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a b s t r a c t

Long-term potentiation (LTP), a form of synaptic plasticity, is considered to be a critical cellular me-
chanism that underlies learning and memory. Cannabinoid CB1 and metabotropic GABAB receptors
display similar pharmacological effects and co-localize in certain brain regions. In this study, we ex-
amined the effects of co-administration of the CB1 and GABAB antagonists AM251 and baclofen, re-
spectively, on LTP induction in the rat dentate gyrus (DG).

Male Wistar rats were anesthetized with urethane. A stimulating electrode was placed in the lateral
perforant path (PP), and a bipolar recording electrode was inserted into the DG until maximal field
excitatory postsynaptic potentials (fEPSPs) were observed. LTP was induced in the hippocampal area by
high-frequency stimulation (HFS) of the PP. fEPSPs and population spikes (PS) were recorded at 5, 30, and
60 min after HFS in order to measure changes in the synaptic responses of DG neurons.

Our results showed that HFS coupled with administration of AM251 and baclofen increased both PS
amplitude and fEPSP slope. Furthermore, co-administration of AM251 and baclofen elicited greater in-
creases in PS amplitude and fEPSP slope.

The results of the present study suggest that CB1 receptor activation in the hippocampus mainly
modifies synapses onto GABAergic interneurons located in the DG. Our results further suggest that, when
AM251 and baclofen are administered simultaneously, AM251 can alter GABA release and thereby
augment LTP through GABAB receptors. These results suggest that functional crosstalk between canna-
binoid and GABA receptors regulates hippocampal synaptic plasticity.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The hippocampus has long been considered important for
learning and memory storage (Bermúdez-Rattoni, 2007; Shew
et al., 2000; Bliss and Lømo, 1973; Lynch et al., 1979). It is generally
believed that most information is stored at synapses in the form of
modification in synaptic efficiency. In particular, two forms of sy-
naptic plasticity, long-term potentiation (LTP) and long-term de-
pression (LTD), have been broadly considered in the pursuit of
understanding the molecular and cellular basis of learning and
memory (Bliss and Collingridge, 1993; Peineau et al., 2007; Komaki
and Esteky, 2005). In the hippocampal formation, LTP can be in-
duced by repetitive activation of afferent pathways (Mott et al.,
1990; Douglas and Goddard, 1975). LTP can be modulated by
chool of Medicine, Hamadan
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several neurotransmitter/neuromodulator systems (Almaguer-
Melian et al., 2005). In particular, previous studies clearly de-
monstrate that the endocannabinoid (eCB) system is critically in-
volved in the physiological mechanisms underlying learning and
memory (Varvel and Lichtman, 2005). For example, retrograde eCB
signaling modulates LTP induction, as well as glutamatergic and
GABAergic transmission (Carlson et al., 2002; Chevaleyre and
Castillo, 2003; Isokawa and Alger, 2005).

The eCB system has been implicated in several physiological
processes, including pain modulation, appetite regulation, and
cognition (Cravatt and Lichtman, 2004; Di Marzo and Matias,
2005; Jacob et al., 2012). Cannabinoids activate two types of re-
ceptors, CB1 and CB2, with CB1 receptors mediating the majority of
cannabinoid effects in the central nervous system (CNS; Irving
et al., 2002). Cannabinoid receptors are highly expressed in the
hippocampus. CB1 receptor stimulation affects the release of a
variety of neurotransmitters in the CNS (Schlicker and Kathmann,
2001), including glutamate (Irving et al., 2002; Barzegar et al.,
2015) and GABA (Irving et al., 2002; Nazari et al., 2016). CB1 re-
ceptors also participate in multiple synaptic plasticity mechanisms
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in several brain areas (Földy et al., 2006; Wilson and Nicoll, 2001;
Tahmasebi et al., 2016). The eCBs were first reported to be related
to short-term plasticity (Wilson and Nicoll, 2001); subsequent
studies demonstrated that the eCB system is also involved in long-
term synaptic plasticity. Nevertheless, the effects of cannabinoids
on synaptic plasticity are controversial (Terranova et al., 1995; de
Oliveira Alvares et al., 2006; Lin et al., 2011; Abush and Akirav,
2010).

