Advances in Medical Sciences xxx (2016) xxx-xxx

3

3

4

5

6 7 Contents lists available at ScienceDirect

Advances in Medical Sciences

Advances in Medical Sciences

21

journal homepage: www.elsevier.com/locate/advms

Original Research Article

Expression of tumor suppressor genes related to the cell cycle in endometrial cancer patients

Qı Łukasz Witek^a, Tomasz Janikowski^{b,*}, Piotr Bodzek^a, Anita Olejek^a, Urszula Mazurek^b

^a Department of Gynecology, Obstetrics and Oncological Gynecology, Medical University of Silesia, Katowice, Poland

^b Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland

ARTICLE INFO

Article history: Received 29 July 2015 Accepted 1 April 2016 Available online xxx

Keywords: Endometrium Endometrial cancer Tumor suppressor genes Microarray Cell cycle

ABSTRACT

Purpose: Endometrial cancer is the most common gynecological malignancy in developed countries. The role of tumor suppressor genes (TSG) in endometrioid endometrial *adenocarcinoma* (EEC) has an important impact on patient survival prognosis. Thus, it is important to identify TSG transcripts that differentiate endometrial *adenocarcinoma* into various pathomorphological grades. The aim of this study was to analyze the expression profile of tumor suppressor genes related to the cell cycle in patients with endometrial *adenocarcinoma* across histological differentiation and to identify transcripts which differentiate endometrium into various pathomorphological grades.

Material and methods: Gene expression analysis was completed for 19 endometrial endometrioid *adenocarcinomas* and 5 normal specimens (obtained from women with diagnosed uterine fibroids, benign ovarian tumors and a prolapsed uterus with histopathologically confirmed endometrium in the proliferative phase) using Affymetrix HG-U133A oligonucleotide microarrays. The statistical analysis was performed using the GeneSpring13.0 software and PANTHER classification system.

Results: Significant changes in gene expression were observed across histological differentiation. The *WT-1*, *CYR 61*, *TSPYL5* genes were statistically and biologically significant in all cancer grades, and were considered to be primary for the G1 grade in endometrial cancer. The G2 cancer specific genes were *BCL2L2* and *HNRNPA0*, whereas in G3 there was only *BAK*.

Conclusion: In conclusion, the *WT-1*, *CYR61* and *TSPYL5* gene expressions are potentially correlated with patient survival in all endometrial cancer grades. The TSGs identified are considered to be important in EEC pathogenesis and further research is needed to confirm this.

© 2016 Published by Elsevier Sp. z o.o. on behalf of Medical University of Bialystok.

1. Introduction

9

The increased incidence of endometrial cancer in the last decade has placed it as the most common gynecological malignancy in developed countries [1]. This trend is becoming more marked in Poland [2]. The well-acknowledged dualistic carcinogenesis model based on clinicopathological characteristics has led to two types of endometrial cancer being distinguished [3]. Approximately 75–80% of uterus malignancies are estrogendependent type I endometrial cancer with endometrioid morphology (EEC, endometrioid endometrial cancer) including *adenocarcinomas*. Endometrioid cancer arises from complex atypical endometrial hyperplasia and is pathogenetically

* Corresponding author at: Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine, Jedności 8 street, 41-200 Sosnowiec, Poland. Tel.: +48 500720323.

peri- and postmenopausal women and has a good prognosis22[4]. Type II cancer is characterized by non-endometrioid histology23and non-estrogen dependency. It develops from atrophic endometrium24trium and carries a poor prognosis [3,4]. The existence of two25different cancer types has been confirmed by molecular biology26based studies [5].27Tumor suppressor genes (TSGs) are the guardian genes that28

associated with unopposed estrogenic stimulation. It occurs in

prevent oncogenic transformation. These genes play a critical role 29 in controlling the cell cycle checkpoints that are needed for the 30 normal outcome of proliferation and differentiation. Hence, TSGs 31 can prevent accumulating mutations and protect the cell from 32 acquiring cancer phenotype by inducing apoptosis [6,7]. The role of 33 tumor suppressor genes in estrogen dependent endometrial cancer 34 35 is important and has an impact on new therapies. Furthermore, gene expression changes in TSGs (p53, PTEN) are considered to be 36 poor prognostic factors [8,9]. 37

The aim of this study was to analyze the expression profile of 38 tumor suppressor genes related to the cell cycle in patients with 39

1896-1126/ \odot 2016 Published by Elsevier Sp. z o.o. on behalf of Medical University of Bialystok.

E-mail address: tomekjanikowski24@gmail.com (T. Janikowski).

http://dx.doi.org/10.1016/j.advms.2016.04.001

Ł. Witek et al. / Advances in Medical Sciences xxx (2016) xxx-xxx

40 endometrial *adenocarcinoma* across histological differentiation
41 and to identify transcripts differentiating endometrium into
42 various pathomorphological grades.

43 2. Patient and methods

44 2.1. Patient characteristics

45 We studied 56 endometrial samples obtained from women 46 treated at the Department of Gynecology, Obstetrics and Oncologic 47 Gynecology, at the Medical University of Silesia in Katowice, 48 Poland, between years 2010 and 2012. All women underwent 49 abdominal or vaginal hysterectomy. The study group consisted of 50 19 endometrial specimens with histopathologically confirmed 51 adenocarcinoma endometrioides. Clinically the tumors were classi-52 fied according to the FIGO criteria. All patients with endometrial 53 cancer had primary cancers and did not receive chemotherapy or 54 radiation therapy prior to surgery. The reference group comprised 55 of endometrial samples obtained from women with diagnosed 56 uterine fibroids, benign ovarian tumors or prolapsed uterus with 57 histopathologically confirmed endometrium in the proliferative 58 phase. We excluded patients with hormone therapy for the past 59 12 months, severe obesity (BMI > 30), endometriosis or adeno-60 myosis, non-endometrioid endometrial cancer, adenocarcinoma 61 with squamous elements, coexisting cervical cancer. The clinical 62 characteristic of patients enrolled in molecular analysis is 63 presented in Table 1.

