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A B S T R A C T

Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have

much more functions and to be much more abundant in living organisms. Sirtuins gained much attention

when they were first acknowledged to be responsible for some beneficial and longevity-promoting

effects of calorie restriction in many species of animals – from fruit flies to mammals. In this paper, we

discuss some detailed molecular mechanisms of inducing these effects, and wonder if they could be

possibly mimicked without actually applying calorie restriction, through induction of sirtuin activity. It

is known now that sirtuins, when adjusting the pattern of cellular metabolism to nutrient availability,

can regulate many metabolic functions significant from the standpoint of aging research – including DNA

repair, genome stability, inflammatory response, apoptosis, cell cycle, and mitochondrial functions.

While carrying out these regulations, sirtuins cooperate with many transcription factors, including PGC-

1a, NFKB, p53 and FoxO. This paper contains some considerations about possible use of facilitating

activity of the sirtuins in prevention of aging, metabolic syndrome, chronic inflammation, and other

diseases.

� 2015 Published by Elsevier Sp. z o.o. on behalf of Medical University of Bialystok.
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1. Introduction

Sirtuins are orthologues of yeast Sir2 protein, where SIR stands
for ‘‘silent information regulator’’, because in yeast, where Sir2 was
first discovered, the protein silences certain genes (i.e. inhibits
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their expression), which results in the extension of replicative
lifespan.

Sirtuins attracted some attention of researchers when it was
presumed that inducing their activity may be responsible, or at
least co-responsible for lifespan-extending effects of calorie
restriction (i.e. anti-inflammatory effects, improved glucose
tolerance, inhibition of hepatic steatosis and other degenerative
disorders, as well as for improved endothelial function, regression
of atherosclerotic plaques, and cancer prevention). It was also
 of sirtuins in aging and age-related diseases. Adv Med Sci (2015),
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scovered that pharmacological induction of sirtuin activity can
imic beneficial effects of calorie restriction without actually
plying calorie restriction. On the other hand, segmental
hibition of sirtuin activity might find some therapeutic use in
ture, mainly because of its proapoptotic effects in cancer cells,
d inhibitory effects on proliferation of parasitic protozoa and
man cells infected with viruses.
Initial hopes associated with the discovery of sirtuins [1]:
The findings concerning effects of calorie restriction, extending

espan of many animal species, aroused presumptions that some
olecular mechanisms underlying this beneficial effect may be
ared and evolutionarily conserved. In 1998, research studies on
charomyces cerevisiae showed that gain of function of Sir2 gene
sults in changes of cellular metabolic pattern, involving – among
hers – epigenetic silencing of certain genes, improved genomic
ability, and extension of the replicative lifespan [2].

In yeast, unequal division of cell content between the budding
ll and the budded cell allows defining maximal lifespan on the
sis of maximal number of cells which can be budded from a
gle cell before its death [3]. One of the factors limiting

plicative lifespan in yeast cells is accumulation of rDNA circles
e. DNA fragments encoding rRNA) in their genome. Such circles
n be removed through recombination, but for some reasons they
e preferentially left in the budding parental cell [4], which finally
sults in its death, though the exact underlying mechanism is still
known. It is known, however, that gain of function of Sir2
tends yeast replicative lifespan indeed through suppressing
rmation of the rDNA circles in the genome.

Since the gain of function of Sir2 orthologues in C. elegans and D.

elanogaster also extends their lifespan [5,6], accumulation of
e rDNA circles has been excluded as a mechanism of aging in
ose organisms. Therefore, it has been presumed that lifespan-
tending effect of Sir2 (or its orthologue) amplification need not
 determined by any definite molecular mechanism of action. Yet,
 general beneficial effect on lifespan has been conserved (i.e.
justed to organism-specific processes responsible for aging,
gardless of their exact molecular pattern). Because calorie
striction (CR) has also shown such species-independent benefi-
al effect on lifespan, and CR was found to result in Sir2
regulation in yeast, sirtuin activation is presumed to be a
nificant mechanism, or at least one of the significant mecha-

sms underlying longevity-promoting effects of CR [7]. A possible
echanism of CR action can be inhibition of insulin and IGF-
pendent signaling (IIS), simply through decreasing tissue
mand for insulin and IGFs, and correspondingly – secretion of
ose hormones [8]. During CR, IIS pathway inhibition coexists
ith the altered expression of sirtuins in various tissues. In C.

gans, CR generally stimulates Sir2 expression, but in mammals
 effects are more complex, in both tissue- and particular sirtuin-
pendent manner [9]. According to some authors, gain in sirtuins
tivity seems to be a result of decreased ubiquitination (and
nce – decreased degradation), not of increased synthesis [10].
wever, additional cross-talk between inhibition of IIS pathway
d enhanced activity of some sirtuins can exist (e.g. SIRT6
wnregulates c-Jun, which is one of the crucial downstream

fectors of IIS pathway; while miRNA encoded in an introne
 sterol-regulatory element binding protein 1 (SREBP-1) gene
wnregulates SIRT6 translation [11,12]). Hence, existence of
ore than one mechanism underlying beneficial effects of CR is
ssible. Moreover – several CR induced mechanisms can
mplement one another.
Not all laboratories managed to repeat the initial lifespan-