CNS network functions depend on the balance between ex-
citation and inhibition. GABA is the major inhibitory transmitter in
the CNS (Shew et al., 2000). GABA exerts inhibitory effects on
neurotransmission and synaptic plasticity through two types of
receptors. GABAA receptors and the more recently discovered
GABAB receptors are distributed throughout the brain (Brucato
et al., 1995; Bowery et al., 1987). GABAB receptors, which are
coupled to G proteins, are localized to both pre- and postsynaptic
membranes (Safiulina and Cherubini, 2009; Bettler et al., 2004).
Activation of presynaptic GABAB receptors inhibits neuro-
transmitter release (Poncer et al., 1997), while postsynaptic GABAB

receptor activation causes the opening of potassium channels and
thereby induces neuronal hyperpolarization (Safiulina and Cher-
ubini, 2009; Lüscher et al., 1997). Previous studies showing GABAB

receptor-mediated modulation of LTP induction in the dentate
gyrus (DG) in vitro suggest a physiological role of GABAB receptors
in learning and memory (Mott et al., 1990; Brucato et al., 1995;
Mott and Lewis, 1991). Additionally, endogenous GABA has been
shown to regulate LTP induction via activation of GABAB receptors
(Mott et al., 1990).

Although the precise mode of action of cannabimimetic
agents on hippocampal networks remains controversial, several
studies have suggested that modulation of GABAergic trans-
mission is an important component of their effects (Katona
et al., 1999; Paton et al., 1998). Neurochemical (Katona et al.,
1999) and electrophysiological studies (Hájos et al., 2000;
Hoffman and Lupica, 2000) have revealed that cannabinoids
regulate GABA release from inhibitory neurons in the hippo-
campus (Irving et al., 2002). Electrophysiological and im-
munocytochemical studies have demonstrated CB1 receptor
expression in the axon terminals of hippocampal GABAergic
neurons (Hájos et al., 2000; Ronaghi et al., 2015; Andó et al.,
2012) as well as abundant cell-surface CB1 receptor im-
munolabeling in the axons of these neurons (Irving et al., 2002,
2000). Activation of CB1 receptors in GABAergic neurons leads to
a decrease in GABA release (Katona and Freund, 2008; Howlett
et al., 2002), which results in depolarization-induced suppres-
sion of inhibition (Monory et al., 2006) and long-term depres-
sion of inhibitory GABAergic synaptic transmission (Azad et al.,
2004; Albayram et al., 2011). However, several other lines of
evidence have suggested that cannabinoids may also facilitate
GABAergic transmission by blocking its reuptake (Varvel and
Lichtman, 2005).

Although the eCB and GABAergic systems are known to play
important roles in learning, memory, and synaptic plasticity, the
interactive effects of these systems on LTP induction in the hip-
pocampal DG in vivo are not clear (Fig. 1). Hence, it is crucial to
understand the precise cellular functions of CB1 and GABAB re-
ceptors in the hippocampus, as well as the role of the eCB system
in the modulation of hippocampal GABAergic networks, In this
study, we test the hypothesis that the effects of the eCB system on
learning, memory and synaptic plasticity result, in part, from its
effects on GABAergic synaptic transmission.
2. Results

2.1. Measurement of evoked potentials

We obtained field potential recordings from the granular cell
layer of the DG following HFS of the perforant path (PP). Sample
traces from each group are illustrated in Fig. 2. Population spike
(PS) amplitude was measured from the peak of the first positive
deflection of the evoked potential to the peak of the following
negative deflection. Field excitatory postsynaptic potential (fEPSP)
slope was measured as the slope of the line connecting the start of
the first positive deflection of the evoked potential with the peak
of the second positive deflection. fEPSPs and PS amplitude were
calculated using eTrace data analysis software (ScienceBeam,
Tehran, Iran).

2.2. Effects of HFS on PS amplitude and fEPSP slope

Investigation of HFS-induced LTP in the hippocampal DG
in vivo revealed a strong enhancement of PS amplitude, which
resulted in significant LTP at PP-DG synapses in the control
(DMSOþSaline) group (168.21710.85% of pre-HFS baseline;
n¼10). Further, the mean fEPSP slope following HFS was
119.6175.19% of baseline in the control group.