64 2.2. Sample classification and storage

65 All analyzed tissues were collected after cutting the uterus in 66 its sagittal plane, following the removal of the uterus via 67 laparotomy or the vaginal way. The tissue samples (each 68 approximately 1 cm) obtained were divided into two parts and 69 placed separately in buffered formalin for histopathological 70 studies and RNA later solution (Life Technologies, Carlsbad, 71 USA) for molecular analysis according to the producer's instruc-72 tions. Histological examination was performed according to WHO 73 guidance.

74 2.3. Total RNA isolation

75 The samples, which were obtained surgically, were homoge-76 nized. Afterwards total RNA was extracted from endometrial 77 specimens using TRIzol reagent (Invitrogen, Carlsbad, USA) 78 according to the manufacturer's instructions. RNA extracts were 79 treated with DNase I to eliminate DNA (RNaesy Mini Kit, Qiagen, 80 Valencia, USA). Isolated RNA was checked with the use of a 81 spectrophotometer GeneQuant II RNA/DNA calculator (Pharmacia 82 Biotech, Cambridge, UK). Next, quality analysis was performed 83 using 1% agar electrophoresis stained with ethidium bromide. Only 84 the positive outcome of both analyses was considered to be a 85 qualifying result for further investigation via oligonucleotide 86 microarray HG-U133A (Affymetrix Inc., CA, USA).

2.4. Oligonucleotide microarray HG-U133A

The first step of the microarray HG-U133A procedure was cDNA 88 synthesis using SuperScript Choice System (Invitrogen Technolo-89 gies, CA, USA). Afterwards the cDNA was purified with Phase Lock 90 Gel Light (Eppendorf, Germany). Biotinylated cRNA was obtained 91 with the use of a BioArray High Yield RNA Transcript Labeling Kit 92 (Enzo Life Science, New York, USA). The cRNA was purified with an 93 RNeasy Mini Kit (Qiagen GmbH, Germany) afterwards both 94 quantity and quality were estimated. A Sample Cleanup Module 95 (Qiagen GmbH, Germany) was used for the fragmentation of the 96 cRNA and a hybridization solution using a GenChip[®] Expression 3'-97 Amplification Reagents Hybridization Control Kit according to the 98 Gene Expression Analysis Technical Manual (Affymetrix Inc., CA, 99 USA) was prepared. The hybridization products were stained with 100 streptavidin-phycoerythrin. Fluorescence intensity signals were 101 analyzed with GeneArray Scanner G2500A (Agilent Technologies, 102 CA, USA). All of the aforementioned procedures were made 103 according to the producers protocols. 104

2.5. Statistical analysis

The obtained fluorescence signals were normalized with the 106 RMA (Robust Multichip Average) method. Statistical analysis of the 107 results was performed using professional software - Gene Spring 108 13.0 (Agilent Technologies, CA, USA). The ANOVA with post hoc 109 Tukey and Benjamini-Hochberg correction was applied. Hierar-110 chical clusterization was carried out using the Ward method. The 111 overrepresentation test with Bonferroni correction was done using 112 the PANTHER classification system. 113

3. Results 114

3.1. Clinical characteristics and grouping

The selected study group showed clinical stage I (13 patients)116and II (6 patients) according to the FIGO criteria. The tissue samples117were grouped according to their pathomorphological grading: G1 –1185, G2 – 10, G3 – 4 (Table 1).119

3.2. Tumor suppressor genes differential in endometrial cancer

Analysis was carried out for 2950 Id mRNA (the full list is placed 121 in the Supplementary Material) related to tumor suppressor genes 122 based on the NetAffx database. After normalization with the RMA 123 method (log_2) the results showed a normal distribution in the 124 groups studied providing the confirmation needed to implement 125 the ANOVA test with the Benjamini-Hochberg correction 126 [10]. Hence, there were 163 statistically significant mRNAs 127 (p < 0.05) in all cancer grades in comparison to the control 128 (Table 2). The obtained results were implemented for clusteriza-129 tion by cancer grade using the Ward method (Fig. 1). The 130 significant 163 mRNAs (Table 3) were divided, after hierarchical 131 clusterization, into two groups. The G2 and G3 cancer specimens 132

Table 1	1
---------	---

The clinical characteristics of patients enrolled in a molecular analysis.

	Ν	Age	BMI (kg/m ²)	Pregnancies		FIGO stage			Coexisting diseases			
		$x \pm SD$	$x \pm SD$	0	1	2	≥3	Ι	II	III	Arterial hypertension	Diabetes mellitus
Proliferative phase endometrium	5	46.3 ± 4.2	25 ± 2.5	0	1	3	1	-	-	-	2	1
Adenocarcinoma endometrioides, G1	5	55.3 ± 7.3	$\textbf{27.1} \pm \textbf{4.6}$	0	1	3	1	5	0	0	2	2
Adenocarcinoma endometrioides, G2	10	56.4 ± 5.7	27 ± 6.4	2	5	2	1	6	4	0	7	3
Adenocarcinoma endometrioides, G3	4	54.3 ± 8.3	$\textbf{30.3} \pm \textbf{4.9}$	0	1	2	1	2	2	0	3	1

Please cite this article in press as: Witek Ł, et al. Expression of tumor suppressor genes related to the cell cycle in endometrial cancer patients. Adv Med Sci (2016), http://dx.doi.org/10.1016/j.advms.2016.04.001

2

87

105

115

120

Table 2

Number of statistically significant ld mRNA obtained from ANOVA with Benjamini-Hochberg correction and *post hoc* Tukey HSD in different cancer grades.

