fully parametrised and thermodynami-

ally consistent megascopic equations. 

0. Geometrical relationships 

The proposed equation system includes for each Element 7

ones, two of which contain 3 phases ( u and f -zone), other two

ave 2 phases ( s and p -zone) and the remaining three include only

 single phase ( o, c , and r -zone). It is also assumed that the solid

atrix of the subsurface flow zones as well as snow and ice are

mmobile, and that all solid phases, except snow/ice, do not change

hase, thus are not subject to either deformation or solution. This

s equivalent to stating: 

 

u 
m 

= v s m 

= v p m 

= v f m 

= 0 (69)

 

u 
mg = e u mw 

= e s mw 

= e p mw 

= 0 (70)

e continue studying only the motion of the fluid phases and con-

ider solid phases only for mass and thermal energy balance pur-

oses. As a result, we obtain a system of 35 independent equations
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Fig. 5. Pressure distribution and forces acting in the unsaturated zone Element. 
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onsisting of 9 mass, 9 (vectorial) momentum and 13 thermal en-

rgy balance equations as well as the ideal gas law for the u and

he f zone air pressure, in 35 unknowns: 

(p u g , p 
f 
g , ρ

u 
g , ρ

f 
g , s 

u 
w 

, s f w 

, V 

y , V 

s , V 

o , V 

c , V 

r , V 

p , V 

f , v u w 

, v u g , v 
s 
w 

, (71) 

v o , v c , v r , v p w 

, v f w 

, v f g , θ
u 
g , θ

u 
w 

, θu 
m 

, θ s 
w 

, θ s 
m 

, θ o , θ c , θ r , θ p 
w 

, θ p 
m 

, 

θ f 
g , θ

f 
w 

, θ f 
m 

) 

he system of equations is in principle fully determined. We note

owever that in most cases it is not practical to calculate the zone

olume V 

i , but it is desirable to evaluate a conjugate property such

s the flow depth y i or the channel cross sectional area, as indi-

ated in Table 4 . As a result 7 additional geometrical unknowns

re considered, which we use to derive the desired property from

he volume V 

i : 

(�u , �s , �c , �o , �p , � f , l r ) (72)

he quantities �i are defined as the horizontal projections of the

reas covered by the respective i -zone, while l r is the length of the

hannel reach in the I th Element and K th REW. These 7 unknowns

equire the introduction of additional geometrical relationships for

ach Element. First we assume that l r is constant and the number

f unknowns drops to 6. Secondly we can state that the sum of the

nsaturated and the saturated zone volume adds up to the (con-

tant) total volume of the entire subsurface zone in an Element:

 

u + V 

s = y u �u + y s �s = const (73)

imilarly, the sum of the area projections of the concentrated and

he saturated overland flow add up to a constant value, equal to

he known area projection �I of the Element onto the horizontal

lane (for reference see Fig. 4 ): 

c + �o = �I (74) 

fter the Hortonian overland flow sheet, which is ephemeral, has

anished, �c becomes zero and the entire unsaturated land surface

ecomes exposed to the atmosphere, in which case: 

u + �o = �I (75) 

he snow pack is supposed to be spread over the Element surface,

hus � f = �I , while the saturated subsurface storm flow zone is

ssumed to underlie the Hortonian overland flow zone within the

lement, thus �p = �c . Situations, in which no saturated subsur-

ace storm flow zone underlies the Hortonian overland flow zone

 �p = 0 , �c � = 0 ) or vice versa ( �p � = 0 , �c = 0 ) are also possible.

inally, the surface area projection of the saturated overland flow

one is expressed as a function of the saturated zone volume: 

o = �o (V 

s ) = �o (y s �s ) (76)

f we assume that the saturated zone underlies the entire Element,

hen �s = �I for each Element and (76) reduces to the relation-

hip: 

o = �o (y s ) (77) 

he outlined geometric relationships determine the remaining 6

nknowns and allow resolving the entire system of equations

n terms of hydrologically meaningful quantities. Preliminary at-

empts to apply these relationships in modelling real-world sys-

ems have been proposed in Reggiani et al. (20 0 0,2014a,b) and

eggiani and Rientjes (2010) . 