tending effect of sirtuins upregulation (e.g. positive correlation
tween SIRT3 activity and human healthspan, initially described
r Italian population, was not confirmed in later studies on other
pulations) [13,14]. Despite the existence of straightforward
Please cite this article in press as: Wątroba M, Szukiewicz D. The rol
http://dx.doi.org/10.1016/j.advms.2015.09.003
correlation in C. elegans or fruit flies, sirtuin upregulation in
mammals can work in a context-, tissue-, and particular sirtuin-
dependent manner (e.g. 12-fold increase in SIRT1 activity in mice
was neuroprotective, though it induced cardiac hypertrophy)
[15]. Furthermore, studies on SIRT KO mice show a lifespan
shortening only as a result of depletion of some sirtuins (SIRT3,
SIRT6, SIRT7) but not others (SIRT5) [16]. Despite those controver-
sies as to whether the calorie restriction indeed extends lifespan in
all animal species [17], lack of its beneficial effect in Sir2 knock-out
organisms [18] seems to support the hypothesis claiming that the
lifespan-extending effect of CR can really consist in activation of
some sirtuins.

Regardless of whether sirtuins do extend lifespan or not, recent
studies on mice have shown that sirtuin modulation may have a
beneficial effect on health, alleviating manifestations of many
diseases, including diabetes, metabolic syndrome, cardiomyopa-
thies, non-alcoholic hepatic steatosis, hyperinsulinism-induced
dyslipidemia, chronic inflammation, neurodegenerative diseases,
and some types of cancer. [19,20]

2. Review

2.1. Sirtuins are NAD+-dependent lysine deacetylases

During the deacetylation catalyzed by sirtuins, a cleavage of
chemical bond between nicotinamide and ribose in NAD+ molecule
is coupled with the transfer of acetyl group from the substrate (i.e.
acetylated lysine residue) to ribose within the remaining ADP-
ribose molecule. The final products of the reaction are: deacety-
lated lysine residue, O-acetyl-ADP-ribose, and nicotinamide
[21]. Thus, sirtuin activity may be determined by the quantity of
sirtuin molecules, availability of NAD+ (as a co-substrate), and local
concentration of nicotinamide which inhibits sirtuin activity (as a
product, within the frames of end product inhibition). In addition,
sirtuin activity may be influenced by other intracellular proteins
[22,23].

The NAD+ concentration in cells is maintained by keeping
balance between its synthesis and its use. In humans, NAD+ can be
obtained from the tryptophane, nicotinic acid, or nicotinamide
ribose [24]. Synthesis of the new NAD+ molecules occurs mainly in
the course of tryptophane metabolism through kynurenine
pathway, as a result of eight reactions, each of them highly
conserved in the course of evolution. In yeast, the activity of this
pathway is regulated by other yeast sirtuin, Hst2, which serves as a
sensor of NAD+ concentration in the cell, and in case of too high
concentration inhibits activity of kynurenine pathway [25]. It has
been shown that in mammals SIRT1 can modulate NAD+

biosynthesis, especially through salvage pathway, consisting in
NAD+ resynthesis from nicotinamide [26,27]. The biggest con-
sumers of NAD+ in the cell include mono-ADP-ribosyltransferases
and poly-ADP-ribosyltranferases, which break glycozidic bond
within NAD+ molecules, and subsequently transfer ADP to other
substrates. The DNA repairs, especially the repair of double strand
breaks (DSB), requires intense activity of poly-ADP- ribose
polimerase (PARP) and sometimes may adversely result in a
critical loss of NAD+ concentration in a cell [28].

Salvage pathway can prevent cellular NAD+ depletion through
re-synthesizing NAD+ from nicotinamide [1]. Moreover, this can
also induce the sirtuin activity by lowering the level of nicotin-
amide [29–31]. The key enzyme on this pathway is nicotinamide
phosphoribosyltransferase (NAMPT) which has been shown to
affect both the NAD+ concentration in cells and the sirtuin activity
[29–31]. It has been shown recently that NAMPT expression is
regulated by transcription factors related to diurnal activity, which
can affect diurnal oscillation of both the NAD+ concentration and
sirtuin activity in cells [26,27].
e of sirtuins in aging and age-related diseases. Adv Med Sci (2015),
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NAD+ is a cofactor of hydrogen transferases which can convert it
into NADH (or vice versa). Therefore, redox status of the cell may
influence the sirtuin activity by affecting the NAD+/NADH ratio,
and it is presumed that this kind of regulation can play a significant
role in inducing the activity of sirtuins in case of CR [32], as well as
in the course of some ontogeny-related processes – e.g. muscle
differentiation [33] and neurogenesis [34].

Research studies made so far suggest that the activity of various
sirtuins in a cell may be regulated at transcriptional level (by redox
status of the cell), as well as at posttranscriptional level (by
nutritional status of the cell) [35–37].