Number of differential Id mRNA for all cancer grades								
	p < 0.05	p < 0.01	p < 0.005		p < 0.001			
Corrected <i>p</i> -value	163	55		43	21			
ANOVA post hoc Tukey results								
Histological grade	Control	(K)	G1	G2	G3			
Control (K)	163		38	128	101			
G1	125		163	74	55			
G2	35		89	163	29			
G3	62		108	134	163			

133 were clustered as one group. In turn, the low-grade (G1) cancer was similar to the normal endometrium. Next, in order to 134 135 determine specific changes of mRNA in various pathomorpholo-136 gical groups in comparison to the control post hoc Tukey HSD was 137 employed (Table 2). Hence, after post hoc analysis there were 138 38 statistically significant mRNAs in grade 1 compared to the 139 control, 128 in grade 2 and 101 in grade 3. The results obtained 140 from the post hoc analysis were visualized on a Venn diagram, 141 which showed 24 mRNAs common for all cancer grades (Fig. 2). 142 Furthermore, the number of differential transcripts confirmed the 143 low differentiation between the control and G1 grade where only 144 38 had been statistically significant, and 7 specific for grade 145 1 cancer. To determine significance in various biological processes 146 the previously obtained 163 mRNAs (Table 3) were used to 147 perform an overrepresentation test with the Bonferroni correction in the PANTHER classification system. The overrepresentation test 148 with the Bonferroni correction resulted in the visualizing of 149 150 biological processes and established the cell cycle as one of the most relevant for the TSGs selected. The genes were further 151 152 checked in literature and internet databases (e.g. Genecards, 153 Pubmed) to explore their biological significance. Afterwards the 154 results obtained from the Panther analysis were correlated with 155 the Venn diagram, where the biologically significant genes were localized in different groups on the diagram. Amongst the 156 157 24 mRNAs which differentiated in all grades of cancer compared 158 to the control, the three following genes were biologically 159 significant: WT-1 (Wilms Tumor 1), CYR61 (Cystein-Rich Angio-160 genic Inducer 61), TSPYL5 (Testis-Specific Y-Encoded-Like Protein 5). Furthermore, specific genes were obtained from the 37 mRNA 161

Fig. 1. Hierarchical clusterization with the Ward method for the ANOVA results.

differentials for G2-HNRNPA0 (Heterogeneous Nuclear Ribonucleo-162protein A0) and BCL2L2 (BCL2-Like 2), and from the 15 differentials163in G3 – BAK (BCL2-Antagonist/Killer 1). The listed genes fold164changes and regulation for every cancer grade and the control are165visible in Table 4. The corrected *p*-value is only for the cancer grade166in which the gene was a differential in comparison to the control.167

4. Discussion

In spite of the different classification system there is a 169 significant heterogeneity in biological, molecular and pathological 170 features within endometrial cancer types. From the point of view 171 of molecular biology research the traditional classification model 172 of endometrial carcinogenesis is too general, and is under question 173 [11,12]. For that reason it is necessary to create an integrated 174 classification that can help develop treatment adequate for 175 pathological grading and personalized adjuvant therapy 176 [12,13]. Advances in diagnostic methods based on molecular 177 biology including microarray analysis have contributed to a better 178 understanding of endometrial carcinogenesis and suggest a 179 heterogeneity conception concerning molecular subtypes of 180 similar histology. The oncological aspect of systematic 181 lymphadenectomy in the early stage of endometrial cancer 182 remains a matter of debate [14]. Lymph node invasion is one of 183 the most significant prognostic factors defining treatment and it 184 correlates with histological grading. Hence, patients with high 185 grade tumors can benefit the most from adjuvant therapy 186 [14,15]. In cases of uncertain pathomorphological results the role 187 of systemic lymphadenectomy becomes controversial. The possi-188 ble risk of intra- and postoperative complications related to 189 extensive surgery treatment often exceed the potential therapeutic 190 benefits [14]. 191

Fig. 2. Venn diagram – visualizing the number of differential Id mRNA in grades 1, 2, 3 in comparison to the control.

168

Ł. Witek et al./Advances in Medical Sciences xxx (2016) xxx-xxx

4

Table 3ANOVA results of 163 Id mRNA.

