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Macrophages play a critical role in inflammation and antigen-presentation. Abnormal macrophage
function has been attributed in autoimmune diseases and cancer progression. Recent evidence suggests
that high salt tissue micro-environment causes changes in macrophage activation. In our current report,
we studied the role of extracellular sodium chloride on phenotype changes in peripheral circulating
monocyte/macrophages collected from healthy donors. High salt (0.2 M NaCl vs basal 0.1 M NaCl)
treatment resulted in a decrease in MΦ1 macrophage phenotype (CD11bþCD14highCD16low) from
77.476.2% (0.1 M) to 29.375.7% (0.2 M, po0.05), while there was an increase in MΦ2 macrophage
phenotype (CD11bþ CD14lowCD16high) from 17.275.9% (0.1 M) to 67.479.4% (0.2 M, po0.05). ELISA-
based cytokine analysis demonstrated that high salt treatment induced decreased expression of in the
MΦ1 phenotype specific pro-inflammatory cytokine, TNFα (3.3 fold), IL-12 (2.3 fold), CCL-10 (2 fold) and
CCL-5 (3.8 fold), but conversely induced an enhanced expression MΦ2-like phenotype specific anti-
inflammatory cytokine, IL-10, TGFβ, CCL-17 (3.7 fold) and CCR-2 (4.3 fold). Further high salt treatment
significantly decreased phagocytic efficiency of macrophages and inducible nitric oxide synthetase ex-
pression. Taken together, these data suggest that high salt extracellular environment induces an anti-
inflammatory MΦ2-like macrophage phenotype with poor phagocytic and potentially reduced antigen
presentation capacity commonly found in tumor microenvironment.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Macrophages have an important role in innate immunity
mediated inflammation and host defense [1]. Transformation of
different phenotypes of macrophages regulate the initiation, de-
velopment, and cessation of inflammatory diseases [2]. While,
classically activated macrophages (MΦ1) comprise immune ef-
fector cells with an acute inflammatory and phagocytic phenotype
[3]. Conversely, alternatively activated MΦ2-macrophages are
anti-inflammatory and aid in inhibition of immune-damage and
immune-tolerance [4]. A variety of external signals, such as, mi-
crobes, damaged tissue and infiltrating lymphocytes have been
shown to play an important role in the preferential MΦ1 versus
MΦ2 macrophage activation. In the tumor micro-environment,
among the innate and adaptive immune cells recruited to the tu-
mor site, macrophages are particularly abundant and are present
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at all stages of tumor progression [5]. Clinical studies and ex-
perimental mouse models indicate that these macrophages gen-
erally play an anti-inflammatory and pro-tumoral role [6]. Speci-
fically, the tumor associated macrophages (TAM) have an MΦ2
phenotype with reduced antigen presentation capacity, thereby
possibly leading to evasion of cancer immuno-elimination [7].
Further recent evidence suggests that high levels of TAM are often
correlated with tumor metastasis and poor prognosis [5].

The high sodium content of mammary adenocarcinomas has
been shown to be significantly higher than the normal lactating
mammary epithelium [8]. Interestingly, recent studies by Jantsch
et al. [9], suggest that skin infiltrating macrophages undergo
phenotype changes [9]. However, the dermal micro-environment
is known to have high sodium tonicity. These dermal resident
macrophages have been indicated to sense the interstitial elec-
trolyte composition and subsequently upregulate various tran-
scription factor possibly resulting in their activation and pheno-
type changes [10]. Similarly high salt is considered to influence the
macrophage activation in lung [11] and bone-marrow derived
mouse macrophages[11]. However, currently there is limited
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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evidence to demonstrate the direct role of high salt on macro-
phage activation. Peripheral blood mononuclear cells (PBMC) de-
rive from myelomonocytic precursors in the bone marrow. Mye-
lomonocytes circulate in the blood for approximately 72 h and
then migrate to tissues to become macrophages [12]. The pattern
of in vitro modulation of cell surface antigens in PBMC in many
respects resembles the pattern seen in tissue macrophages [12]. As
salt changes have been noted in cancer development [13], and
these sites have higher frequency of alternatively activated MΦ2-
macrophages, we hypothesized that high salt directly induces
MΦ2-macrophage activation. In our current study, using in vitro
macrophage cultures we directly determined the role of high so-
dium chloride concentration on macrophage phenotype changes.
2. Materials and methods

