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 This paper deals with investigations of droplet dynamics in rotating flows. In many previous studies droplet
dynamics was analyzed in simple unidirectional flows. To fill this gap, the focus of this study is an overview on
investigations of droplet dynamics in a complex rotating flow. A Lattice Boltzmann Method with high potential
in simulation of two-phase unsteadyflows is applied to simulate the physics of the problem in a lid-driven cavity.
In spite of its simple geometry, there is a complex rotating flow field containing different vortices and shear
regions. The Reynolds number based on the cavity length scale and the upper wall velocity, ReL, is considered
to be 1000. We discuss here effects of different parameters such as: density ratios (1, 5, 10, 100, and 1000),
droplet sizes (D/L = 0.097, 0.114, 0.131 and 0.2), and droplet initial positions (1/8, 2/8, and 3/8 of the cavity
length, L, out of center). The results are discussed in terms of global flow physics and its interaction with the
droplet, drop deformation during its motion along with the main flow, and droplet trajectories. It is shown
that there are strong interactions between the droplet and the main carrying flow. During motion, the droplets
pass through different flow regions containing acceleration/deceleration zones. Consequently, the droplets
experience different shear forces resulting in stretching, shrinking, rotating and dilatation which all contribute
to the dynamics of the droplet.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Investigation of droplet and bubble dynamics is one of the challeng-
ing phenomena in many science and engineering problems such as
emulsification processes, food industry, polymer blending and oil recov-
ery, and in deformation of biological cells [1]. In these processes, two
immiscible fluids are mixed to obtain a distribution of droplets of one
liquid in the other. So, many investigations have been done including
experimental, numerical, and theoretical studies.

Numerous research activities have focused on the relationship
between flow and drop deformation since the seminal work of Taylor
[2,3] which includes both theoretical analysis and experimental obser-
vations focused on the deformation of single droplets suspended in a
second liquid to which either a simple shear or planar elongation flow
was applied. Some major improvements of Taylor's theoretical work
go back to Chaffey and Brenner [4], Cox [5] and Barthès-Biesel and
Acrivos [6]. However, in order to treat the situation in which drops are
highly extended, the theory initially developed by Taylor [7] has been
applied by e.g. Buckmaster [8,9], Acrivos and Lo [10], Rallison and
Acrivos [11], Hinch and Acrivos [12,13], Yu et al. [14] and Dressler and
Edwards [15].
neshian), kjavadi@sharif.edu
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Also, many analytical models have been applied to predict the
droplet breakup or its deformation in a given flow field. In this case,
direct numerical simulations have been employed in a number of
studies which were based either on the volume of fluid (VOF) method,
Li et al. [16], Renardy et al. [17] and Renardy and Renardy [18] or on the
boundary integral method (BIM), [19–25]. Many experimental contri-
butions were performed as well [26–40]. These include measurements
of the critical capillary number over a wide range of both simple shear
and planar elongation and computer controlled versions of Taylor's
four roll mill and shear band apparatus.

Among the numerical studies, some researchers applied the Lattice
Boltzmann Method (LBM) to simulate the dynamics, deformation and
breakup of droplet. Inamuro et al. [41], Sman and Graaf [42] and
Farokhirad et al. [43] are examples of those droplet dynamics studies
by LBM.

Droplet dynamics, its deformation and breakup are complex
phenomena. This complexity becomes more complicated when the
droplet is considered in a rotating flow. To the best of our knowledge,
information about droplet dynamics in rotating flows is very scarce.
However, some researchers tried to study this problem, but none of
them made detailed investigations on the corresponding physics.
For example, Xin and Megaridis [44] studied the fluid dynamics
between a linear periodic array of droplets and a concentric cylinder
in a rotating tube configuration. Egholm et al. [45] investigated the
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droplet trajectories and the droplet deformations in a rotor-stator
device consisting of two concentric cylinders with teethed walls. Poon
et al. [46] studied a uniform flow passing on a rotating droplet in a
rectangular channel and Arkhipov et al. [47] investigated the effect of
angular velocity and the droplet size on the trajectories of a droplet
(as a solid body) in a rotating flow. Also, some studies have been carried
out to investigate droplet dynamics in Taylor–Couette devices [48–56].