1. Examples 

To show how two familiar governing equations can be obtained

rom the previous equations, we consider the momentum balance

quation along the main axes of a Cartesian reference system de-

icted in Fig. 1 . These are identified by three unit vectors, e x , e y 
nd e z , pointing along the two horizontal axes and the vertical axis

f the reference system. The vectorial momentum equation can be

rojected by taking the internal product with a unit vector. This is

arried out next under the assumption of constant mass density to

btain i) Darcy’s law for the vertical movement through the unsat-

rated zone and ii) the non-linear reservoir equation for channel

outing. 

Unsaturated zone Darcy’s law: Darcy’s law governing the verti-

al motion through the unsaturated zone is obtained from (15) by

eglecting the inertial term and retaining zone boundary forces T uc 
w 

nd T us 
w 

. The vertical projections of all other boundary forces, T uu 
w 

,

s well as T u wg and T u wm 

, acting on the phase interfaces, either can-

el or are negligible: 

T 

uc 
w 

+ T 

us 
w 

− ρ g V 

i 
w 

]
· e z = M · v u w 

· e z (78)

t equilibrium only pressure forces act to balance the weight of

ore water: 

 

p u w 

A 

uc 
w 

n 

uc + p u w 

A 

us 
w 

n 

us ] · I · e z = ρ s u w 

εu V 

u g · e z (79)

ith A 

uc 
w 

the upper zone boundary, i.e. the soil surface, and A 

us 
w 

the

ater table, while p u w 

is the average water pressure of the u -zone.

fter taking the inner products and assuming that the zone is pris-

atic, A 

uc 
w 

= A 

us 
w 

, and we obtain: 

 p u w 

s u w 

εu �u = −ρ g s u w 

εu y u �u (80)

n this equation s u w 

εu �u is to be interpreted as the horizontal pro-

ection of the water portion A 

uc 
w 

n 

uc · e z of the soil surface or the

orizontal projection of the water table A 

us 
w 

n 

us · e z , while V 

u has

een written as product indicated in Table 4 . The average u -zone

ater pressure is thus: 

p u w 

= −1 

2 

ρ g y u (81) 

his implies that in presence of an atmospheric air pressure p a ,

or the megascopic equilibrium forces acting on the upper and

ower zone boundaries to balance the weight ρ g εu s u V 

u of wa-

er, the vertical pressure distribution across the unsaturated zone

ust be hydrostatic, with a minimum value of p uc 
w 

= −ρ g y u + p a 
t the soil surface A 

uc 
w 

, and a value of p us 
w 

= p a at the water ta-

le A 

us 
w 

. The average (negative) capillary pressure in the u -zone be-

omes p u cap = p a − p u w 

= −ρ g y u / 2 (for reference see Fig. 5 ). Under

on-equilibrium conditions the pressure at the upper boundary A 

uc 
w 

s given by an expression different from hydrostatic: 

p a − p uc 
w 

= p uc 
cap (s u w 

, y u , λ, s 0 , p 0 ) (82)

here λ is a soil-dependent pressure-saturation scaling parame-

er, s 0 and p 0 are soil-dependent maximum soil saturation and the

ir entry pressure. These can be found via a Brooks and Corey

1964) or, in slightly modified form, through the Van Genuchten

1980) water retention curve. Similar considerations apply to the
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unsaturated hydraulic conductivity. In summary, the megascopic

Darcy’ law valid for unsaturated vertical flow becomes: 

v u z = −M̄ 

−1 [ ( p a − p uc 
w 

) − ρ g y u ] s u w 

εu �u (83)

with M̄ 

−1 the scalar hydraulic conductivity, which is a function of

soil saturation. 