2.1. Monocyte/Macrophage isolation and culture

Peripheral blood mononuclear cell isolation and cell culture:
Peripheral blood mononuclear cells (PBMC) leukocyte filters
(PALL- RCPL or RC2D) obtained from the Red Cross Blood Bank
Facility (Nashville, TN, USA) and isolated as previously described
[14]. PBMC were retrieved from the filters by back-flushing of the
leukocyte filter and separating the PBMC (peripheral blood
mononuclear cells) on ficoll-Hypaque gradient as previously de-
scribed [15]. These PBMCs were cultured in for 72 h in a glass
culture flask and adherent cells, which were considered in vitro
equivalent of macrophages, were subjected to various treatment
conditions for 48 h. For high salt studies, the cells were treated
with 0.1–0.3 M NaCl (final concentration). To account for the os-
motic tonicity with high solute concentration equimolar mannitol
(0.1–0.2 M mannitolþ0.1 M NaCl) was used as negative control. All
chemicals unless mentioned were obtained either from Sigma-
Aldrich (St Louis, MO) or Fisher (Pittsburgh, PA).

2.2. MTT cell viability assay

Cell viability was measured by tryphan blue dye exclusion
(Sigma Aldrich, MO) and MTT assay (Life technologies, Grand Is-
land, NY) as previously described [16]. The assay was performed as
per manufacturer provided instructions and plates were read at
562 nm by the plate reader (EMax Plus spectrophotometer, Mo-
lecular Devices, Sunnyvale, CA). Viability was calculated as per-
centage compared to untreated cells in basal conditions.

2.3. Flow cytometry

The CD11b positive cells were isolated from PBMC by positive
isolation using immunomagnetic beads (Miltenyi, San Diego, CA).
Antibodies used for flow cytometry consisted of: CD11b-FITC,
CD14-PE, and CD16�PerCP (Santa Cruz), CD25-PE, Foxp3-PE
(eBiosciences, San Diego, CA). Samples were analyzed using a FACS
Calibur/LSRII flow cytometer (Becton Dickinson, Franklin Lakes, NJ)
and cell sorting was performed with a Vantage cell sorter (Becton
Dickinson, Franklin Lakes, NJ). Data were analyzed using BD
FACSDiva software. Gates were set according to isotype controls.

2.4. Enzyme-linked immunosorbant assay

The secretory extracellular cytokines in the cell supernatant
was quantitatied by ELISA. Chemokine/Cytokine ELISA was per-
formed as per the manufacturer's protocol (eBiosciences, San
Diego, CA). Given the limitation of the detection, the supernatant
was diluted 1:1000 and quantified with a standard curve using the
manufacturer provided standards. Detection at 450 nm was
performed using EMax Plus spectrophotometer and data analysis
was carried out using software provided by the manufacturer
(Molecular Devices, Sunyvale, CA).

2.5. Phagocytosis assay with RBC-lysis and E.coli uptake

For phagocytosis and cell lysis, we have utilized CytoSelect™
96-Well Phagocytosis RBS substrate Assay (CBA-220, Cell Biolabs
Inc, San Diego, CA). Briefly, the lytic ability of macrophages to-
wards sheep erythrocytes was analyzed in a 96 well plate as per
manufacturer's protocol with RBC to macrophage ratio maintained
at 10:1. The specific lysis was analyzed by calorimetric analysis at
630 nm.

For phagocytosis and engulfment assay, we have utilized Vy-
brant™ Phagocytosis Assay Kit (V-6694, ThermoFisher Scientific,
Waltham, MA). Briefly, internalization of fluorescent (FITC) labeled
killed E-coli (K12-strain) by macrophages was analyzed in a 96
well plate as per manufacturer's protocol with killed bacteria to
macrophage ratio maintained at 20:1. Internalization was these
particles was analyzed on fluorescence plate reader at excitation/
emission of 480/520 nm, respectively.