Sirtuins are class III deacetylases using NAD+ as the main co-
substrate [38]. Protein acetylation or deacetylation, as posttran-
slatory regulatory modifications, may serve as mechanisms of
short-term regulation of their activity. There are 7 described
sirtuins in mammals, although not all of them show deacetylase
activity; some of them show deacylase activity (SIRT6) or
desuccinylase and demalonylase activity (SIRT5). Yet, all of them
contain 275-aminoacid catalytic subunit and all of them display
equal demand for NAD+ as a co-substrate during targeting their
substrates – from histones to transcription factors [39].

Modulation of the sirtuin actions has been linked to regulation of
such processes as gene expression, determining the pattern of
cellular metabolism, apoptosis, as well as DNA repair, individual
development, inflammatory response and neuroprotection [40,41].

Sirtuins have various sub-cellular locations in mammalian cells.
SIRT1 is active mainly in the nucleus [42] whereas SIRT2 in the
cytoplasm [43], but each of them can be moved between cell
nucleus and cytoplasm [44,45]. SIRT3, SIRT4 and SIRT5 are active in
the mitochondria, although it was shown that SIRT3 may be moved
between nucleus and mitochondria under cellular stress [40]. SIRT6
and SIRT7 are nuclear proteins [46,47].

2.2. SIRT1

SIRT1 seems to be the most philogenetically similar to yeast
Sir2, in terms of both amino-acid sequence and the profile of
enzymatic activity. It is also the most frequently studied and best
characterized human sirtuin. SIRT1 regulates mainly cellular
metabolic pattern, while its own activity is regulated by
availability of nutrients, being induced during moderate undernu-
trition (e.g. due to CR) [48].

SIRT1 stimulates mitochondrial biogenesis, as well as catabo-
lism of triglycerides and cholesterol in liver, skeletal muscles and
adipose tissue. In addition, it inhibits glycolysis while activating
gluconeogenesis and fatty acid oxidation in most tissues [49]. SIRT1
regulates gluconeogenesis and glycolysis through PGC-1a tran-
scription factor, which also results in the increased number and
function of mitochondria, both in laboratory animals and in vitro
[50,37].

In addition, SIRT1 can be induced in POMC-synthesizing
neurons which are important for maintenance of body mass and
glycaemic homeostasis through decreasing the intake of energy.
Activation of SIRT1 in the hypothalamus is impaired in leptin
knock-out mice [51], and lack of SIRT1 activity in hypothalamic
neurons contributes to diet-induced obesity – mainly through
reducing energy expenditure [52]. Moreover, recent studies have
revealed a correlation between individual differences in SIRT1
activity (resulting from single-nucleotide polymorphism) and
differences in body mass index, as well as in susceptibility to the
diet-induced obesity [53].

Despite the suggested correlations between over-expression of
SIRT1 and longevity, no correlations have been found in laboratory
animals between individual differences in SIRT1 activity (related to
single nucleotide polymorphism) and lifespan [54]. The presumed
correlation between SIRT1 over-expression and longevity was
Please cite this article in press as: Wątroba M, Szukiewicz D. The role
http://dx.doi.org/10.1016/j.advms.2015.09.003
attributed to the effect of SIRT1 on p53 (deacetylation, decreasing
its proapoptotic activity) [42], and for the same reason, it has been
presumed that over-expression of SIRT1 in already transformed
tumor cells may promote their viability.

The basic activator of SIRT1 is CR, acting by upregulating AMPK
and increasing cellular level of NAD+ [8,48]. SIRT1 in turn
upregulates FoxO1 protein, which downregulates triglyceride
lipase – a rate-limiting enzyme in lipogenic pathway [55]. SIRT1
inhibits lipogenesis also by inhibiting SREBP1c actions through
deacetylation (DAC), resulting in inhibition of SREBP1c action at its
target gene promoters (IATGP) [56,57]. SIRT1 depletion (even
haploinsufficiency) promotes obesity in case of applying high fat
diet (HFD) [58].

Results of some research studies suggest prevention of
detrimental effects of HFD by SIRT1 upregulation [59], although
some other studies suggest the reverse [9]. It is possible that these
discrepancies result from differences in materials, methods, and
contexts.

Selective upregulation of SIRT1 in the forebrain promotes
increased expression of lipogenic genes in the white adipose tissue
(WAT) [60].

SIRT1 can upregulate SIRT6 after forming a complex with
FoxO3a and NRF1 transcription factor [61].

SIRT1 stimulates hepatic gluconeogenesis by acting on PGC-1a
[62], and promotes the DNA damage repair during a cellular stress
response [63]. Myc protein activity is downregulated by SIRT1 in
normal cells through deacetylation of Myc molecule [64].

SIRT1 prevents carcinogenesis [65], because it promotes DNA
damage repair, inhibits chronic inflammatory response, down-
regulates HIF-1a transcription factor (through deacetylation of its
molecule), and upregulates another sirtuin – SIRT6. SIRT6 in turn
deacylates the H3 histone at Lys 56 (H3 DAC K56), which also
promotes DNA repair and conservation through silencing the gene
expression [66,67]. However, in the already transformed tumor
cells, upregulating SIRT1 may have a cytoprotective effect, which
can be associated with upregulation of N-Myc oncoprotein [68]
and ER-a estrogen receptor expression, as well as with general
inhibition of apoptosis and CSP induction [69,70].