Non-linear reservoir equation: As a second example we derive

the non-linear reservoir equations, which are used for overland

flow and channel routing on steep slopes with typically kinematic

behaviour, where backwater effects are unimportant. First we take

the mass balance (5) for a channel reach with zero upstream in-

flow and downstream outflow e r : 

ρ
d V 

r 

dt 
= e r (84)

Additional indices I and K referring to Elements and REWs have

been omitted for notational simplicity. The momentum balance

equation for a reach segment is obtained from (15) by projecting

the parametrized vectorial equation in a direction parallel to the

channel axis. The result is a scalar equation with a second-order

resistance term: 

ρ V 

r dv r 

dt 
= ρ g V 

r S 0 − R v r | v r | (85)

with S 0 the reach bed slope, which can vary between Elements and

REWs. We note that the pressure terms acting at the channel head

sections and the first-order friction term in (65) are neglected in

line with the classical kinematic wave model assumptions. On the

other hand Manning’s formula states: 

v r = 

1 

n 

R 

2 / 3 

h 
S 1 / 2 

0 
(86)

with R h = m 

r /P w 

the hydraulic radius of the reach and P w 

the

wetted perimeter, properties which are in principle all variable

between Elements and REWs. Substitution of v r from (86) into

(85) under assumption of steady state (i.e. d v r /d t = 0 ), yields an

expression for the second-order resistivity parameter R [ M L −1 ] in

terms of hydrodynamic properties of the reach: 

R = ρ g n 

2 V 

r R 

−4 / 3 

h 
(87)

Next we multiply both sides in (86) by the average reach cross-

section area m 

r and rearrange conveniently. By noting that one can

approximate e r ≈ ρ v r m 

r we substitute back into (84) to obtain the

non-linear reservoir equation: 

dV 

r 

dt 
= 

S 1 / 2 
0 

n 

P w 

(P w 

l r ) 5 / 3 
(V 

r ) 5 / 3 (88)

This lumped model has been derived independently by integrat-

ing the kinematic wave model equations over a channel segment

Liu and Todini (2004) and can be solved either numerically or in-

tegrated analytically after approximating ( V 

r ) 5/3 through a second-

order Taylor series polynomial Reggiani et al. (2014a) . 

12. Discussion and conclusions 

This paper is an extension of the original work by the authors

( Reggiani et al., 1999, 1998 ). The concept of Representative Ele-

mentary Watersheds introduced earlier has been revised and ex-

tended to include novel features. First we recall that an REW ef-

fectively is a “mixture” of zero-dimensional contiguous phases fill-

ing separate portions of space. Following the definitions by Gray

et al. (1993) we adopt a “megascopic” perspective of the system.

Through spatial and temporal averaging and zero-dimensional rep-

resentation, the state variables and physical properties for an en-

tity remain only time-dependent. This leads to a system of coupled

ordinary differential governing equations (ODEs), which are com-

putationally cheaper to solve than conventional distributed models
 Abbott et al., 1986a,b ). This can be a major advantage in proba-

ilistic applications that require multiple consecutive model exe-

utions, as in real-time or long-term climate forecasting. 

To extend earlier work, we now accommodate a more flexible

odelling of watersheds by allowing for a subdivision of an REW

nto Elements, for which we provide conservation equations and

onstitutive relationships. The sub-division of REWs can be dic-

ated by either topographic features or geological formations, by

andcover or landuse patterns, or by anthropic factors such as ur-

anization, all of which influence flow behaviour. 

In zero-dimensional (megascopic) systems exposed to gravity,

he free energy potential of a phase, an REW or Element, depends

n standard extensive properties (mass, volume and entropy) as

ell as on a density-specific moment of mass. The dependency of

he energy potential on the moment of mass is necessary, because

he vertical pressure distribution due to gravity within a particular

hase needs to be correctly addressed in the zero-dimensional sys-

em components. Accounting for this additional dependency of the

nergy potential results in a natural, thermodynamically admissi-

le inclusion of gravity in the constitutive theory, which is con-

ruent with the physical behaviour described in Section 2 . Mass

xchanges between phases, elements and REWs must always be

riven by total energy differences. Without the use of such gen-

ralized potential, this behaviour can only be represented on the

asis of ad-hoc assumptions ( Reggiani et al., 1999 ). 