Gene symbol	p (Corr)	р	Cancer grade							
			G1		G2		G3			
			Fold change	Regulation	Fold change	Regulation	Fold change	Regulation		
GAS2L1	0.0001	0.0000	-1.0853	Down	-1.4277	Down	1.8508	Un		
PPARD	0.0343	0.0012	-1.0557	Down	1.0072	Up	1.4280	Up		
STK11	0.0382	0.0015	1.5825	Up	1.0046	Up	1.0828	Up		
EHD2	0.0028	0.0000	1.0040	Up	-2.9673	Down	-2.5949	Down		
HIF1AN	0.0459	0.0023	-1.1143	Down	1.0265	Up	1.2361	Up		
SPTBN1	0.0459	0.0022	1.4464	Up	1.8910	Up	-1.4980	Down		
UBE2L3	0.0190	0.0003	-1.0986	Down	-1.6996	Down	-1.2231	Down		
RPL10///SNORA70	0.0418	0.0018	1.1604	Up	-1.2037	Down	-1.4861	Down		
SPARCL1	0.0425	0.0019	-3.4646	Down	-7.4605	Down	-3.3293	Down		
KAB14	0.0253	0.0006	1.2348	Up	-1.0427	Down	1.2508	Up		
TPIM29	0.0252	0.0006	-2.23/4	Down	-0.9895	Down	-5.3348	Down		
	0.0253	0.0000	1.4478	Up	-1.0480	Up	-1.3792	Down		
SMARCC1	0.0235	0.0007	1 5451	Un	1.9639	Un	1 1661	Up		
SMARCC1	0.0097	0.0001	1.3151	Un	2.1734	Un	-1.2691	Down		
BCLAF1	0.0498	0.0027	1.1470	Up	1.9790	Up	-1.4878	Down		
TIMP3	0.0488	0.0026	-2.1478	Down	-5.4248	Down	-3.6040	Down		
ENO1	0.0465	0.0024	-1.0875	Down	2.5031	Up	1.6786	Up		
DAB2	0.0066	0.0001	-2.2552	Down	-4.2995	Down	-3.6329	Down		
CYR61	0.0302	0.0009	-3.2508	Down	-4.7299	Down	-4.3093	Down		
RBM5	0.0125	0.0002	-1.1229	Down	-1.8836	Down	-1.2524	Down		
CLDN4///LOC100996451	0.0017	0.0000	-1.0203	Down	3.5832	Up	2.7749	Up		
AIP	0.0237	0.0005	1.3193	Up	-1.0489	Down	-1.6320	Down		
CAPG	0.0253	0.0007	1.1668	Up	2.5471	Up	1.5924	Up		
ATMIN	0.0255	0.0007	-1.3633	Down	-1.8482	Down	-1.8320	Down		
NR3C1	0.0302	0.0009	-3.0915	Down	-3.7246	Down	-1.8311	Down		
NR3C1	0.0394	0.0015	1.0130	Up	-1.6285	Down	-1.5399	Down		
ST14	0.0201	0.0004	1.3519	Up	2.3115	Up	2.4482	Up		
SFRP1	0.0080	0.0001	-2.8718	Down	-14.7044	Down	-8.3432	Down		
ARHGAP35	0.0395	0.0016	1.4200	Up	1.3799	Up	1.0577	Up		
BLMH	0.0253	0.0006	1.0027	Up	-1.7170	Down	-1.7781	Down		
DKK3	0.0017	0.0000	-1.7836	Down	-2.2646	Down	-2.2472	Down		
N4BP2L2	0.0329	0.0011	-1.15/6	Down	-2.2878	Down	-1./520	Down		
SFSWAP	0.0253	0.0006	1.0145	Up	-1.5591	Down	1.0511	Up		
MAPKAPK3 MADKADK2	0.0399	0.0016	1.0103	Up	1.8845	Up	1.6012	Up		
	0.0257	0.0007	1.1014	Down	1.5000	Up	2.3002	Up		
MDD1	0.0005	0.0001	-1.0073	Down	1.0022	Down	1.5457	Down		
CAV1	0.0455	0.0022	-2.0347	Down	-4 7245	Down	-4 6949	Down		
TBP	0.0005	0.0001	1.0625	Un	-1 3881	Down	-1 3967	Down		
RASSF2	0.0017	0.0000	-1 9066	Down	-4 7395	Down	-5 1592	Down		
TUSC2	0.0247	0.0006	-1.0515	Down	1.4512	Up	1.3509	Up		
LAD1	0.0102	0.0002	1.5846	Up	3.5726	Up	4.1584	Up		
SOCS2	0.0201	0.0004	-1.5980	Down	-3.8018	Down	-3.9827	Down		
SOCS2	0.0017	0.0000	-2.2817	Down	-5.5628	Down	-3.5247	Down		
FEZ1	0.0066	0.0001	-1.8386	Down	-3.1640	Down	-1.8481	Down		
DFNA5	0.0042	0.0000	-1.6485	Down	-3.8209	Down	-2.1531	Down		
BAK1	0.0256	0.0007	1.0274	Up	-1.1030	Down	1.5753	Up		
EMP3	0.0253	0.0006	-2.1109	Down	-3.1667	Down	-2.8096	Down		
PCGF2	0.0410	0.0017	1.1852	Up	-1.3251	Down	-1.4323	Down		
SFRP4	0.0028	0.0000	-2.7153	Down	-28.7876	Down	-11.9790	Down		
SFRP4	0.0104	0.0002	-3.4245	Down	-12.7543	Down	-5.9449	Down		
ULK2	0.0256	0.0007	-1.0346	Down	-1.8147	Down	-1.2714	Down		
CDKN2C	0.0320	0.0010	-1.3113	Down	-1.8935	Down	-1.6593	Down		
LUCIUIUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	0.0042	0.0000	1,2409	Down	-1.2755	Down	-1.0752	Down		
CLIDR1	0.0150	0.0002	2 1/33	Down	-1.5018	Down	-1.1755	Down		
CAS1	0.0455	0.0022	-1.9826	Down	-6.1602	Down	-3 1920	Down		
CSTM1	0.0219	0.0027	-1 2329	Down	-3 1455	Down	-2 2746	Down		
ME3	0.0405	0.0016	-1.0123	Down	-1 9794	Down	-1 3688	Down		
CDH13	0.0193	0.0004	-1 2898	Down	-2 3091	Down	-2 3113	Down		
PDS5B	0.0018	0.0000	-1.7139	Down	-2.3803	Down	-2.0633	Down		
LEPREL2	0.0024	0.0000	1.1080	Up	-1.5732	Down	-2.1161	Down		
SRPX	0.0085	0.0001	-2.5956	Down	-5.2222	Down	-5.3777	Down		
AMPH	0.0359	0.0013	1.2494	Up	-1.7568	Down	-1.3068	Down		
RECK	0.0399	0.0016	-1.2106	Down	-2.3629	Down	-2.1427	Down		
RUNX1T1	0.0094	0.0001	-3.0291	Down	-6.5989	Down	-3.5205	Down		
XPA	0.0343	0.0011	1.0029	Up	-1.4714	Down	-1.4859	Down		
CYP27B1	0.0100	0.0001	1.5162	Up	1.0043	Up	1.2369	Up		
SETBP1	0.0359	0.0013	-1.6968	Down	-2.8402	Down	-2.5749	Down		
WT1	0.0010	0.0000	-3.4373	Down	-12.2219	Down	-7.4014	Down		
CSNK2A1	0.0418	0.0018	1.2611	Up	1.4593	Up	-1.4968	Down		
TPM1	0.0459	0.0022	-1.5189	Down	-2.1785	Down	-2.2496	Down		

Ł. Witek et al./Advances in Medical Sciences xxx (2016) xxx-xxx

Table 3	(Continued)