The anti-inflammatory action of SIRT1 occurs through inhibit-
ing two important pro-inflammatory proteins – TNF-a and NF-kB
[71–73].

The metabolic actions of SIRT1 include promoting fatty acid
oxidation through deacetylating PGC-1a [74], as well as counter-
acting detrimental effects of hyperglycemia on vascular endothe-
lium – through inhibition of p66Shc molecule [75]. The influence of
the SIRT1 upregulation on atherogenesis seems to be context-
dependent, because some research studies suggest its anti-
atherogenic action [76], while some other studies suggest its
pro-atherogenic action [60].

A moderate (7-fold) increase in SIRT1 activity can prevent cardiac
hypertrophy, but an excessive increase (12-fold) can promote it [15].

The neuroprotective actions of SIRT1, shown on mouse models
of the Alzheimer disease, result from upregulation of the ADAM-10
transcription factor [77] and destabilization of the tau proteins,
through promoting their degradation [78]. Neuroprotective actions
of SIRT1 have been also shown on mouse models of the Parkinson
disease and the Huntigton disease [79–81]. At least some of those
actions can result from induction of the chaperon protein synthesis
by SIRT1 [79]. SIRT1 also stimulates neurite outgrowth [82], through
inhibition of the mTOR signaling pathway [83].

Silencing of the SIRT1 gene accelerates the growth of tumor
xenografts (HCT 116 cells), while amplification of SIRT1 has an
inhibitory effect. High activity of SIRT1 was found in normal colon
mucosa cells, as well as in benign adenomas, whereas over-
expression of SIRT1 was found in 25% of colon adenocarcinomas at
stages I/II/III and in very few tumors at stage IV [84]. On the other
 of sirtuins in aging and age-related diseases. Adv Med Sci (2015),

http://dx.doi.org/10.1016/j.advms.2015.09.003
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nd, increased SIRT1 activity has been found in many human
ncer cell lines, as well as in healthy tissue cells collected from
tients suffering from various types of cancer (lung cancer,
ostatic cancer, colon cancer, and CLL) [85,86]. These results may
ggest that SIRT1 inhibition in cancer cells could possibly inhibit
eir growth, yet in some other human cancer cells (e.g. the breast
ncer and hepatoma), an abnormally low activity of SIRT1 has
en found. Other studies reported only a slightly elevated SIRT1
tivity (in some thyroid cancers) or an unchanged activity (in
me lung cancers, colon cancers, gastric cancers, urinary bladder
ncers, and skin cancers) [87].
It should be noted that despite the observed upregulation of

RT1, SIRT2 or SIRT7 in the already established cancer cell lines, it
usually accompanied by a loss of function of SIRT6. When

nsidering CR as a possible method of cancer prevention, there are
any premises that it is highly effective. Firstly, because
regulation of sirtuins in normal cells prevents their transforma-
n, and secondly, because CR upregulates many other tumor
ppressor proteins (TSPs) – like FoxO3a, p53, SIRT3 and SIRT6
igs. 1 and 2).

3. SIRT2

In humans, SIRT2 is active mainly in the cytoplasm, where one
 its substrates is the a-tubulin in microtubules [42,88]. SIRT2 also
Fig. 2. The best known inh

Please cite this article in press as: Wątroba M, Szukiewicz D. The rol
http://dx.doi.org/10.1016/j.advms.2015.09.003
deacetylates Lys 16 within the H4 histone, which results in (and is
probably required for) chromatin condensation at the G2/M
checkpoint [89]. A lower expression of SIRT2 has been found in
neoplastic cells, which may suggest that the SIRT2 activity
restitution could be useful in antineoplastic therapy [90].
Moreover, elevated susceptibility to cancers, in a gender-depen-
dent manner, has been reported in SIRT2 knock-out mice
(increased prevalence of breast cancer in females and hepatic
cell cancer in males). The research studies discussed above
unequivocally suggest that sirtuins are, in practice, tumor
suppressors, in spite of their theoretically anti-apoptotic activity.
It may be accounted for by the fact that the anti-apoptotic
action of sirtuins (through p53 deacetylation) is not their only
action, and thus cannot be considered out of the context, because
it is accompanied by many other actions, inducible also by
calorie restriction – such as increased activity of FoxO proteins,
Gadd-45 protein, as well as increased cellular resistance
to oxidative stress (which can result from the increased
concentrations of O-acetyl-ADP-ribose) [91,92]. Furthermore,
increased activity of some sirtuins in the cells of the existing
neoplasm gives no information about cause or context of its
formation. In other words – it does not mean that an increased
sirtuin activity was the primary cause of the disease. Neverthe-
less, these findings may contribute to development of some
novel therapies (temporary inhibition of sirtuins as a pro-
apoptotic treatment).