Typical dynamic effects encountered in natural systems, such

s hysteresis between filling and emptying of channel reach seg-

ents during a transiting flood wave, or between wetting and dry-

ng of soils ( Davies and Beven, 2015; Martina et al., 2011 ) can also

e addressed in the zero-dimensional upscaling approach. As an

xample, we name the recent analysis and application of the vari-

ble parameter Muskingum method for channel routing ( Reggiani

t al., 2014b ), which consists of zero-dimensional reach segments

rranged in series. Through non-linear closure of in- and outgoing

ass fluxes at the head sections of a reach, the dynamic effects in

 looped stage-discharge relationship can be captured, while fully

onserving mass and momentum. It constitutes an example of a

olution of the closure problem Q(t) = H(S, R, �t) · A, highlighted

y Beven (2006) . 

Another important aspect is the linearisation of the entropy

nequality in proximity of the equilibrium state in a multi-

imensional state space. A relevant point that needs further clar-

fication is the meaning of thermodynamic equilibrium for a wa-

ershed. While this concept is well-defined for classical thermo-

ynamic systems it needs to be defined properly in our case. We

nvisage hydrological equilibrium as a system state akin to a hy-

othetical isothermal wetland with standing ponded water. If flow

s induced by energy gradients, the system departs from the state

f equilibrium. The departure increases as flow accelerates. Accel-

ration eventually induces turbulence in surface and channel flow,

hile groundwater movement supposedly remains laminar. Also in

he case of turbulent flows, the velocity is represented through av-

rages, such as the mean velocity over a cross section, and can be

reated in analogy to laminar flow. Turbulent shear stresses are

losed through a second-order dependency on mean flow veloc-

ty, in agreement with the second law of thermodynamics ( Ozawa

t al., 2001 ). 

In this work, we also have relaxed some fundamental assump-

ions underlying the development of constitutive relationships in

arlier work ( Reggiani et al., 1999 ), such as the prior assumption

f incompressible phases and an isothermal state. This is neces-

ary for future applications, where compressible phases like water

apour and air, non-isothermal processes in snow and ice ablation

r landsurface-atmosphere interaction need to be modelled. Here,

e allow for compressible, non-isothermal phases as well as for

xchange of thermal energy among system components. 
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Finally, we have shown that the equations are directly applica-

le for watershed modelling by presenting two examples. We ob-

ain thermodynamically consistent REW-scale versions of Darcy’s

aw for the unsaturated subsurface flow and the non-linear reser-

oir equation for modelling channel and overland flow processes. 
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ppendix A. Proof 

To prove relationship (51) , the time derivative is applied to the

efinition of J i α given by Eq. (44) : 

dJ i α
dt 

= 

dV 

i 
α

dt 
(x 

i 
α − x 0 ) + V 

i 
α

d 

dt 
(x 

i 
α − x 0 ) (A.1) 

o complete the proof we need to verify that: 

d 

dt 
(x 

i 
α − x 0 ) = v i α − v 0 (A.2)

here v i α is given by Eq. (10) while v 0 is a potentially non-zero ve-

ocity of the reference framework. It is easy to show that (A.2) al-

ays holds for an incompressible phase. Here we demonstrate that

t holds for compressible phases as well. From the definition of the

entre of mass position, x i α − x 0 , it follows that: 

(ρ i 
α V 

i 
α) 

d 

dt 
(x 

i 
α − x 0 ) 

= (ρ i 
α V 

i 
α) 

d 

dt 

[
1 

ρ i 
α V 

i 
α

1 

2�t 

∫ t+�t 

t−�t 

∫ 
V i α

ρ (x − x 0 ) d V d τ

]