The focus of this work is to study the complex phenomenon of drop-
let dynamics in a rotating flowmore deeply. Droplet deformations, such
as stretching, shrinkage, breakup and droplet pathline and its interac-
tionwith the rotatingfloware discussedhere. Also, effects of the density
ratio, droplet diameter and the initial position of the droplet are studied.
In order to simulate the problem, the LBM is applied. Compared with
other two-phase LBMs based on [57,58] and [59] the present approach
[60,61] is capable of eliminating parasitic currents and handling higher
density ratios. Note, in contrast to a solid rotating body the droplet
dynamics is studied here in a rotating flow within a cavity in which
the flow has different vortices.

2. Problem description and numerical method

This section deals with the description of the geometrical configura-
tion of the problem and the numerical Lattice Boltzmann Method
applied to simulate the physics.

2.1. Problem description

The schematic of the configuration analyzed in this study is illustrat-
ed in Fig. 1. A circular droplet is considered in a cavity with the aspect
ratio one in which the upper wall has the velocity U while the other
walls are fixed. The Reynolds number based on the cavity length scale
and the upper wall velocity, ReL, is considered to be 1000. Also, the
Reynolds number based on the droplet diameter is, ReD=130 and the

capillary number equals, Ca=0.8, which is defined as Ca ¼ Uμ
σ . The

problem is solved numerically for different density ratios, different
droplet sizes and various initial positions of the droplet.

2.2. Numerical method

This subsection deals with the numerical procedure and the applica-
tion of the physical boundary conditions in the numerical procedure.

2.2.1. Numerical procedure
The Lattice Boltzmann Method (LBM) is a modern approach in

Computational Fluid Dynamics (CFD). It is often used to solve the in-
compressible, time-dependent Navier–Stokes equations numerically.
U

No Slip Wall

Fig. 1. Geometrical configuration of the problem.
Its strength lies however in the ability to easily represent complex
physical phenomena, ranging from multiphase flows to chemical
interactions between the fluid and the surroundings. The method
finds its origin in a molecular description of a fluid and can directly in-
corporate physical terms stemming from knowledge of the interaction
between molecules. It has proven to be an efficient and convenient al-
ternative to traditional solvers for a large variety of industrial
problems. Typical achievements of a LBM are parallel data analysis,
post-processing and evaluation, fully resolved multi-phase flow with
small droplets and bubbles, fully resolved flow through complex
geometries and porous media and complex, coupled flow with heat
transfer and chemical reactions.

The LBM uses only local data communication to update a particle
distribution function fα(x, t) at each time step. In the LBM, particle
density distribution functions fα(x,t) at point x and time t are confined
to move synchronously on a regular lattice, where α denotes the
direction of the lattice link. The distribution functions interact on the
lattice in away to conservemass,momentum, isotropy, and Galilean in-
variance. Here, we assume a two-dimensional and nine-velocity (D2Q9)
lattice for simulation which is illustrated in Fig. 2.

In terms of the distribution function, the general discrete Boltzmann
equation [62] is:

fα xþ eαΔt; tþ Δtð Þ ¼ fα x; tð Þ þΩα x; tð Þ; ð1Þ

where, eα represents discrete lattice velocities in the direction of linkα.
In addition,
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and fα(x,t) is the particle density distribution function and Ωα(x,t) is
the collision operator [62,63] as:

Ωα x; tð Þ ¼ � 1
λ

fα x; tð Þ � feqα x; tð Þ� �
; ð5Þ

in which, λ is the relaxation time.
Fig. 2. The two-dimensional and nine velocity D2Q9 model.