CR seems to be the main SIRT2 activator, probably due to
elevating the cellular level of NAD+. SIRT2 activity can be inhibited
by HIF-1a transcription factor [93]. The overall effect of the SIRT2
upregulation on carbohydrate and lipid metabolism is similar to
that of SIRT1, promoting gluconeogenesis through deacetylation of
phosphoenolopyruvate carboxykinase (PEPCK) [94], as well as
inhibition of the adipocyte differentiation [95] through deacetyla-
tion of FoxO1 [96]. SIRT2 regulates mitotic progression by
controlling the activity of the anaphase-promoting complex/
cyclosome [89]. SIRT2 prevents carcinogenesis in normal cells,
which has been shown on the basis of the fact that SIRT2 KO mice
have increased cancer incidence and prevalence [97]. SIRT2 has
also anti-inflammatory effects, because it inactivates NF-kB
through deacetylation of its p65 subunit at Lys 310 [98]. In the
central nervous system, SIRT2 regulates the oligodendrocyte
differentiation, although the direction of this action has not been
clearly settled (results of research studies performed so far contain
some discrepancies, which may suggest SIRT2 action in a context-
dependent manner) [88,99]. SIRT2 stimulates myelin production
in Schwann cells by deacetylating Par-3 protein [100]. In spite of
this, unlike SIRT1, SIRT2 shows no neuroprotective action.
ibitory actions of SIRT1.
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Moreover – neuroprotective effect has been correlated with the
inhibition of SIRT2 [101] (Fig. 3).

2.4. SIRT3

It has been mentioned above that SIRT1 promotes mitochon-
drial biogenesis. SIRT3, SIRT4, and SIRT5 are active in the
mitochondria by taking part in regulation of ATP synthesis,
metabolism, apoptosis and intracellular signaling [102]. Among
human sirtuins, correlation between a single nucleotide polymor-
phism and lifespan was found only for SIRT3. The VNTR
polymorphism in the intron 5 of its encoding gene determines
its enhancer activity, and interestingly enough – allele that lacks
the enhancer activity is practically not found in living humans
older than 90 years of age [13].

SIRT3 is a mitochondrial enzyme, and its mitochondrial
substrates include: complex I, complex III, manganese superoxide
dismutase (MnSOD) and isocitrate dehydrogenase 2 (IDH2) [103].
By deacetylating complex I and complex III, SIRT3 improves overall
efficacy of the electron transport chain (ETC), thus preventing
production of reactive oxygen species (ROS) as oxidative phosphor-
ylation byproducts [104,105]. Besides, SIRT3 activates MnSOD
(through deacetylation of its molecule at Lys 122) [106,107] and thus
improves the efficacy of ROS removal from cells.

SIRT3�/� cells show a long-lasting, elevated concentration of
ROS, which promotes the DNA damage and activates the HIF-1a
transcription factor [108,109]. Excessive activity of HIF-1a is
Fig. 4. The best known

Please cite this article in press as: Wątroba M, Szukiewicz D. The role
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responsible for the metabolic reprogramming of tumor cells,
widely known as the Warburg effect [108,110]. SIRT3 down-
regulates HIF-1a by decreasing the cellular concentration of ROS
[109]. When considered together with the DNA damage-prevent-
ing action of SIRT3 (also dependent on the ROS depletion), it is clear
that SIRT3 is a mitochondrial TSP [104,105].

SIRT3 actions as TSP include:

- decreased ROS production, combined with increased ROS
inactivation by MnSOD (thus preventing the ROS-induced DNA
damage and mutations)

- suppressing ATP production in cancer cells (through inhibition
of HIF-1a and preventing expression of its target genes)
[109,111]. In this field, SIRT3 cooperates with SIRT6, especially
that both of them have the same activators

- activation of p53 through deacetylation [112]

Although some findings show upregulation of SIRT3 in already
established tumor cells [113,114], this is nothing more than a
confirmation of possibly cytoprotective role of sirtuins, found for
most sirtuins, excluding SIRT6. However, SIRT3 KO mice have
increased cancer incidence [103,108], which obviously suggests
cancer-preventive actions of SIRT3 in normal cells.

A cohort study on Italian population revealed a correlation
between the high activity of SIRT3 and longevity [13]. However,
some newer studies failed to confirm the correlation for other
populations [14,115].

The main activators of SIRT3 include CR and increased level of
cellular NAD+ [10,116]. Metabolic actions of SIRT3 (on carbohy-
drate and lipid metabolism) are similar to those of SIRT1
(stimulation of gluconeogenesis, inhibition of lipogenesis, activa-
tion of fatty acid oxidation, and some neuroprotective actions) [10]
(Fig. 4).

2.5. SIRT4

SIRT4 was initially identified as an ADP-ribosylase affecting
insulin secretion [117,118]. Unlike the other sirtuins, SIRT4
inhibits both lipolytic enzymes and AMPK [119]. What is
interesting enough, the SIRT4 activity is inhibited by CR [119],
which is also a unique effect, opposite to the effects observed for all
the other sirtuins. Therefore, SIRT4 is thought to regulate the ATP
homeostasis and to provide the retrograde signaling from the
mitochondria to the nucleus, mediated by AMPK [119].