2.3. Effects of CB1 and GABAB receptor agonists on fEPSP slope and PS
amplitude

HFS applied to the PP-DG area induced LTP in animals treated
with AM251, as shown by an increase in fEPSP slope (138.476.13%
of pre-HFS baseline; n¼10; Fig. 3). The mean PS amplitude was
231.79722.29% of baseline in the AM251 group (n¼10; Fig. 4).
AM251 administration resulted in significantly greater fEPSP
slopes in comparison with the control group (F[3,32]¼23.85,
Po0.001). PS amplitudes were also significantly higher in AM251-
treated animals compared to vehicle-treated controls (F[3,32]¼
15.35, Po0.01). Baclofen treatment also resulted in significantly
higher fEPSP slopes (184.54717%; F[3,32]¼28.49; Po0.001;
n¼8; Fig. 3) and PS amplitudes (342.37745.62%; F[3,32]¼19.71;
Po0.01; Fig. 4) in comparison with the control group.

2.4. Effects of CB1 and GABAB agonist co-administration on fEPSP
slope and PS amplitude

To evaluate the interactive effects of the eCB and GABAergic
systems on synaptic plasticity, we investigated the effects of
AM251 and baclofen co-administration on LTP. We found that co-
administration of AM251 and baclofen resulted in larger fEPSP
slopes (191.96729.4%; n¼8; Fig. 3) and PS amplitudes
(413.28767.36%; n¼8; Fig. 4) than administration of either
AM251 (fEPSP slope: F[3,32]¼23.74, Po0.01; and PS amplitude: F
[3,32]¼42.56, Po0.001) or baclofen alone (fEPSP slope: F[3,32]¼
3.92, P40.05; and PS amplitude: F[3,32]¼3.26, P40.05). LTP in-
duction in the AM251þbaclofen group was also significantly in-
creased compared to the control group, as shown by increased
fEPSP slope (F[3,32]¼37.64, Po0.001) and PS amplitude (F
[3,32]¼46.83, Po0.001).
3. Discussion

In the present study, we investigated the in vivo effects of in-
trahippocampal infusion of GABAB and CB1 receptor agonists on
HFS-induced LTP in the rat DG. Activity-dependent synaptic po-
tentiation is expressed as a long-lasting increase in the synaptic
component of the evoked response recorded from a large cell
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Fig. 1. Representative photomicrograph illustrating locations of recording and stimulating electrodes tips (arrowheads) in a hippocampus sagittal section. Recording and
stimulating electrode traces can be seen at the left and right sides, respectively (arrows). Scale bar: 0.5 mm.
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Fig. 2. (A) Field excitatory postsynaptic potential (fEPSP) slope and population spike (PS) amplitude, as measured in a representative sample field potential recording in the
hippocampus of a vehicle-treated control animal. Arrows indicate PS and fEPSP slope. (B) Representative sample traces of evoked field potentials recorded in the hippo-
campal dentate gyrus (DG) prior to and after high-frequency stimulation of the perforant pathway (PP) in all experimental groups.
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population; this effect occurs within milliseconds and can persist
for hours or days (Di Filippo et al., 2009; Citri and Malenka, 2008).
Our results show that baclofen significantly facilitates HFS-in-
duced LTP, as indicated by greater increases in fEPSP slope and PS
amplitude. AM51 treatment also significantly increased fEPSP
slope and PS amplitude of hippocampal field potentials, which
reflect greater increases in LTP. Simultaneous injection of AM251
and baclofen resulted in stronger LTP induction compared to
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Fig. 3. Effects of AM251 (AM), baclofen (Bac), and AMþBac on LTP induction in the
DG following PP stimulation. Long-term potentiation (LTP) of DG granular cell sy-
napses, as measured by increased PS amplitude, was significantly different between
groups. Data are expressed as mean 7 SEM % of baseline responses. *Po0.05,
**Po0.01, ***Po0.001 compared to vehicle-treated controls; #Po0.05, ##Po0.01,
###Po0.001 between AMþBac and AM groups.
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Fig. 4. Effects of AM251 and baclofen on EPSP slope in the DG following 400 Hz
tetanic stimulation. Long-term potentiation (LTP) of fEPSP slope in DG granular cell
synapses was significantly different between groups. Data are expressed as the
mean7SEM % of baseline responses. *Po0.05, **Po0.01, ***Po0.001 compared to
vehicle-treated controls; #Po0.05, ##Po0.01, ###Po0.001 between AMþBac and
AM groups.
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AM251 or baclofen alone.
GABAergic modulation of synaptic plasticity at excitatory sy-