= 

1 

2�t 

d 

dt 

∫ t+�t 

t−�t 

∫ 
V i α

ρ (x − x 0 ) d V d τ − d (ρ i 
αV 

i 
α) 

d t 
(x 

i 
α − x 0 ) 

(A.3) 

he term d (x i α − x 0 ) /d t is given by the rate of change of total mo-

ent minus a term depending on the rate of change of mass. We

ecast the integral in (A.3) by noting that x can be split into the

um of the centroid position, x i α, and a deviation x ′ : 

 = x 

′ + x 

i 
α (A.4)

e substitute and then expand the integral to obtain: 

1 

2�t 

d 

dt 

∫ t+�t 

t−�t 

∫ 
V i α

ρ (x − x 0 ) d V d τ

= 

d(ρ i 
αV 

i 
α) 

dt 
(x 

i 
α − x 0 ) + 

1 

2�t 

d 

dt 

∫ t+�t 

t−�t 

∫ 
V i α

ρ x 

′ d V d τ (A.5) 

ow we apply the mean value theorem to evaluate the function

t a time point c(t) ∈ (t − �t, t + �t) , which depends on the cen-

re t of the time averaging window and always exists for a func-

ion that is continuous in [ t − �t, t + �t] and differentiable in

(t − �t, t + �t) , such that: 

1 

2�t 

d 

dt 

∫ t+�t 

t−�t 

∫ 
V i α

ρ x 

′ d V d τ = 

1 

2�t 

d 

d t 
F [ c(t)] (A.6) 

here F [ c ( t )] is evaluated at τ = c(t) and is defined as: 

 [ c(t)] = 2�t 

∫ 
V i α (c(t)) 

ρ[ x , c(t)] x 

′ [ x , c(t)] dV (A.7) 

nd F [ c ( t )]/2 �t is the moving average of the volume integral over

he sliding window (t − �t, t + �t) . We combine (A .3), (A .5) and

A.6) and use Reynolds transport theorem to convert d F [ c ( t )]/ dt in
A.6) into a surface integral : 

( ρ i 
αV 

i 
α) 

d 

dt 
(x 

i 
α − x 0 ) = 

dF [ c(t)] 

dt 

= 

d 

dt 

∫ 
V i α (c(t)) 

ρ[ x , c(t)] x 

′ [ x , c(t)] dV 

= 

∫ 
V i α (c(t)) 

x 

′ ∂ρ

∂t 

∣∣∣
x 

d V + 

∫ 
i 

α (c(t)) 
ρ x 

′ (v − v o ) · n 

∗ d  (A.8) 

here i 
α is the boundary of V i α with unit normal n 

∗ pointing out-

ard, v 0 is the velocity of a moving reference frame and | x indi-

ates that the partial derivative is evaluated with the spatial coor-

inate held constant (i.e. ⇒ ∂ x ′ /∂ t | x = 0 ). The last surface integral

n the r.h.s. can be converted into a volume integral by applying

auss theorem: 
 

i 
α (c(t)) 

ρ x 

′ (v − v o ) · n 

∗ d = 

∫ 
V i α (c(t)) 

∇ · [ ρ x 

′ (v − v 0 )] dV (A.9)

he divergence operator is expanded further : 
 

V i α (c(t)) 
∇ · [ ρ x 

′ (v − v 0 )] dV 

= 

∫ 
V i α (c(t)) 

ρ (v − v 0 ) dV + 

∫ 
V i α (c(t)) 

x 

′ ∇ · [ ρ (v − v 0 )] dV 

= ρ i 
α V 

i 
α (v i α − v 0 ) −

∫ 
V i α (c(t)) 

x 

′ ∂ρ

∂t 

∣∣∣
x 

dV (A.10) 

hereby the microscale mass conservation equation has been used

o substitute the divergence operator (see Eq. (9.3) in Gray et al.

1993) ). Finally we combine (A.8) with (A.10) and obtain equality

A.2) , proving its validity also for the compressible case. 
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