Mitochondrial action of SIRT4 includes improving the efficacy
of ATP synthesis, through inhibition of the oxidative phosphor-
ylation uncoupler – ANT2 [118,119].
 actions of SIRT3.
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The main activator of SIRT4 seems to be the DNA damage,
ssibly through such proteins as ataxia-teleangiectasia mutated
otein (ATM), as well as ATM and RAD3-related protein (ATR)
20]. During cell response to the DNA damage, SIRT4 inhibits the
utamine metabolite entrance to the tricarboxylic acid cycle (TCA)
20], which allows the use of the glutamine-derived nitrogen
oms in the purine nucleotide synthesis (necessary during the

A repair). The SIRT4 depletion impairs the DNA damage repair
d promotes the DNA damage accumulation. Although resistant

 the diet-induced obesity, the SIRT4 KO mice have increased their
ncer incidence, especially of the lung tumors [120,121].
CR is unlikely to promote DNA damage accumulation, despite

ving an inhibitory effect on the SIRT4 activity. Firstly, because CR
imulates SIRT1, SIRT6 and SIRT3 at the same time. Secondly,
cause moderate cellular undernutrition abrogates the ROS
oduction per se [91], and in most cases, ROS are the main factor
rectly contributing to the DNA damage (Fig. 5).

Apparently, the mitochondrial sirtuins closely cooperate with
RT1, not only through PGC-1a transcription factor, but also
rough enhancing the activity of SIRT6 by SIRT1. Thus, SIRT1 may
gulate mitochondrial activity through affecting the rate of
nthesis of the intermediate metabolites [122] and upregulating
RT6 – by creating an activating complex of three proteins: FoxO3a,
3, and the NRF transcription factor. SIRT5 can deacetylate
tochrome C, regulating not only the apoptosis but the cellular
spiration as well [123].

6. SIRT5

SIRT5 is a mitochondrial enzyme showing the desuccinylase
d demalonylase activity [124]. The significance of succinylation
d malonylation as post-translatory modifications (PTMs) is still
t fully understood. SIRT5 enhances the urea cycle by activating
rbamoylophosphate synthetase (CPS) [125,126]. Indeed, the
RT5 KO mice show a slightly elevated level of ammonia in their
ood [16]. No other obvious metabolic abnormalities have been
served in the SIRT5 KO mice, although it might have been due to
relatively short time of observation (26 weeks) [16]. Another
udy found that SIRT5 can activate Cu/Zn SOD (SOD1), thus
creasing the cellular ROS concentration [127]. The same study
und a cancer-preventive function of SOD1 upregulation in the
ll culture in vitro [127]. It is now known that newly discovered
Ms removed by SIRT5 can regulate the activity of enzymes
Fig. 5. The best know
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affecting the redox status of cells and energy utilization, but we
have just started to learn about the exact influence of SIRT5 on
these pathways.

2.7. SIRT6

SIRT6 plays the key role in the DNA repair and in the
maintenance of genomic stability – mainly by integrating the
actions of the DNA-damage signaling factors with the recruitment
and activation of the DNA-repairing enzymes, especially during
the oxidative stress [128]. SIRT6 knock-out mice develop signifi-
cant metabolic disorders which cause their death within four
weeks from their birth [129]. SIRT6 overexpression induces
intense apoptosis in the cancer cells but not in normal cells,
which makes it an attractive ‘‘target’’ for the future antineoplastic
medications [130].

SIRT6 is thought to be a significant tumor suppressor protein
(TSP) and an important regulator of mammalian lifespan. In mice,
SIRT6 is most abundantly expressed in liver, heart, and skeletal
muscles [129]. As to the subcellular location, SIRT6 is a nuclear
protein, although it is also present in the endoplasmic reticulum,
where it deacetylates TNF-a [131]. Nuclear substrates of SIRT6
include the H3 histone (deacylated by SIRT6 at Lys 9 or
56)[131,132] and the H2B histone (deacylated at Lys 12) [133].
SIRT6 was initially found to have a relatively small deacetylase
activity in reference to the soluble histones [134], however, it has a
much stronger activity toward nucleosome-bound histones [134].
Recent studies have shown that SIRT6 has also a deacylase activity
[133] and interacts physically with some non-histone proteins –
not only through deacylation, but also through direct physical
interaction (PIA), inhibition of their binding to the target gene
promoters (IATGP) and destabilization of their binding at the target
gene promoters (DATGP) [135].

SIRT6 inhibits TNF-a by deacylating its molecule at Lys 19 and
20 [133,135], which is thought to be responsible for the anti-
inflammatory actions of SIRT6. Another protein inhibited by SIRT6
is the RELA subunit of NF-kB. Interaction of SIRT6 with the RELA
subunit of NF-kB leads to inactivation of the NF-kB action through
IATGP and DATGP [135].

The main activators of SIRT6 include: calorie restriction (CR)
[61], p53 (independently of the nutritional status of the cell) [10],
c-Fos protein [136], and an increased concentration of NAD+ within
the cell [20]. CR activates SIRT6 indirectly, by upregulating SIRT1,
n actions of SIRT4.
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FoxO3a and nuclear respiratory factor 1 (NRF-1). These three
proteins form a complex which is subsequently phosphorylated at
the SIRT6 gene promoter binding sites [137]. Some studies suggest
that CR upregulates SIRT6 through stabilizing the already existing
SIRT6 molecules, because actinomycin D (a widely known inhibitor
of the mRNA transcription) does not abrogate the SIRT6
upregulation by CR [10]. c-Fos activates SIRT6 through binding
to the activating protein 1 (AP-1) binding site at a SIRT6 gene
promoter [136]. SIRT6 can be downregulated by miR-33b (encoded
in an introne of the SREBP gene) [12].