Fig. 3.Known and unknown particle density distributions for the boundaries of the cavity.
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Two particle distribution functions, gα and hα are applied in
the present LBM for binary fluids [61]. The function hα is used as a
phase-field function for the transport of the composition C of one
component, and the function gα is used for the calculation of pressure
and momentum of the two-component mixture. The discrete
Boltzmann equations for the phase-field advection equation and
the pressure evolution and momentum equations are, respectively:

∂hα

∂t
þ eα � ∇hα ¼ �hα � heq

α
λ

þ eα � uð Þ �
"
∇C � C

ρc2s
ð∇p� μ∇CÞ

#
Γα

þ ∇ � M∇μð ÞΓα ; ð6Þ

∂gα
∂t

þ eα � ∇gα ¼ � gα � geqα
λ

þ eα � uð Þ � ∇ρc2s Γα � Γα 0ð Þð Þ þ μ∇C
� �

; ð7Þ

where the equilibrium distribution functions are given as:

heq
α ¼ tαC 1þ eα � u

c2s
þ eα � uð Þ2

2c4s
� u � u

2c2s

" #
; ð8Þ
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2c4s

� u � u
2c2s

 !" #
: ð9Þ

In these equations, u represents volume averaged velocity, cs is the
basic speed on the lattice, ρ is themixture density, μ is the chemical po-
tential and M is the mobility in the Cahn–Hilliard diffusion. Also, Γα is
defined as:

Γα ¼ tα 1þ eα � u
c2s

þ eα � uð Þ2
2c4s

� u � uð Þ
2c2s

" #
: ð10Þ

The composition,momentumanddynamic pressure can be obtained
by taking the moments of hα and gα:

C ¼ ∑
α

hα ; ð11aÞ

ρu ¼ 1
c2s

∑
α

eαgα ; ð11bÞ

p ¼ ∑
α

gα : ð11cÞ

For detailed discretization of Eqs. (6) and (7), we want to refer to
Lee and Liu [61].

The mixture density ρ can be measured as ρ=ρhC+ρl(1-C),
in which ρh and ρl are the bulk densities of the two fluids. The mixing
energy density for binary fluids can be calculated as E0 (C,∇C)=
E0 (C)+κ |∇C |2/2, where κ is the gradient parameter and E0 (C)=
βC2 (1-C)2 is the bulk energy density with constant β [61]. The equilib-
rium profile is obtained by minimizing the mixing energy. The equilib-
rium interface profile is then C(z)=1/2+ tanh(2z/D)/2, where z is
the coordinate normal to the plane interface and D is the numerical
interface thickness. Having D and the interfacial tension σ, the values
of β and κ can be determined as β=12σ/D and κ=βD2/8.

2.2.2. Boundary conditions
The performance of the LBM boundary conditions is simple com-

pared to conventional CFD techniques. To performboundary conditions,
we have to calculate suitable unknown distribution functions from
known distribution functions. Fig. 3 illustrates the known (solid lines)
and unknown (dotted lines) particle density distribution functions
on all walls of the cavity. We performed the standard bounceback
boundary conditions [64] on all fixed solid walls to calculate the
unknown particle distribution functions. In applying a standard
bounceback boundary conditions for our physical boundary conditions,
the general particle density distribution functions, fα, on the left wall of
the cavity are:

f1 ¼ f3; f5 ¼ f7; f8 ¼ f6: ð12Þ

The particle distribution functions on the rightwall of the cavity are:

f3 ¼ f1; f6 ¼ f8; f7 ¼ f5: ð13Þ

The particle distribution functions on the bottom wall of the cavity
are

f2 ¼ f4; f5 ¼ f7; f6 ¼ f8: ð14Þ

On the moving wall, the equilibrium distribution functions are used
to compute the unknown particle distribution functions. The particle
density distribution functions on the moving wall are:

f4 ¼ 1
9
ρ 1� 3vþ 9

2
v2 � 3

2
u2 þ v2
� �	 


; ð15Þ
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; ð16Þ
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2
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2

u2 þ v2
� �� 


: ð17Þ

3. Validation of results

This section contains validation and verification of the results
presented in five following subsections. In the first part, the current
numerical results are compared with analytical ones for demonstrating
that the simulation of a two-phase flow with surface tension force is
reasonably simulated. In the second and third cases, the validation is
applied on the droplet deformation which proves that the current
study has captured droplet deformation well and its breakup for the
cases of high shear rates. In the fourth case, we have validated the
main flow in which the hydrodynamic behavior of the global main
flow is studied and compared completely. Finally a grid resolution
study is checked to be sure that results are independent of the grid size.