2.6. Western blot analysis and quantitative RT-PCR

Specific protein determination studies were performed by
Western-blot on the total proteins were extracted from cells as
described earlier [17]. Protein concentration was determined with
a Bradford's assay kit from Bio-Rad (Hercules, CA). All primary and
secondary Abs were obtained from Santa Cruz Biotech (Dallas, TX).
The membranes were developed using the chemiluminescence kit
(Fischer Sci, Pittsburgh, PA) and analyzed on using Bio-Rad Uni-
versal Hood II (Hercules, CA). Morphometric analysis was done
using the software provided by the company. Expression profiles
of intracellular signal genes in the CD4þT-cells isolated from
PBMCs were analyzed using the FAM-labeled quantitative RT-PCR
primers for IL-10, IFN-γ, T-bet and FoxP3 (Applied Biosystems,
Foster City, CA) as per the manufacturer's recommendation and
described earlier [18].

2.7. NO/ROS/RNS analysis

The analysis of the nitric oxide (NO), reactive oxygen and re-
active nitrogen species (AbCam, Cambridge, MA) was performed in
the cell lysate under various assay conditions as per manufac-
turer's instructions. The data analysis was performed based on a
standard curve obtained using the positive controls provided by
the manufacturer.

2.8. Statistical analysis

Data are expressed as mean 7 SEM from four independent
studies. Statistical differences between means were analyzed using
a paired or unpaired Student's t test. A p-value of less than 0.05
was considered significant. All data analysis was obtained using
Origin 7 software (Origin Labs, Northampton, MA) or GraphPad5
(Graph Pad Software, LaJolla, CA).
3. Results

3.1. High salt induced macrophage switch from MΦ1 to MΦ2-like
phenotype

High sodium chloride (NaCl) concentration in the tissue micro-
environment has been suggested to induce macrophage changes.
To specifically determine the effect of high sodium chloride on



Fig. 1. Isolation of glass-adherent CD11bþ macrophages from peripheral blood mononuclear cells (PBMCs). The PBMCs were cultured in a glass dish and cell specific
phenotypes were analyzed. “Before’ refers to the phenotype analysis in the freshly collected PBMCs; ‘After’ refer to the phenotype analysis of the glass-adherent cells
following 72 h culture and removal of the supernatant and non-adherent cells. After 72 h, the adherent cells were washed three times with fresh RPMI media and used in our
further studies to determine the salt-effects. Increased macrophage phenotype (CD11b, A) in the adherent cells, along with decreased CD4þT cells (B), CD8þT cells (C),
CD19þB cells (D), CD56þNK cells (E) and MPO (F, myeloperoxidase, leukocyte marker) in the adherent cells. Data represented mean values 7 SEM from five independent
experiments. Student-t-test performed for statistical analysis (significance po0.05).
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peripheral circulating macrophages collected from healthy human
subjects, we have performed dose dependent studies under
varying (0.1–0.3 M) sodium chloride concentrations. Initially, we
have isolated macrophages from PBMCs by culturing the PBMCs in
a glass culture dish and removing all non-adherent cells. While
lymphocytes and other cells in the PBMCs are non-adherent only
macrophages are the adherent phenotype. As shown in Fig. 1,
following isolation of the adherent PBMCs, the frequency of
CD11bþcells, a generic marker of macrophage-phenotype, in-
creased from 21.2–96.6%, thus suggesting that all of the isolated
adherent PBMCs were indeed predominantly macrophages.
Conversely, all other cells in the PBMCs such as CD4þT cells,
CD8þT cells, CD19þB-cells, CD56þ NK cells and leukocytes (as
studied by myeloperoxidase, MPO assay) accounted for less than
0.3%. We have utilized these glass-adherent macrophages in our
further studies to determine the potential effects of salt on the
macrophage inflammatory phenotype change. As shown in Fig. 2
(A), concentrations above 0.25 M resulted in significant (up to
450%) decrease in cell viability. Therefore, in all our subsequent
studies we have used 0.2 M NaCl to represent high salt condition,
while 0.1 M NaCl was considered regular salt extracellular milieu.
Following treatment of freshly collected human macrophages with