napses can have important functional consequences. By changing
the excitatory/inhibitory balance, the GABAergic system can in-
fluence excitability and neural circuit function, regulate the in-
ducibility of LTP and long-term depression (LTD) at excitatory sy-
napses, and ultimately contribute to learning and memory (Cas-
tillo et al., 2011). Activation of GABAA receptors increases their Cl-

conductance, which generates the fast inhibitory postsynaptic
current (Shew et al., 2000; Eccles et al., 1977). Stimulation of the
G-protein coupled GABAB receptors results in a long inhibitory
potassium conductance (Brucato et al., 1995; Bowery, 1993).
GABAB receptors serve various modulatory roles in different areas
of the CNS (Mann-Metzer and Yarom, 2002). GABAB receptors are
highly expressed in the prefrontal cortex (Margeta-Mitrovic et al.,
1999) and regulate higher cognitive function (Mott and Lewis,
1991; Chalifoux and Carter, 2011). GABAB receptors can also
strongly regulate synaptic activity and plasticity in the hippo-
campus (Brucato et al., 1995). Presynaptic inhibition is most
commonly attributed to GABAB receptor activation (Mann-Metzer
and Yarom, 2002). Multiple studies have demonstrated that sti-
mulation of presynaptic GABAB receptors on inhibitory neurons
decreases GABA release and thereby relieves inhibition (Shew
et al., 2000; Brucato et al., 1995; Safiulina and Cherubini, 2009;
Davies et al., 1991; Davies and Collingridge, 1993; Olpe et al., 1994).
However, little is known about the distribution or effects of
postsynaptic GABAB receptors. GABAB receptors mediate the slow
inhibitory effects of GABA and are crucial to the control of network
activity owing to their regulation of neuronal excitability and sy-
naptic transmission (Degro et al., 2015; Kohl and Paulsen, 2010;
Palmer et al., 2012; Larkum, 2013). In support of our findings,
baclofen has been reported to facilitate the induction of LTP by
repetitive stimulation (Mott et al., 1990). Furthermore, in vitro
studies have revealed that baclofen can increase the duration of
single EPSPs in the DG (Brucato et al., 1995; Mott et al., 1989) and
decrease inhibition in the DG by acting on inhibitory neurons
(Mott et al., 1990, 1989). Both the pre- and postsynaptic effects of
baclofen are mediated by GABAB receptors that decrease Ca2þ

currents, likely through their inhibition of many voltage-depen-
dent calcium channel subtypes (Chalifoux and Carter, 2011; Mintz
and Bean, 1993; Pfrieger et al., 1994; Lambert and Wilson, 1996).

The effects of cannabinoids on LTP are controversial. Cannabi-
noid receptor stimulation suppresses presynaptic neuro-
transmitter release (Misner and Sullivan, 1999). However, canna-
binoids can also exert postsynaptic effects on synaptic plasticity
(Irving et al., 2002; Hampson et al., 1998; Ong and Mackie, 1999).
Previous studies have shown that cannabinoids suppress various
forms of synaptic plasticity in the hippocampus, including LTP
(Terranova et al., 1995; Misner and Sullivan, 1999; Collins et al.,
1994) and LTD (Misner and Sullivan, 1999), via a CB1 receptor-
dependent mechanism (Irving et al., 2002). Studies of CB1 receptor
localization within the CNS have revealed moderate to high den-
sities in several brain areas, including the hippocampus (Katona
et al., 1999; Hoffman and Lupica, 2000; Pettit et al., 1998; Tsou
et al., 1998). Cannabinoid receptor stimulation suppresses hippo-
campal LTP by reducing the probability of glutamate release,
which in turn prevents postsynaptic neuron depolarization and
the subsequent influx of Ca2þ through N-methyl-D-aspartate
(NMDA) receptors; this effect can be dominated under conditions
of enhanced NMDA receptor activation (Irving et al., 2002; Misner
and Sullivan, 1999). Similarly, several other studies have shown
that acute cannabinoid administration decreases glutamate re-
lease, suppresses excitatory synaptic activity, and impairs hippo-
campal LTP (Ronaghi et al., 2015; Katona et al., 2006). According to
our result, administration of CB1 antagonists in rats and mice re-
sults in improved learning and memory in recognition tasks (Jacob
et al., 2012; Terranova et al., 1996). Consistent with these findings,
injection of AM251 has been reported to enhance LTP induction in
rats (Nazari et al., 2016).