3.1. Validation with analytical solution

We first simulate a droplet in a surrounded fluid in a periodic
gravity-free domain which is very common for the cases of drop mo-
tion. Laplace law is used for measuring surface tension force, expressing
that the pressure difference across the phase interface is linearly



Fig. 5. Configuration of the test case according to [65].
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proportional to the inverse of the droplet radius. Also, the slope of this
line is the surface tension force. The Laplace law is expressed as.

∇p ¼ pin− pout ¼
σ
r
; ð18Þ

in which, pin and pout refer to the fluid pressure inside and outside of the
droplet, respectively, r is the radius of the droplet and σ is the surface
tension coefficient. As it can be seen in Fig. 4, the results of the current
study for the pressure difference in the Laplace law are compared
with an analytical solution. Excellent consistency underlines the
accuracy of the present simulation.

3.2. Drop deformation

In the second case, we consider droplet deformation in a simple
shear flow generated by the motion of top and bottom walls with the
same velocity in opposite directions, as illustrated in Fig. 5. This test
case is very common when the droplet is exposed under high shear
stress rate. The droplet deformation versus dimensionless time was
compared with the numerical results reported by Sheth and Pazrikidis
[65]. The simulation is conducted until a steady state shape is reached.
The dimensionless parameters related to the deformation of a droplet

in a shear flow are the viscosity ratio of fluids, λ, capillary number, Ca ¼
Uμ
σ and Reynolds number,Re ¼ ρUð2RÞ

μ . The drop deformation parameter is

Df ¼ L�B
LþB , where L and B are the maximum and minimum drop

dimensions, respectively. As dimensionless time we use t⁎ = tU/H.
Fig. 5 shows the configuration of the test case.

Fig. 6 illustrates the comparison of results of the current study with
those by Sheth and Pazrikidis [65]. The physical properties of the test
are λ=1,Re=100 and Ca=0.4. The results of the current study are
in very good agreement with those obtained in [65].

3.3. Drop deformation with breakup

Fig. 7 compares the deformation and breakup of a droplet in an-
other test case with the results obtained by Farokhirad et al. [43].
This figure shows the breakup process for Re=10. It can be seen
that there is a good consistency between our results and the results
gained by Farokhirad et al. [43]. The figure demonstrates that as
the droplet is stretched it first gets an ellipsoidal shape. The minor
axis shrinks while the major axis extends, which leads to the forma-
tion of a waist near the center of the droplet. Consequently, the
Fig. 4. Comparison of the current study results for the Laplace law for droplets with
different radius.
droplet changes from an ellipsoidal shape to a dumbbell shape.
Eventually a neck emerges between the central portion of the
droplet and bulbs. It should be mentioned that the droplet radius in
our study is 50 lattice units while it was 32 in the study by Farokhirad
et al. [43].

3.4. Main flow validation

Applying the boundary conditions accurately is very important to
simulate the flow physics correctly. To show that the boundary condi-
tions are implemented precisely, the flow pattern in the main rotating
flow and the centerline u- and v- velocity profiles in steady state for
Re=1000 and ρh/ρl=1 are compared with the results reported by
Ghia et al. [66] in Fig. 8. Since, when the density ratio equals one,
there is no relative velocity between the main flow and the droplet,
the flow pattern in steady state can be compared with the flow pattern
in a standard cavity. The excellent agreement of the present results with
those reported by Ghia et al. [66] demonstrates the accuracy and
correctness of the implemented boundary conditions.