Fig. 2. High salt induced macrophage phenotype switch from MΦ1 to MΦ2 in the adherent-PBMCs following treatment with varying salt concentration (0.1–0.3 M NaCl) and
equimolar mannitol (0.1 M mannitolþ0.1 M NaCl). The basal concentration of NaCl in cuture media is 0.1 M. NaCl concentration below 0.1 M is not viable for cell culture.
(A) Cell viability analysis of adherent cells from PBMC cultured for 72 h and latter subjected to various treatment condition mentioned above for 48 h. Frequency of
CD11bþCD14þCD16low cells (B), and CD11bþCD14lowCD16þ cells (C) following various treatment conditions. Flow cytometry analysis for CD14 (D) and CD16 (E) in the CD11b
positively selected cells following various treatment conditions mentioned above. Data represented mean values 7 SEM from five independent experiments. Student-t-test
performed for statistical analysis (significance po0.05).
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Fig. 3. Cytokine and chemokine analysis in the supernatant or lysate collected from adherent-PBMCs following treatment with varying salt concentration (0.1–0.2 M NaCl)
and equimolar mannitol (0.1 M mannitolþ0.1 M NaCl). ELISA analysis of A-G) TNFα, IL12, CCL-10, CCL-5, IL-10, TGF-β, and CCL17 in the supernatant; and (F) CCR2 in the cell
lysate. Data represented mean values 7 SEM from five independent experiments. Student-t-test performed for statistical analysis (significance po0.05).
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high salt for 24 h, there was a decrease in MΦ1 (Fig. 2(B), (D))
macrophage phenotype (CD11bþCD14þCD16low) from 77.476.2%
(0.1 M) to 29.375.7% (0.2 M, po0.05). Conversely, under similar
treatment conditions there was an increase in MΦ2 (Fig. 2(C), (E))
macrophage phenotype (CD11bþCD14lowCD16þ) from 17.275.9%
(0.1 M) to 67.479.4% (0.2 M, po0.05). To rule out a possible role
of intracellular volume and solute tonicity as a potential cause of
the macrophage phenotype switch, we have performed experi-
ments following treatment with equi-molar mannitol (0.1 M NaCl
þ0.1 M mannitol). As shown in Fig. 2, equi-molar mannitol did not
induce any significant change in the macrophage phenotype over
0.1 M NaCl treatment conditions. Further, it is important to note a
trending pattern between 0.15 M and 0.2 M NaCl concentration,
suggesting that salt concentrations below 0.15 M did not induce
any phenotype changes in the macrophages. Therefore, these data
strongly suggest that the observed phenotype switch is due to
high salt treatment.

3.2. High salt induced MΦ2 specific cytokine profile

We next studied if the cellular phenotype switch, as observed
by the cell surface markers, is represented by switch in the cell
phenotype specific cytokine switch. Towards this we determined
the expression of various cytokines and chemokines under high
salt treatment conditions. As shown in Fig. 3(A)-(D), following
high salt treatment there was decrease in the MΦ1 phenotype
specific pro-inflammatory cytokine and chemokine profile, as
noted by decrease in TNFα (3.3 fold), IL-12 (2.3 fold), CCL-10 (2
fold) and CCL-5 ( 3.8 fold) secretion over regular (0.1 M) salt
treatment. Conversely, high salt treatment has induced enhanced
secretion of the MΦ2 phenotype specific anti-inflammatory cy-
tokine, as noted by increase in IL-10 (4.8 fold), TGFβ (3.9 fold), CCL-
17 (3.7 fold) and CCR-2 (4.3 fold) expression over regular (0.1 M)
salt treatment. As noted earlier we have seen a trending pattern in
the cytokines and chemokines from 0.15 M to 0.2 M NaCl con-
centrations. As expected equi-molar mannitol did not induce any
change in cytokine profile, and was similar to MΦ1 phenotype.
These data clearly indicate that the high salt induces a macrophage
phenotype switch from pro-inflammatory MΦ1 to anti-in-
flammatory MΦ2 phenotype.
3.3. Reduced phagocytic efficiency upon high salt treatment