Gene symbol	p (Corr)	р	Cancer grade						
			G1		G2		G3		
			Fold change	Regulation	Fold change	Regulation	Fold change	Regulation	
TCL1B	0.0410	0.0017	-1.1333	Down	1.1559	Up	1.0691	Un	
HOXD3	0.0281	0.0008	1.0154	Up	-2.0580	Down	-1.5709	Down	
EPB41L3	0.0425	0.0019	-1.3212	Down	-1.6738	Down	-1.5264	Down	
ALDH1A2	0.0253	0.0006	-3.9054	Down	-14.9747	Down	-8.0961	Down	
CC2D1A	0.0359	0.0013	1.3473	Up	1.4661	Up	1.1988	Up	
DDR1///MIR4640	0.0425	0.0019	1.1001	Up	2.0673	Up	1.6596	Up	
HOXD10	0.0219	0.0005	-1.3018	Down	-2.2039	Down	-2.6884	Down	
SEP19	0.0265	0.0008	1.5278	Up	1.6378	Up	-1.3/32	Down	
SORBS3	0.0359	0.0013	-1.0512	Up	-1.0900	Down	-1.2554	Down	
TMFM8B	0.0457	0.0021	_1.2219	Down	-1.0809	Down	-2.2039	Down	
PDS5B	0.0405	0.0025	-2 3291	Down	-2.6685	Down	-3 2705	Down	
SMAD1	0.0459	0.0022	-1.2508	Down	-1.6311	Down	-1.2568	Down	
LSR	0.0085	0.0001	1.4964	Up	3.1223	Up	3.1640	Up	
MAPK1	0.0320	0.0010	1.1977	Up	1.0998	Up	-1.6610	Down	
HIST3H3	0.0467	0.0024	-1.0504	Down	1.2162	Up	1.0689	Up	
UBE2I	0.0244	0.0005	-1.0594	Down	-2.1772	Down	-1.6846	Down	
THY1	0.0253	0.0007	-1.4792	Down	-5.9231	Down	-5.3205	Down	
THY1	0.0265	0.0008	-1.9117	Down	-4.2577	Down	-3.6906	Down	
PEG3	0.0051	0.0000	-3.0585	Down	-8.4380	Down	-4.3281	Down	
PEG3	0.0463	0.0023	1.0800	Up	-1.4894	Down	-1.4394	Down	
LOC 100300403///RUNA1	0.0107	0.0002	1.1351	Down	2.1241	Down	2.2991	Down	
IGF1	0.0005	0.0001	-4.8384	Down	-17 9723	Down	-10 0009	Down	
IGF1	0.0399	0.0016	-2.1547	Down	-7 6552	Down	-5 9878	Down	
NDN	0.0001	0.0000	-2.1349	Down	-8.6939	Down	-5.2276	Down	
PTCH1	0.0189	0.0003	-3.5315	Down	-9.3953	Down	-7.0615	Down	
PTCH1	0.0410	0.0017	-1.3837	Down	-2.6578	Down	-2.4005	Down	
BIN1	0.0498	0.0028	1.1151	Up	-1.8189	Down	-1.8775	Down	
ING1	0.0371	0.0014	1.0678	Up	1.2184	Up	-1.2565	Down	
SPINT2	0.0418	0.0018	1.3047	Up	3.2981	Up	2.0206	Up	
CYR61	0.0498	0.0027	-2.8421	Down	-6.3101	Down	-9.8954	Down	
MEG3	0.0127	0.0002	-1.4070	Down	-3.4134	Down	-4.0857	Down	
ERBB2	0.0247	0.0006	1.2499	Up	1.5968	Up	-1.0026	Down	
IGF I MASTO	0.0201	0.0004	-2.1/42	Down	-5.6270	Down	-4.7319	Down	
IOC100506403///RUNX1	0.0339	0.0011	1.0338	Up	1 2804	Un	1 2518	Un	
NR3C1	0.0458	0.0027	-2 3624	Down	-3 4800	Down	-2 1420	Down	
CAV1	0.0201	0.0004	-2.6055	Down	-6.6337	Down	-4.2919	Down	
CEBPB	0.0459	0.0022	-2.4179	Down	1.1160	Up	1.3332	Up	
AKT3	0.0465	0.0024	-1.8695	Down	-3.5562	Down	-2.6249	Down	
AKT3	0.0425	0.0019	-1.8879	Down	-2.4601	Down	-2.1260	Down	
LOC100996668///ZEB1	0.0056	0.0000	-3.1107	Down	-7.4962	Down	-3.9029	Down	
LYPD1	0.0352	0.0012	1.1722	Up	2.3137	Up	1.2143	Up	
ANGPTL2	0.0201	0.0004	-1.6670	Down	-3.6235	Down	-3.3205	Down	
ANGPTL2	0.0236	0.0005	-1.9867	Down	-2.7761	Down	-2.8895	Down	
MAST3	0.0451	0.0021	1.1732	Up	-1.3712	Down	-1.1166	Down	
STARD13	0.0352	0.0012	-1.5135	Down	-2.3487	Down	-2.1870	Down	
ISPILS TMEM159	0.0001	0.0000	-5.1052	Down	-0.0034	Down	-5.0079	Down	
FINA	0.0080	0.0001	-1.4233	Down	-3.6983	Down	-3.7506	Down	
CD47	0.0320	0.0004	-12719	Down	1 9806	Un	3 6297	Up	
THY1	0.0103	0.0002	-2.4953	Down	-5.8771	Down	-3.1659	Down	
TRIM3	0.0086	0.0001	1.1124	Up	-1.5205	Down	-1.3751	Down	
ZNF23	0.0371	0.0014	-1.3441	Down	-1.6897	Down	-1.0004	Down	
PTPRD	0.0009	0.0000	-2.3433	Down	-3.1700	Down	-3.0832	Down	
DKK3	0.0006	0.0000	-2.7106	Down	-5.2200	Down	-3.7479	Down	
BIN1	0.0425	0.0019	1.0055	Up	-2.0570	Down	-1.9907	Down	
H2AFY	0.0463	0.0023	-1.1034	Down	-1.7038	Down	-2.3208	Down	
RABEP1	0.0410	0.0017	-1.1017	Down	-1.2298	Down	-1.8670	Down	
MIR22///MIR22HG	0.0100	0.0001	-1.5565	Down	-1.9496	Down	1.0595	Up	
NIIUS2	0.0311	0.0010	1.0839	Up	-1.3500	Down	-1.3275	Down	
GSTM1	0.0350	0.0011	-1.1996	ор Down	2.0449	ор Down	1.0057	Down	
STXBP5L	0.0230	0.0007	1 3667	Un	1 0299	Un	1 0552	Un	
FANCA	0.0459	0.0027	-1.0158	Down	1.3347	Un	1.2175	Un	
MAST2	0.0141	0.0002	-1.1912	Down	-2.3050	Down	-1.7790	Down	
NR3C1	0.0257	0.0007	-1.3859	Down	-2.3406	Down	-1.5530	Down	
MTAP	0.0371	0.0014	1.0578	Up	1.4728	Up	-1.0269	Down	
PTPN12	0.0465	0.0024	1.0900	Up	1.3659	Up	-1.0656	Down	
WT1	0.0063	0.0001	-1.8586	Down	-4.9163	Down	-4.5027	Down	
KRT3	0.0498	0.0027	-1.0399	Down	1.4495	Up	1.0361	Up	
SMAD3	0.0042	0.0000	-2.7032	Down	-3.4679	Down	-2.0351	Down	
FAM188A	0.0100	0.0001	-1.2680	Down	-1.4306	Down	-1.2994	Down	