3.5. Grid dependency check

In another test case, to prove the grid independency, droplet defor-
mation for Re=1000 and ρh/ρl=5 are illustrated in Fig. 9 for three
different grid sizes, 250×250, 350×350 and 450×450, in three differ-
ent positions in which the droplet experiences shear force and deforms.
This figure demonstrates that the droplet shape simulated with a grid
Fig. 6. Comparison of droplet deformation with the results reported by Sheth and
Pazrikidis [65].



a) t = 0s b) t = 15s c) t = 30s d) t = 91s
I) Present study

a) t = 0s b) t = 15s c) t = 30s d) t = 91s
II) Farokhirad et al. [43]  

Fig. 7. Comparison of snapshots of droplet breakup for λ=1, Ca=0.2, R=50 and Re=10.
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size 250×250 is slightly different from those obtained for the two other
larger grid sizes. Also, the shapes of the droplet with grid sizes 350×350
and 450×450 are very close to each other. Based on this shapes, the
present simulation is performed for the grid size 350×350.

4. Results and discussion

Droplet dynamics and the flow physics are extensively addressed in
the three following parts: global flow physics, droplet deformation and
droplet trajectories.
Fig. 8. Comparison of velocity profiles andflow pattern in rotating flow in steady state for Re=1
a) normalized of u — velocity component along vertical line through geometric center, b) norm
pattern in standard cavity in steady state reported by Ghia et al. [66], d) flow pattern in rotatin
4.1. Global flow physics

In this section, the global flow physics is studied in detail. Also,
relevant results reported by previous researchers, such as Xin and
Megaridis [44] and Poon et al. [46], are presented here along with our
studies done on rotating flow physics around a droplet.

A discussion on practical gas/droplet interaction within turbu-
lent eddies was made by Xin and Megaridis [44] who considered
a steady rotating or impulsively started, infinitely long, gaseous
cylindrical container, Fig. 10. In their study, droplets were kept at
000 and ρh/ρl=1with the results in standard lid-driven cavity reported byGhia et al. [66];
alized of v — velocity component along horizontal line through geometric center, c) flow
g flow in present study.



Fig. 9. Droplet deformation in rotating flow in three different positions for three grid sizes, 250×250, 350×350 and 450×450; Re=1000 and ρh/ρl=5, data of the present study.

Fig. 10. Schematic of rotational flow configuration, according to [44].
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the cylinder axes and could just turn around themselves without
any translational motion.

Fig. 11 shows the influence of each droplet on its immediate vicinity
in terms of iso-contours of the azimuthal velocity. Because the gaseous
flow was considered a solid body rotation, the contour lines of the
azimuthal velocity were initially parallel to the sidewall. After introduc-
tion of droplets, the azimuthal gas velocity component near the droplet
surface was suddenly reduced by shear interaction with the quiescent
liquid, case (a). As seen in this figure, the azimuthal velocity of both
phases near the gas/liquid interface increased gradually, and the
contour lines became increasingly flatter (compare cases (a) and (b)).
Compared with the gas phase, the momentum diffusion within
the liquid was much faster because of its higher viscosity; at τ=24
(τ was the dimensionless time, normalized with respect to droplet
radius, minimum angular velocity, radius of cylindrical rotating
tube and also stress) the azimuthal velocity contours within the
Fig. 11. Azimuthal velocity contours in the flow dom

a) = 0.2, b) = 1.8

Fig. 12. Induced secondary (non-rotational) motion in bot
droplet were almost parallel to the sidewall. This means that the
rigid body rotation was being approached by the droplet [44].

The secondary motion in both phases is shown in Fig. 12 in terms
of instantaneous particle path-line projections on the X -Y plane at
four different instances. Because of the introduction of initially
quiescent droplets, the azimuthal velocity of gas was reduced near
the droplet surface, where the initial balance between the centrifu-
gal and pressure forces was disturbed. The decrease of the centrifu-
gal force induced the gas near the equatorial plane to move toward
the axis of rotation, Fig. 12a. The secondary motion within the drop-
let was more complex. The liquid's secondary motion induced by the
rotating droplet surface was still developing and was relatively
weak. As the azimuthal moment was continuously transferred from
gas to liquid, the strength of the secondarymotionwithin the droplet
was increased. A secondary motion in the opposite direction devel-
oped gradually, Fig. 12b. As time proceeded, the direction of the
liquid secondary motion was gradually reversed and at later times,
the momentum transfer within the droplet presided over the
opposing surface shear stress, Fig. 12c. As the velocity distribution
in the droplet approached the rigid body rotation, the strength
of the induced secondary motion decayed and eventually died out,
as indicated in Fig. 12d [44].