As our previous results demonstrated that high salt induced
anti-inflammatory phenotype, and because the primary function
of activated macrophages in inflammation is phagocytosis and
antigen presentation, we therefore performed studies to de-
termine the possible changes in phagocytic efficiency following
high salt treatment. Towards this we have performed RBC-lysis
assay (Fig. 4(A)) and EColi(-K12) bio-particle uptake (Fig. 4(B)). As
determined by both of these phagocytosis assay procedures, there
was a greater than 70% (po0.05) reduction in the phagocytic ef-
ficiency of the macrophages following high salt treatment. As toll-
like receptors (TLRs) are known to play a central decisive role in
phagocytosis, we studied the potential changes in surface ex-
pression of TLR-2 following high salt treatment. As shown in Fig. 4
(C), high salt treatment resulted in decreased TLR-2 surface ex-
pression from 37.277.3% to 8.973.8% (po0.05). Taken together,
these data clearly indicate that high salt treatment induced anti-
inflammatory macrophage phenotype with reduced phagocytic
and potentially antigen presentation efficiency.



Fig. 4. Reduced phagocytic efficiency upon high salt treatment in adherent-PBMCs following treatment with varying salt concentration (0.1–0.2 M NaCl) and equimolar
mannitol (0.1 M mannitolþ0.1 M NaCl). (A) EColi(-K12) bio-particle uptake fluorescence emission of FITC analyzed at 520 nm; and (B) RBC-lysis assay analyzed at 630 nm
absorbance. (C) Enhanced surface expression of TLR-2 following treatment with various conditions mentioned above. Data represented mean values 7 SEM from five
independent experiments. Student-t-test performed for statistical analysis (significance po0.05).

Fig. 5. : Inhibition of nitric oxide pathway by high sodium chloride in adherent-PBMCs following treatment with varying salt concentration (0.1–0.2 M NaCl) and equimolar
mannitol (0.1 M mannitolþ0.1 M NaCl). (A) Western blot analysis of the protein expression of the enzymes iNOS and Arg-1; Quantitative RT-PCR analysis of the mRNA
expression of iNOS (B) and Arg-1 (C); and (D) ELISA analysis of nitric oxide in the cell lysate. Data represented mean values 7 SEM from five independent experiments.
Student-t-test performed for statistical analysis (significance po0.05).
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3.4. Inhibition of iNOS activity following high salt stimulation

The inflammatory phenotype of macrophages has been attrib-
uted to its inducible nitric oxide synthetase (iNOS) enzymatic ac-
tivity and its ability to generate pro-inflammatory mediators, nitric
oxide and reactive nitrogen species [19]. As shown in Fig. 5(A)-C,
high salt treatment induced a 4.6 fold reduction in the expression
of iNOS enzyme. However, there was a 3.6 fold increase in the
expression of the enzyme arginase-1 (Arg-1), an anti-in-
flammatory enzyme a known iNOS antagonistic function. To di-
rectly evaluate the modulation of iNOS enzymatic activity, we
performed nitric oxide assay. As shown in Fig. 5(D), high salt



Fig. 6. Reversal of macrophage phenotype following re-treatment with regular (0.1 M NaCl) salt concentration. The adherent macrophages previously cultured in high salt
for 48 h, for another 48 h with reversing to regular media (0.1 M NaCl). The macrophage phenotype for expression of CD14 (A) and CD16 (B) in CD11b selected cells have been
analyzed. (C, D) The inflammatory chemokines and cytokines (same cytokines and chemokines analyzed in Fig. 3) were analyzed for their change in expression pattern
following re-treatment in regular salt media; ‘0.1 M NaCl (r)’ refers to reversal of salt concentration back to regular salt containing media in the cells pretreated with high
(0.2 M NaCl) salt. Data represented mean values 7 SEM from five independent experiments. Student-t-test performed for statistical analysis (significance po0.05).
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treatment resulted in reduced synthesis of nitric oxide in the
macrophages, and thus strongly collaborating with the iNOS ex-
pression analysis. These data strongly support the conclusion that
high salt treatment induces an anti-inflammatory macrophage
phenotype.