The histone deacylation results in a decreased distance between
the histones and the DNA (because a hydrogen atom is much
smaller than the acyl group). The reduced distance between the
histones and the DNA makes it more difficult for the transcription
factors to access DNA, and this is thought to be a mechanistic
rationale for both the gene silencing and for promoting DNA
conservation/repair. Indeed, in SIRT6�/� cells, a global hyperacyla-
tion of histones has been found, especially during the cell response
to a DNA damage [133]. These cells also showed loss of genomic
stability and impairment of the DNA damage repair [133].

SIRT6 promotes stabilization of Werner syndrome ATP-
dependent helicase (WRN) molecule – both when repairing double
strand breaks (DSBs) and during DNA replication [138]. Increased
WRN stabilization prevents appearance of the telomere abnor-
malities during DNA replication [138]. Another group of proteins
upregulated by SIRT6 includes the DNA damage dependent
protein kinases (DNA-PKcs) – also significant for effective DNA
repair [138].

The H3 histone deacylation at Lys 56 (DAC H3K56) also
contributes to the improved efficacy of the DNA damage repair.
Increased acylation of H3K56 promotes genomic instability, and
SIRT6 upregulation prevents this effect [132]. The H3K56 deacyla-
tion by SIRT6 is most marked during the S phase of the cell cycle
[132,139].

SIRT6 also upregulates CtIP (the CtBP-interacting protein).
Upregulation of CtIP by SIRT6 is important for the DSB repair
through homologous recombination (HR) [140–142], because CtIP
protein is needed for excision of the damaged DNA fragments from
both strands [141]. SIRT6 upregulates CtIP through deacylation of
its molecule at Lys 432, 526 and 604 [143].

Artificial mutation of the CtIP (substitution of lysines with
arginines, which makes acylation impossible) partially rescues the
DSB repair through HR, even in the SIRT6�/� cells [143].

SIRT6 activates PARP-1 through mono-ADP-ribosylation at Lys
521 [128]. PARP-1 binds to the DNA damage sites and subse-
quently activates itself by auto-ADP-ribosylation [144]. In this
context, PARP-1 activation by SIRT6 promotes the DSB repair
during an oxidative stress – both through HR and through the non-
homologous end joining (NHEJ) [144]. All these three proteins (i.e.
PARP-1, WRN, and DNA-PKcs) seem to be necessary for an effective
DSB repair [144].

SIRT6�/� cells show hyperacylation of H3K9 in telomeres,
which leads to increased expression of the subtelomeric genes (e.g.
ISG-16). [145]. This suggests that SIRT6 also protects the telomeres
– thus protecting the cells not only from genotoxic, but also from
replicative stress [146,147].

SIRT6 KO mice do not show abnormalities at birth, but after
3 weeks of life they develop metabolic disorders, such as: loss of
subcutaneous fat, lordokyphosis, colitis, severe lymphopenia,
osteopenia, decreased serum level of IGFs, and progressive
hypoglycaemia which finally leads to their death about 4 weeks
after birth [148]. The lifespan of the SIRT6 KO mice can be slightly
extended through inactivation of the NF-kB RELA subunit. In
normal mice, physical interaction between SIRT6 and RELA inhibits
the NF-kB action at its target gene promoters [149], which prevents
such NF-kB dependent processes as induction of the cellular
Please cite this article in press as: Wątroba M, Szukiewicz D. The role
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senescence phenotype (CSP) and apoptosis. Another method used
for lifespan extension of the SIRT6 KO mice is counteracting
hypoglycaemia by replacing water with 10% glucose solution. The
hypoglycaemia in SIRT6 KO mice is due to massive uptake of
glucose by too many cells at the same time [148], and this effect
results from hyperactivity of the HIF-1a transcription factor. In
healthy mice, HIF-1a is inhibited by SIRT6 [150]. Hyperactivity of
HIF-1a is responsible both for the lethal hypoglycaemia occurring
in SIRT6 KO mice [148] and for the metabolic reprogramming
occurring in tumor cells, known as the Warburg effect (increased
activity of the GLUT1 and GLUT4 glucose transporters, increased
glycolysis even during oxygen deprivation, increased lactic acid
production) [151,152]. The Warburg effect is crucial for energy
obtaining by cancer cells, and inhibition of the Warburg effect
accounts for tumor suppressive function of SIRT6 and SIRT3
[108,153]. SIRT6 inhibits the action of c-Jun (through DAC H3K9 at
its target promoters) [11], so it inhibits activity of the whole IIS
pathway, because the c-Jun protein is an important element of the
IIS pathway [11]. The beneficial, longevity promoting effects of the
IIS inhibition are widely known, and the inhibitory effect of SIRT6
on c-Jun can be partly responsible for extending the lifespan by CR.