Effects of cannabinoids on inhibitory synaptic transmission
may be important in controlling the strength of neural activity,
which is thought to be critical for learning and memory (Irving
et al., 2002; Hájos et al., 2000). Here, we discuss the mechanisms
of GABAergic inhibition of synaptic plasticity and the interaction
between these mechanisms and the eCB system. High levels of CB1
receptor immunoreactivity and mRNA are associated with GA-
BAergic interneurons (Irving et al., 2002; Katona et al., 1999; Tsou
et al., 1998; Herkenham et al., 1991). CB1 receptors are expressed
by GABAergic interneurons in the hippocampus, and regulation of
GABAergic transmission is an important component of their effects
(Paton et al., 1998; Ronaghi et al., 2015). In the DG, CB1 receptors
are strongly expressed in cholecystokinin-immunoreactive GA-
BAergic axon terminals, and exogenous application of the syn-
thetic CB1 receptor agonist WIN55,212-2 reduces inhibitory post-
synaptic currents in DG granule cells (Isokawa and Alger, 2005;
Hájos et al., 2000). Several previous reports show that regulation
of GABAergic system is an important aspect of cannabinoid-
mediated effects on LTP (Ronaghi et al., 2015; Collins et al., 1995).
In contrast, CB1 receptor activation is not sufficient to induce LTD,
a form of plasticity that can be blocked by hyperpolarizing GA-
BAergic interneurons (Castillo et al., 2011; Heifets et al., 2008).
Furthermore, cannabinoid agonists have been shown to inhibit
GABA release in several preparations (Varvel and Lichtman, 2005;
Wilson and Nicoll, 2001; Katona et al., 1999, 2000; Hoffman and
Lupica, 2000). It has also been reported that depolarization-in-
duced postsynaptic Ca2þ influx initiates the synthesis and release
of an endogenous eCB that inhibits GABA release from presynaptic
terminals (Isokawa and Alger, 2005). These behavioral, pharma-
cological, and physiological data reveal that the efficacy of can-
nabinoid-mediated control of GABA release is strongly influenced
by activity levels in presynaptic interneurons (Földy et al., 2006).
Taken together, these results suggest a complex relationship be-
tween eCBs and GABAergic effects in the hippocampus.
4. Conclusion

The excitatory neurotransmission in the DG that underlies sy-
naptic plasticity is regulated by GABAB receptor activity. Our
findings support the hypothesis that endogenous GABA released
during repetitive firing acts on GABAB receptors to facilitate LTP
induction. Furthermore, our results suggest that CB1 receptor ac-
tivation in the hippocampus regulates synaptic transmission onto
GABAergic interneurons in the DG. When CB1 and GABAB receptor
agonists are administered simultaneously, CB1 agonists can alter
GABA release, which in turn enhances LTP. Together, these results
suggest that the regulatory effects of cannabinoids on hippo-
campal LTP occur, in part, through modulation of GABAergic
neurotransmission via GABAB receptors.
5. Materials and methods

5.1. Animals

Thirty-six male Wistar rats (250–300 g) were obtained from the
Razi Institute (Tehran, Iran). Animals were housed 3 per cage in a
room with controlled temperature (2272 °C) and a 12–12 h light-
dark cycle. Food and water were provided ad libitum. After one
week of adaptation, rats were randomly divided into four groups
of ten animals each, as follows: (1) Control (DMSOþsaline),
(2) AM251, (3) baclofen, (4) baclofenþAM251. All research and
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animal care procedures were approved by the Veterinary Ethics
Committee of this University and were performed in accordance
with the National Institutes of Health Guide for Care and Use of
Laboratory Animals (NIH Publication No. 85-23, revised 1985).

5.2. Drugs

The CB1 receptor antagonist 4-methyl-1H-pyrazole-3-carbox-
amide (AM251; Sigma-Aldrich, Natick, MA, USA) and the non-
selective GABA receptor agonist β-(4-chlorophenyl)-γ-aminobu-
tyric acid (baclofen; Sigma) were initially dissolved in di-
methylsulfoxide (DMSO) and further diluted in saline solution
(0.9% NaCl). The DMSO concentration in both drug solutions was
o10%. The same DMSO and saline solution was used as the ve-
hicle. Drugs were unilaterally microinjected into the DG with a
Hamilton syringe approximately 20 min prior to high-frequency
stimulation (HFS). A volume of 0.5 ml was microinjected over a
period of 1 min. Drug concentrations were determined based on
previous studies: AM251, 0.1 mg/animal (Nazari et al., 2016; Haki-
mizadeh and Oryan, 2012; Roohbakhsh et al., 2009); and baclofen,
2 mg/animal (Zarrindast et al., 2002, 2004; Collares and Vinagre,
2010).