3.5. Reversal of macrophage phenotype following re-treatment with
regular (0.1 M NaCl) salt concentration

To study the potential effect reversal of macrophage phenotype
following retreatment with regular (0.1 M NaCl) salt media, we
have cultured the adherent macrophages previously cultured in
high salt for 48 h, for another 48 h with reversing to regular media
(0.1 M NaCl). As shown in Fig. 6, reversing the salt concentration
from high (0.2 M NaCl) to regular (0.1 M NaCl) induced reveral of
macrophage phenotype, as noted by, enhanced pro-inflammatory
(MΦ1) phenotype from 29.3–52.8% and reduced anti-in-
flammatory (MΦ2) phenotype from 67.4–44.2%. Although the re-
versal was not completely back to the original starting point
(which was MΦ1 77.4% and MΦ2 17.2%, noted in Fig. 2) there was
still a significant reversal from anti-inflammatory to pro-in-
flammatory macrophage phenotype, following reversal of salt
treatment. Similar congruent reversal to inflammatory cytokines
and chemokines expression was observed (Fig. 6 C-D). These data
demonstrate that the salt induction of inflammatory changes in
macrophage phenotype was reversal. Further, these data suggest
that in tumor micro-environment potentially salt-modified diet
(such as low-salt diet) could potentially reverse the tumor asso-
ciated macrophage (MΦ2-phenotype) to inflammatory MΦ1-
phenotype which could be potentially helpful for tumor suppres-
sion. This, however, warrants further clinical translational studies.

4. Discussion

\An inflammatory component is present in the microenvironment
of most tumors. Several lines of evidence have led to a generally
accepted paradigm that inflammation and cancer are interlinked.
Macrophages are a heterogeneous population of innate myeloid cells
involved in inflammatory responses [20]. Macrophages have differ-
ent functions, and different transcriptional profiles, but all are re-
quired to maintain homeostasis. Studies in mice showed that a dis-
tinct population of macrophages helps to disperse malignant cells to
survive and grow in distant sites. Tumor associated macrophages
(TAMs) play an important role in tumor immunity and show similar
functions to MΦ2 phenotype [4]. TAMs are a polarized MΦ2 mac-
rophage population with potent immunosuppressive functions [21].
The predominant expression of these M2 macrophages reflects the
late stage of tumor progression and poor outcome. Several surface
markers have been attributed to the M1/M2 phenotype and is also
dependent upon the tissue microenvironment [22]. In particular, the
difference in the expression of lipopolysaccharide-binding-receptor
(CD14) and of Fcγ receptor III (CD16) has been used to distinguish
various MO subpopulations [23]. The majority (70–90%) of peripheral
blood MO consists of cells strongly CD14 positive and CD16 negative
(CD14þCD16-) and are usually regarded as ‘classical activated’. The
remaining MO express CD16 but have different expression levels of
CD14 which are predominantly regarded as alternately activated [24].
In line with this data, our current research demonstrated that MΦ1
phenotype (CD11bþCD14þCD16low) accounted for 77% of the acti-
vated macrophages. However, after treatment with high salt (0.3 M
NaCl) there was a 4-fold increase (Fig. 1) activated to MΦ2 pheno-
type (CD11bþCD14lowCD16þ). As tumors are known to have high
salt micro-environment [25], our data strongly suggests that high salt
induces anti-inflammatory MΦ2 phenotype which are pre-
dominantly accumulated in tumor micro-environment.