Ł. Witek et al./Advances in Medical Sciences xxx (2016) xxx-xxx

Table 3 (Continued)

Gene symbol	p (Corr)	р	Cancer grade								
			G1		G2		G3				
			Fold change	Regulation	Fold change	Regulation	Fold change	Regulation			
KANK2	0.0051	0.0000	-2.3077	Down	-4.7010	Down	-3.1530	Down			
DNMT3A	0.0367	0.0013	1.4502	Up	1.5368	Up	1.0203	Up			
RNF43	0.0378	0.0014	1.2411	Up	1.7423	Up	-1.1243	Down			
SIRT7	0.0085	0.0001	1.0581	Up	1.0371	Up	2.0391	Up			
INTS6	0.0378	0.0014	1.0227	Up	-1.2542	Down	1.5177	Up			
SCUBE2	0.0048	0.0000	-1.5801	Down	-4.9742	Down	-3.2531	Down			
FAT4	0.0359	0.0013	-1.0537	Down	-1.8365	Down	-1.5551	Down			
WFDC1	0.0002	0.0000	-1.2901	Down	-4.2749	Down	-3.5646	Down			
ANGPTL2	0.0467	0.0024	-1.5247	Down	-2.2611	Down	-2.9653	Down			
DET1	0.0047	0.0000	1.0829	Up	-2.2352	Down	-1.7057	Down			
MAGEL2	0.0086	0.0001	-1.5012	Down	-2.4649	Down	-2.5297	Down			
ASB12///MTMR8	0.0487	0.0025	1.4589	Up	1.0455	Up	1.1282	Up			
WWOX	0.0418	0.0018	1.3799	Up	-1.0232	Down	-1.0196	Down			
N4BP1	0.0343	0.0012	-1.2968	Down	-2.0402	Down	1.0575	Up			
EHD2	0.0019	0.0000	-1.1945	Down	-3.2548	Down	-2.2442	Down			
SIRT3	0.0498	0.0027	1.0551	Up	-1.4306	Down	-1.0148	Down			

Table 4 Statistically and biologically significant tumor suppressor genes related to the cell cycle.

Gene symbol	Histological grade										
	G1			G2			G3				
	FC	Regulation	р	FC	Regulation	р	FC	Regulation	р		
CYR61	-3.3	Down	0.030	-4.7	Down	0.030	-4.3	Down	0.030		
WT-1	-3.4	Down	0.001	12.2	Down	0.001	-7.4	Down	0.001		
TSPYL5	3.2	Down	0.0001	8.0	Down	0.000	5.0	Down	0.000		
HNRNPA0	1.09	Up	-	1.81	Up	0.025	-1.0	Down	-		
BCL2L2	1.2	Up	-	2.05	Up	0.032	1.06	Up	-		
BAK1	1.02	Up	-	-1.1	Down	-	1.57	Up	0.025		
TP53	1.09	Up	-	1.03	Up	-	-1.73	Down	-		

FC, fold change: p, corrected p value.

192 Numerous studies have provided information about the role of 193 tumor suppressor genes in endometrial carcinogenesis. The 194 knowledge of TSG expression in different pathomorphological 195 cancer grades can be a valuable additional factor in treatment strategy. The Integrated genomic characterization of endometrial 196 cancer further confirms the importance of both tumor suppressors 197 198 and cell cycle related genes [16]. The obtained TSG expression 199 results in different cancer grades had presented a specific pattern 200 of genes for every grade compared to the control. In spite of the fact 201 that gene expression does not fully show the amount of the gene 202 product it provides an insight into cell metabolism and indicates 203 ongoing changes. The PANTHER results from the 163 mRNAs 204 allowed grade specific tumor suppressor genes related to the cell 205 cycle to be distinguished. However, the analysis failed to present 206 any specific genes in the well-differentiated cancer (G1) that met 207 the criteria. This can be explained by the small number of 208 molecular changes that occur in low grade cancer in comparison to 209 the control. Furthermore, this state had been confirmed by clusterization (Fig. 1) of the obtained statistically significant 210 211 genes. Hierarchical clusterization did not display distinct separa-212 tion between the low grade endometrioid adenocarcinoma and 213 normal endometrial samples. However, the majority of differential 214 transcripts in grade 1 cancer (Fig. 2A) were expressed regardless of 215 their pathomorphological grading. These changes can possibly be 216 considered to be the most primary in cancer development and 217 remain relevant in further progression. Amongst the 24 differen-218 tially expressed genes, three met the criteria WT-1, CYR61 and 219 TSPYL5 (Table 4).