5.3. Surgical procedures, electrophysiological recordings, and LTP
induction

The procedures for this experiment were similar to those de-
scribed previously in prior studies using similar methodologies
(Nazari et al., 2016; Tahmasebi et al., 2016, 2015; Salehi et al., 2015;
Karamian et al., 2015). Briefly, animals were anesthetized with
1.5 g/kg urethane [Ethyl carbamate (Sigma, USA)] (1.5 g/kg with
supplemental injections as required) (Karimi et al., 2013; Komaki
et al., 2014). Supplementary injections of urethane (0.2–0.5 g/kg)
were given when necessary to ensure full anesthesia and placed in
a stereotaxic instrument for the in vivo experiments. Small holes
were drilled in the skull at the positions of the stimulating and
recording electrodes. A heating pad was used to maintain the
temperature of the animals at 36.570.5 °C. Bipolar electrodes
were made from stainless steel wire with teflon insulation and
approximately 0.75 mm separated each tip. The stimulating elec-
trode was placed into the perforant pathway (AP¼�8.1; ML¼4.3;
DV¼3.2 mm from the skull surface) and the recording electrode
into the granule cell layer of the DG (AP¼�3.8; ML¼2.3; DV
¼2.7–3.2 mm from the skull surface) respectively according to the
atlas of Paxinos and Watson (Paxinos and Watson, 2006). Field
potentials corresponded well with previous in vivo studies of the
DG (Asadbegi et al., 2016; Nazari et al., 2016; Salehi et al., 2015;
Karimi et al., 2015).

When population spike amplitudes were stable, field potentials
were generated over a range of stimulus intensities to generate an
input-output (I/O) curve. Single 0.1 ms biphasic square wave pul-
ses were delivered through constant current isolation units (A365,
World Precision Instruments, Sarasota, FL, USA) at a frequency of
0.1 Hz. The field potential recordings were obtained in the gran-
ular cells of the DG following stimulation of the PP. Once a max-
imal population spike amplitude was established, the current in-
tensity used to generate that response was used throughout the
experiment. Stimulation intensity was adjusted to elicit a maximal
field population spike (PS) and filed excitatory postsynaptic po-
tentials (fEPSP). The stimulation intensity was adjusted to evoke
potentials which comprised 40% of the maximal population spike
amplitude, defined by means of an input/output curve. The PS
amplitude was measured as the difference in voltage between the
peak of the first positive wave and the peak of the first negative
deflection and the fEPSP slope was measured as the maximum
slope between the initial point of fEPSP and the first positive wave
in order to measure synaptic efficacy. Once a stable baseline was
obtained for at least 20 min, LTP was induced using a 400-Hz HFS
protocol (10 bursts of 20 stimuli, 0.2 ms stimulus duration, 10 s
interburst interval) at a stimulus intensity that evoked a PS am-
plitude and field EPSP slope of approximately 80% of maximum
response. In order to determine any changes in the synaptic re-
sponse of DG neurons, both fEPSP and PS were recorded 5, 30 and
60 min after the high frequency stimuli. For each time-point, 10
consecutive evoked responses were averaged at 10 s stimulus in-
terval (Nazari et al., 2016; Tahmasebi et al., 2015; Karamian et al.,
2015; Karimi et al., 2015).

5.4. Statistical analysis

Statistical analyses were performed using the GraphPad Prism
version 5.00 for Windows (GraphPad Software, San Diego Cali-
fornia USA). Data were statistically analyzed using repeated mea-
sures ANOVA tests followed by Tukey's test. All results are ex-
pressed as the mean7the standard error of the mean (SEM). A P
value of o0.05 was considered statistically significant.

5.5. Histology

The locations of implanted DG and PP electrodes were histo-
logically confirmed in brain sections of animals. The electro-
physiological responses are depending on the exact location of
electrodes. Recording and stimulating electrodes were located in
DG and PP, respectively. At the end of experiment rats were deeply
anesthetized with urethane (2.0 g/kg) and perfused through the
heart with formol–saline. Brain sections were cut at 50 mm and
stained with hematoxylin and eosin for verification of electrode
placements (Fig. 1).
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