The cytokine network expressed at the tumor site plays a
central role in the orientation and differentiation of recruited
mononuclear phagocytes, thus contributing to direct the local
immune system away from antitumor functions [26]. This idea is
supported by both preclinical and clinical observations [27,28] that
clearly demonstrate an association between macrophage number/
density and prognosis in a variety of murine and human
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malignancies. The classically activated MΦ1 phenotype, can be
induced by interferon γ (IFNγ)/tumor necrosis factor α (TNFα) and
exert a cytotoxic effect on cancer cells [29]. The alternatively ac-
tivated TAMs, the MΦ2 phenotype, can be induced by trans-
forming growth factor β (TGFβ) and provide a nutritional ad-
vantage for cancer cells [21]. A critical difference between MΦ1
and MΦ2 TAMs is their secretion profiles. The MΦ1 macrophages
release inflammatory cytokines (e. g., IL6 and TNF) that kill cancer
cells; however, MΦ2 macrophages the predominant tumor asso-
ciated macrophages in late stage cancers release anti-in-
flammatory IL-10, and a variety of growth factors (VEGF, FGF etc),
that promote growth and vascularization of the cancer mass [30].
Cancer cells often secrete MΦ2-type cytokines such as IL-10, CCL2,
CXCL12, and VEGF [31]. Further, IL-10 promotes the MΦ2 alter-
native pathway of macrophage activation and induces TAM to
express MΦ2-related functions and thus playing as a positive
feed-forward cycle [32]. In this study we have shown that fol-
lowing treatment with high salt the newly activated adherent
macrophages induce anti-inflammatory (IL-10 and TGF-β) cyto-
kines resembling MΦ2 phenotype (Fig. 2) in the tumor associated
macrophages (TAM).

Major functional properties of macrophages include phagocy-
tosis, endocytosis, secretion, and microbial killing [33]. Because
macrophages are able to perform all these activities in the steady
state, MΦ1 and MΦ2 contribution to disease is, for the most part,
modulation and functional tuning. While classically activated
MΦ1 macrophages have been shown to have high phagocytic
activity, the anti-inflammatory MΦ2 phenotype is shown to have
diminished phagocytic activity. When macrophages have recruited
to the tumor microenvironment, the immune phagocytic and
eventual antigen presentation functions of macrophages have
been suppressed and switched to MΦ2 phenotype. This pheno-
type switch is thought to be critical for the growth of the tumor
and survival of malignant cells which subvert the adaptive im-
mune responses resulting in tumor progression and metastasis
[34]. In line with this evidence, our current study suggests that
high salt potentially similar to the tumor micro-environment re-
duces the phagocytic efficiency (Fig. 3) of the macrophages.

The classically activated macrophages possess a markedly en-
hanced ability to kill and degrade intracellular microorganisms,
and this is generally considered a defining functional criterion of
M1- macrophage. The phagocytic function is accomplished by an
increase in the production of toxic oxygen species and an induc-
tion of the inducible NO synthase (iNOS) gene to produce NO [35].
When tumor cells are already at the escape phase, they employ
many pathways to maintain low levels of NO/RNS, as low amounts
of NO/RNS are actually beneficial to the tumor cells. Anti-in-
flammatory mediators in the tumor microenvironment (e. g.,
TGFβ) reduce transcription of iNOS mRNA and effectively lower
production of NO. Arginase-1 (Arg-1) that is highly expressed by
the TAMs and MDSCs depletes L-arginine and leaves insufficient
amounts of this common substrate for iNOS activity [36]. Our
studies demonstrate that high salt reduces the pro-inflammatory
nitric oxide release (Fig. 4) from macrophages and induces an-
tagonistic Arg-1 expression.

Taken together, these data suggest that high salt extracellular
environment induces an anti-inflammatory MΦ2 macrophage
phenotype with poor phagocytic and potentially reduced antigen
presentation capacity. The TAMs are known to possess anti-in-
flammatory, pro-angiogenic and tumor-promoting properties [37].
Reprogramming macrophages to switch their phenotype could
provide stimulatory/destructive (MΦ1) or suppressive/protective
(MΦ2) therapeutic strategies. In clinical trials, therapies which
interfere with MΦ2 (TAM) macrophages by preventing MΦ2
macrophages from differentiating resulted in reduced tumor
growth and survival [38]. Our current studies provide novel
molecular basis to explain the anti-inflammatory effect of tumor
infiltrating macrophages with potential beneficial effects of low-
salt diet to cancer patients.
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