It should be noted that in Xing and Megaridis [44] work, since
the droplets were at the center of an unidirectional rotating flow
around the cylinder axis, therefore, they didn't have any translational
ain at a) τ=0.2, b) τ=24, according to [44].

c) = 6 d) = 24

h phases at four different instances, according to [44].



Fig. 13. Representation of the computational domain, according to [46].
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motion from their initial position, rather they just had a spinning
motion around the axial centre of the cylinder. Also, the droplets were
assumed to be solid spheres and their deformation wasn't considered.
So, there wasn't a real interaction between the droplets and the
surrounding fluid.

Getting deeper knowledge about droplet dynamics, the results
obtained by Poon et al. [46] are perused here. They have studied a
rotational droplet in a uniform flow. They investigated the effects of
transverse rotation on the dynamics of a droplet released into a uniform
cross flow. As shown in Fig. 13, a spherical droplet of radius Ri with an
initial angular velocity, Ω, in the x-direction was subjected to a sudden
acceleration by a uniform free stream, U∞, in z-direction.

Their results proved that for Ω⁎≤0.2 (Ω⁎ was the dimensionless
rotation rate with respect to the initial angular velocity Ω, radius of
the spherical droplet and uniform free stream) the transverse rotation
led to droplet tilting as it was moved downstream. The tilting was a
result of the vortex inside the droplet that was deformed and tilted by
the uniform cross flow. In addition, the droplet was drawn and
elongated toward the retreating side creating a positive lift coefficient.
As the droplet evolved, a secondary vortex was formed across the
upper lee side of the interface. This induced vortex elongated the
droplet in the opposite direction and led to a negative lift coefficient.
The lift coefficient was less affected by the droplet frontal area as it
mainly depended on the velocity difference between the upper and
lower droplet surface [46].

For Ω⁎≥0.4, the evolution of the droplet in the rotation-dominated
regime and its deformation was specially different. In order to confirm
that the increase inΩ⁎ had resulted a delay in droplet tilting, the stream-
lines in amoving reference frame forΩ⁎=0.6were plotted in Fig. 14. At
Fig. 14. Evolution of the velocity field inside an initially rotating droplet at Rei=40,Wei=40,Ω⁎

12.5. The shaded region represents the droplet cross-section area on the (y–z)-plane, accordin
Ω⁎=0.6, the droplet deformation was directed by rotation effects due
to a large rotation Weber number, Wer=O(10). Here, the Weber

number, density ratio and viscosity ratio are defined as We ¼ ρmðU∞Þ22R
σ ,

η=ρd/ρm and λ=μd/μm, respectively. Also, the subscripts m and d
refer to the surrounding flow and droplet, respectively. The radially
outward expansion of the droplet helped to hold the unstable focus
structure at the droplet centroid, as seen in Fig. 14b and c for a longer
period of time. In addition, the unstable focus structure maintained its
shape for a longer time and was only tilted and deformed after the
droplet stopped contracting at its poles, Fig. 14d. The tilting and defor-
mation of the vortex inside the droplet were the primary mechanisms
responsible for the tilting of the droplet, and these mechanisms were
delayed atΩ⁎=0.6 [46].

Although, Poon et al. [46] gave a detailed discussion on spinning
droplets in a uniform cross flow, their flow field was not rotating
and did not contain any vortex or recirculating regions. Therefore, the
spinning droplet was converted simply downstream. So, the droplet
dynamics is completely different when it is considered in a complicated
rotating flow as we discuss in this paper. In continuance, droplet
dynamics in a rotating flow is explained in detail further below for
three different density ratios: 1, 10 and 1000.
4.1.1. Density ratio 1
To have a better perspective of our study, flow physics in rotating