SIRT6 deacylates the GCN-5 protein, and thus it affects the
activity of PGC-1a, modulating the hepatic gluconeogenesis [154].
The SIRT6 overexpression protects mice from the detrimental
effects of HFD, such as: accumulation of the epididymal fat,
hypertriglyceridemia and insulin resistance [155]. Selective de-
pletion of the neuronal SIRT6 in mice results in growth attenuation,
increased appetite and obesity [156].

SIRT6 extends the maximum lifespan in male, but not in female
mice – probably through inhibition of IIS pathway in the white
adipose tissue [157]. The underlying reasons of this gender-related
specificity remain unknown. Perhaps the IIS pathway is constitu-
tively less active in female mice (hence the less obvious effects of
its inhibition by SIRT6).

SIRT6 as a TSP:
SIRT6 can suppress carcinogenesis through inhibition of the

Warburg effect [150,158], through inhibition of survivin actions
(deacylating H3K9 at its target gene promoters) [136], and through
inhibition of c-Jun (deacylating H3K9 at its target gene promoters).
Because c-Jun inhibits p53, inhibition of c-Jun by SIRT6 can rescue
the p53 function [11,131,159,160]. Besides, SIRT6 inhibits actions
of the Myc protein (deacylating H3K56 at its target gene
promoters) [161] and attenuates some NF-kB dependent actions
that can be cancer-promoting in a context dependent manner
[91,149]. SIRT6 also activates other TSPs, including CCNDBP1
[135,162] and CtIP [140–142] (Fig. 6).

2.8. SIRT7

SIRT7 is a nuclear protein, mostly expressed in the nucleolar
regions [163]. SIRT7 promotes the rDNA transcription [164–166],
especially in young, proliferating cells. The replicative senescence
correlates with the SIRT7 dislocation from the nucleolar regions to
chromatin and to cytosol [166]. The main substrate of SIRT7 is the
H3 histone, deacetylated by SIRT7 at Lys 18 (H3K18 DAC)
[167]. Deacetylation of the H3 histone at Lys 18 represses gene
expression. It is interesting to note that many TSPs are encoded in
target regions for H3K18 DAC [167]. The ELK-4 transcription factor
takes part in recognition of the SIRT7 target regions in chromatin
[167–169]. Thus, on one hand SIRT7 can contribute to maintenance
of a transformed cell phenotype in tumor cells by suppressing
the expression of some TSPs [167], while on the other hand, the
SIRT7 KO mice develop a progeroid phenotype and an inflamma-
tory cardiomyopathy [170,171]. Despite the fact that the SIRT7
overexpression seems to be crucial for maintenance of tumor
phenotype in the already established cancer cells [167], SIRT7 does
 of sirtuins in aging and age-related diseases. Adv Med Sci (2015),
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t contribute to the initiation of carcinogenesis, which has been
perimentally proved, as no correlation between SIRT7 upre-
lation in normal cells and their susceptibility to transformation
s been found [167,172]. Summing up, SIRT7 is a protein

hich may exhibit a window of optimal activity. Global SIRT7
pletion contributes to premature aging, referring especially

 the backbone, white adipose tissue and the heart [170,171],
hereas SIRT7 overexpression is observed mainly in cancer cells
64,167].

 Conclusion

The broad spectrum of processes in which sirtuins are involved
ggests their possible role in the pathogenesis of many diseases,
cluding the metabolic syndrome, neurodegenerative diseases,
e inflammatory response, circulatory system diseases, neo-
asms, and other age-related diseases. Hence, the sirtuin
tivation can be a useful method of healthspan extension, or
en of lifespan extension. There are two basic approaches to
tuin activation. One of them is the use of exogenous activators

irtuin-activating compounds; STACs), the other one is replenish-
ent of the cellular NAD+ [20,173]. The first discovered exogenous
RT1 activator was resveratrol [85,173]. A treatment with
sveratrol and its derivatives allowed to achieve some beneficial
fects of the SIRT1 induction without applying CR [174–176].
llowing the discovery of resveratrol, a few researchers tried to
d some selective activators – not only of SIRT1, but also of other
tuins [176]. However, a more recent, and generally more useful
proach involves using direct NAD+ precursors, such as the
cotinamide mononucleotide (NMN) or the nicotinamide ribose
R) to replenish the cellular NAD+ [20].
It should be noted that the DNA damage can result in NAD+

pletion, because PARP requires NAD+ as a cofactor. Since the
A-repairing enzymes and sirtuins share NAD+ as a cofactor, a

current DNA damage can create a vicious circle by causing the
D+ depletion and a secondary loss of sirtuin function, thus

omoting not only a further DNA damage, but also a mitochon-
ial derangement. Some research studies do confirm that this kind

 vicious circle may contribute to organismal aging [20]. Moreover,
e vicious circle can be experimentally broken by the replenish-
ent of cellular NAD+ using its direct precursors.

The competitive interplay between PARP and sirtuins can
ovide putting multiple theories of aging together, and thus,
tter understanding of dependences between the DNA damage,
ss of the mitochondrial function, and the oxidative stress. This in
Please cite this article in press as: Wątroba M, Szukiewicz D. The rol
http://dx.doi.org/10.1016/j.advms.2015.09.003
turn can allow final and complete explanation of mechanisms of
organismal aging, providing the development of safe and effective
methods of lifespan extension in the future.
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