220 WT-1 was characterized as a potential therapy aim for various 221 cancer types [17]. The overexpression of WT-1 has been regarded

as a negative prognostic factor in serous endometrial cancer 222 [18]. Studies in non-estrogen related female malignancies have 223 shown that the overexpression of WT-1 has a significant impact on 224 cancer progression and negatively contributes to the patient 225 survival ratio [19]. However, in a study performed by Alvarez et al. on estrogen-dependent high grade endometrioid endometrial cancer WT-1 was down-regulated [20]. This was confirmed in the results presented, furthermore, Wilms Tumor-1 was downregulated in all cancer grades when compared to the control with a further decrease in expression in high-grade cancer (Table 4). Such data suggest that WT-1 down-regulation in endometrioid endometrial cancer has a positive effect on patient prognosis 233 across all cancer grades. 234

Another differentially expressed gene was CYR61. That acts as a 235 tumor suppressor gene in non-small-cell lung cancer by increasing 236 p53 expression [21]. Recent studies show that TP53 is over-237 expressed in approximately 23% of endometrioid endometrial 238 cancers [22]. It has been shown that approximately 25% of grade 239 3 ECC has TP53 mutations that result in an increase in gene 240 expression [16]. However, other studies suggest that in high-grade 241 (G3) endometrioid endometrial cancer its expression is down-242 regulated [9,23]. There are two former studies about CYR61 243 expression in endometrial cancer cell lines. Both suggest that 244 CYR61 expression is regulated in an estrogen-dependent manner 245 and can be a valuable prognostic factor for patients with 246 endometrial cancer. They also agreed on CYR61 influence on cell 247 proliferation. However, Chien et al. [24] proved the decreased 248 expression of the gene in EEC. The over-expression of CYR61 had an 249 impact on cell proliferation, whereas a knockdown with RNAi 250 inhibited cell growth. In contrast MacLaughlan et al. [25] presented 251

Ł. Witek et al. / Advances in Medical Sciences xxx (2016) xxx-xxx

252 contradictive results showing the over-expression of the gene in 253 endometrial cancer samples [24,25]. There was no data for either 254 TP53 mutations in the sample and/or p53 expression and 255 downstream signaling. The microarray results confirmed Chien's 256 [24] theory proving the significant down-regulation of gene 257 expression in all cancer grades. In addition TP53 gene expression 258 was not statistically significant in the results presented and only in 259 high-grade cancer (G3) does TP53 fold change suggest down-260 regulation of the gene.

261 Another distinguished tumor suppressor gene was TSPYL5 262 which was down-regulated in endometrial cancer samples 263 (Table 4). This gene has been described in breast cancer where 264 it indirectly influences p53 expression leading to its ubigitina-265 tion and inhibiting the target gene expression [26]. Expression 266 of the three genes has differed depending on the grading. 267 However, the expression of two genes is correlated with 268 p53 signaling and can be highly influenced by mutation in this 269 gene.

270 The results presented enabled the differentiation of cancer 271 grades 2 and 3 in comparison to grade 1 and the control 272 Q2 group. There is a significant rise in the number of specific genes 273 for grade 2 and 3. However, a significantly changed gene 274 expression was visible only for HNRNPA0 and BCL2L2 (Table 4). 275 Furthermore, according to Panther analysis their function as tumor suppressor genes is related to the cell cycle. The HNRNPAO function 276 277 as a tumor suppressor gene is still not fully understood. It probably 278 influences mRNA stability and is involved in controlling the cell 279 cycle in the DNA-damage checkpoint [27,28]. In turn the BCL2L2 280 pro-survival role is well established in terms of apoptosis and the 281 cell cycle [29]. In cancer cells the protein has the ability to block 282 p53 driven apoptosis [29,30]. Furthermore, members of the BCL 283 family had a confirmed translocation which can lead to an increase 284 in expression, which probably resulted in reduced apoptosis 285 [16]. The expression of BCL2L2 and HNRNPA0 was statistically 286 significant and over-expressed only in grade 2 cancer. The result is 287 the further deregulation of the cell cycle. Amongst specific genes 288 for the high grade cancer (G3) was BAK1, which is a proapoptotic 289 gene activated by p53 and BCL2 family members stimulating cell 290 death [31]. The significant over-expression of *BAK1* suggests that in 291 G3 tumors the cell cycle and the whole tumor suppressor system 292 has not fulfilled its role.

293 The characterized genes and their expression pattern in 294 endometrial cancer patients can become important in deciding 295 treatment strategy. The expression of WT-1, CYR61 and TSPYL5 can have an impact on the necessity of performing lymphadenectomy. 296 297 Another feature is that the three genes are correlated with p53 298 signaling. Hence, if the genes are overexpressed, a wider surgical 299 approach should be favored. All genes which are specific for their 300 grade can influence the outcome of adjuvant therapy because of 301 their role in the cell cycle and apoptosis. Thus molecular 302 diagnostics should be performed prior to surgery to ensure the 303 best possible therapy.

304 5. Conclusions

305 We can conclude that the WT-1, CYR61 and TSPYL5 gene 306 expressions are important in endometrial cancerogenesis and 307 patient prognosis. Their regulation has an influence on survival and 308 can be of importance in therapy. The TSGs related to the cell cycle 309 in G2 and G3 endometrial adenocarcinoma are mostly correlated 310 to apoptosis. Changes in the expression of BAK and BCL2L2 suggest 311 pro-survival signaling and inhibition of apoptosis leading to 312 uncontrolled cancer cell proliferation. However, further study on 313 the topic is needed. The identified TSGs can be considered as 314 potential prognostic markers of endometrial adenocarcinoma in 315 Polish women.

Conflict of interest	316
None declared.	317
Financial disclosure	318
None declared.	319

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.advms.2016.04.001.

References

- [1] Sorosky JI. Endometrial cancer. Obstet Gynecol 2012;120:383-97. http:// dx.doi.org/10.1097/AOG.0b013e3182605bf1
- Ludnościowa RR. Zachorowalność i umieralność na nowotwory a sytuacja demograficzna Polski; 2014.
- Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 1983:15:10-7.
- Saso S, Chatterjee J, Georgiou E, Ditri AM, Smith JR, Ghaem-Maghami S. Endometrial cancer. BMJ 2011;343:d3954.
- Cao QJ, Belbin T, Socci N, Balan R, Prystowsky MB, Childs G, et al. Distinctive gene expression profiles by cDNA microarrays in endometrioid and serous carcinomas of the endometrium. Int J Gynecol Pathol 2004;23:321-9.
- Damia G, Broggini M. Cell cycle checkpoint proteins and cellular response to treatment by anticancer agents. Cell Cycle 2004;3:46-50.
- [7] Sherr CJ. Principles of tumor suppression. Cell 2004;116:235-46.
- Gbelcová H, Bakeš P, Priščáková P, Šišovský V, Hojsíková I, Straka L, et al. PTEN [8] sequence analysis in endometrial hyperplasia and endometrial carcinoma in Slovak women. Anal Cell Pathol 2015;2015:1-7. http://dx.doi.org/10.1155/ 2015/746856.
- [9] Berger C, Qian Y, Chen X. The p53-estrogen receptor loop in cancer. Curr Mol Med 2013;13:1229-40.
- [10] Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001;125: 279 - 84
- [11] McConechy MK, Ding J, Cheang MCU, Wiegand KC, Senz J, Tone AA, et al. Use of mutation profiles to refine the classification of endometrial carcinomas. J Pathol 2012;228:20-30. http://dx.doi.org/10.1002/path.4056.
- [12] Murali R, Soslow RA, Weigelt B. Classification of endometrial carcinoma: more than two types. Lancet Oncol 2014;15:e268-78. http://dx.doi.org/10.1016/ S1470-2045(13)70591-6
- [13] Colombo P-E, Milanezi F, Weigelt B, Reis-Filho JS. Microarrays in the 2010: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction, Breast Cancer Res 2011:13:212. http://dx.doi.org/10.1186/bcr2890
- [14] Koskas M, Rouzier R, Amant F. Staging for endometrial cancer: the controversy around lymphadenectomy - can this be resolved? Best Pract Res Clin Obstet Gynaecol 2015. http://dx.doi.org/10.1016/j.bpobgyn.2015.02.007
- [15] Arora V, Quinn MA. Endometrial cancer. Best Pract Res Clin Obstet Gynaecol 2012:26:311-24. http://dx.doi.org/10.1016/i.bpobgvn.2011.12.007
- [16] Kandoth C. Schultz N. Cherniack AD. Akbani R. Liu Y. Shen H. et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013:497:67-73. nttp://dx.doi.org/10.1038/nature12113
- [17] Liu Z, Yamanouchi K, Ohtao T, Matsumura S, Seino M, Shridhar V, et al. High levels of Wilms' tumor 1 (WT1) expression were associated with aggressive clinical features in ovarian cancer. Anticancer Res 2014;34:2331-40.
- [18] Fadare O, James S, Desouki MM, Khabele D. Coordinate patterns of estrogen receptor, progesterone receptor, and Wilms tumor 1 expression in the histopathologic distinction of ovarian from endometrial serous adenocarcinomas. Ann Diagn Pathol 2013;17:430-3. http://dx.doi.org/10.1016/j.anndiagpath.2013.04.011
- [19] Hedley C, Sriraksa R, Showeil R, Van Noorden S, El-Bahrawy M. The frequency and significance of WT-1 expression in serous endometrial carcinoma. Hum Pathol 2014;45:1879–84. http://dx.doi.org/10.1016/j.humpath.2014.05.009.
- [20] Alvarez T, Miller E, Duska L, Oliva E. Molecular profile of grade 3 endometrioid endometrial carcinoma: is it a type I or type II endometrial carcinoma? Am J Pathol 2012;36:753-61. http://dx.doi.org/10.1097/PAS.0b013e Surg 318247b7bb
- [21] Tong X, O'Kelly J, Xie D, Mori A, Lemp N, McKenna R, et al. Cyr61 suppresses the growth of non-small-cell lung cancer cells via the beta-catenin-c-myc-p53 pathway. Oncogene 2004;23:4847-55. http://dx.doi.org/10.1038/sj.onc. 1207628
- [22] Dobrzycka B, Terlikowski SJ, Garbowicz M, Niklinski J, Chyczewski L, Kulikowski M. The prognostic significance of the immunohistochemical expression of P53 and BCL-2 in endometrial cancer. Folia Histochem Cytobiol 2011;49:631-5.

320

8

Ł. Witek et al./Advances in Medical Sciences xxx (2016) xxx-xxx

- 388 [23] Kafshdooz T, Tabrizi AD, Mohaddes Ardabili SM, Kafshdooz L, Ghojazadeh M, 389 390 391 392 393 394 395 396 Gharesouran J, et al. Polymorphism of p53 gene codon 72 in endometrial cancer: correlation with tumor grade and histological type. Asian Pac J Cancer Prev 2014;15:9603-6.
 - [24] Chien W, Kumagai T, Miller CW, Desmond JC, Frank JM, Said JW, et al. Cyr61 suppresses growth of human endometrial cancer cells. J Biol Chem 2004;279:53087-96. http://dx.doi.org/10.1074/jbc.M410254200
- [25] MacLaughlan SD, Palomino WA, Mo B, Lewis TD, Lininger RA, Lessey BA. Endometrial expression of Cyr61: a marker of estrogenic activity in normal 397 398 and abnormal endometrium. Obstet Gynecol 2007;110:146-54. http:// lx.doi.org/10.1097/01.AOG.0000269047.46078.28
- 399 [26] Epping MT, Meijer LAT, Krijgsman O, Bos JL, Pandolfi PP, Bernards R. TSPYL5 400 suppresses p53 levels and function by physical interaction with USP7. Nat Cell 401 Biol 2011;13:102-8. http://dx.doi.org/10.1038/ncb2142. 402
- [27] Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MATM, Wang 403 X, et al. DNA damage activates a spatially distinct late cytoplasmic cell-cycle

checkpoint network controlled by MK2-mediated RNA stabilization. Mol Cell 2010;40:34-49. http://dx.doi.org/10.1016/j.molcel.2010.09.018.

- [28] Young DJ, Stoddart A, Nakitandwe J, Chen S-C, Qian Z, Downing JR, et al. Knockdown of Hnrnpa0, a del(5q) gene, alters myeloid cell fate in murine cells through regulation of AU-rich transcripts. Haematologica 2014;99:1032-40. http://dx.doi.org/10.3324/haematol.2013.098657.
- [29] Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005;17:393-403. http:// dx.doi.org/10.1016/j.molcel.2004.12.030.
- [30] Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 2009;137:413-31. http://dx.doi.org/10.1016/j.cell.2009.04.037.
- Nieminen AI, Eskelinen VM, Haikala HM, Tervonen TA, Yan Y, Partanen JI, et al. [31] Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proc Natl Acad Sci U S A 2013;110:E1839-48. http:// dx.doi.org/10.1073/pnas.1208530110.

418

419