flow is examined for density ratio one in Fig. 15. Since the density
ratio of two phases is one, there is no relative velocity and the droplet
moves with the same velocity as the main flow does. As it is expected,
the global flow pattern is the same as the lid-driven standard cavity
shown in Fig. 15. However, during time evolution of the flow in the
cavity, the droplet is affected by the vorticity field. Consequently, the
droplet is deformed, stretched and shrunk at different positions which
are discussed here. At t=0.11 s, a vortex is created near the top wall
and the droplet is affected by the main rotating flow. At time t=
0.18 s, the main vortex grows and moves more toward the center of
the cavity and the droplet has moved with the rotating flow toward
the top wall while it is deformed. As the droplet moves by the main
flow, it rotates and is affected by a velocity gradient field. Therefore, it
experiences a large shear force stretching the droplet as shown at t=
0.24 s, 0.29 s and 0.33 s in Fig. 15. Another phenomenon that can be
seen at t=0.29 s is that a vortex is created beside the right wall which
grew up and moved downward at t=0.33 s. At t=0.33 s, the droplet
is aligned with the direction of the main flow. At this step, the droplet
is located in a spatial accelerating (t=0.33 s) and immediately deceler-
ating flow field (t = 0.38 s). Therefore, it is stretched and shrunk from
=0.6 and η=λ=50: (a) t⁎=0, (b) t⁎=2.5, (c) t⁎=5, (d) t⁎=7.5, (e) t⁎=10 and (f ) f⁎=
g to [46].



= 0.11 = 0.18 = 0.24

= 0.29 = 0.33 = 0.38

= 0.44 steady state

Fig. 15. Time evolution of flow pattern and droplet behavior in the cavity for C=0.5 and ρh/ρl=1, data of the present study.

70 B. Maneshian et al. / Advances in Colloid and Interface Science 236 (2016) 63–82
rod shape to a circular shape, respectively. Also, at t=0.44 s, another
bottom vortex is created at the left corner, corresponding to the second
vortex in the lid-driven cavity. Finally, when the flow field reaches the
steady state, the global flow pattern behaves as a standard lid-driven
cavity with a main big vortex and three small counter rotating vortices.
At this situation, the droplet lies between constant streamlines. Hence,
its shape remains unchangedwhile rotating at a constant radius around
the center of the cavity. It should be mentioned that when the density
ratio is one, the radius with which the droplet is rotating around
depends on the initial position of the droplet and its size (will be
discussed later).

4.1.2. Density ratio 10
To study different aspects of the flow pattern and droplet motion in

rotatingflow, time evolution of flowpattern and droplet behavior in the
cavity are illustrated in Fig. 16. At the given density ratio, the drop is 10
times heavier than the surrounding liquid flow. The contour is plotted
for C=0.5 and the droplet begins to move from the center of the cavity.
At first, the droplet moves in the direction of the flow and a vortex
appeared in the top right hand side of the droplet, t=0.07 s. By time,
this vortex grows in size and the droplet moves toward the upper
wall in direction of the rotating flow. Also, a small vortex is created
in the right hand side of the drop near the wall. This is well seen at
t=0.17 s. Formation of this vortex is due to the change of the global
flow physics by the droplet. This point is evidence by comparing
Fig. 15 as a standard cavity and Fig. 16. The mentioned vortex
disappeared at t=0.27 s and the drop has gained an upper position.
Since the densities of the two fluids are different, there is a relative ve-
locity between themand thedrop does notmovewith the same velocity
as the surrounding flow does. At t=0.37 s, the droplet reaches a posi-
tion close to the upper wall and experiences some shear which leads
to its deformation. A vortex appeared then in the right bottom corner
of the cavity, too. This stretching and deformation is stronger at t=
0.42s and the created vortex in the right bottom corner grew in size.
The droplet tends to move with the same direction of the surrounding
flow downward in a rod shape. At t=0.47 s, the main flow in the cavity
has changed some more and another vortex is created in the left bot-
tom. Also, the droplet now came near the middle of the cavity with a
shrunk shape. When the droplet gets to the lower wall the flow physics
changes considerably. At this time, t=0.54 s, the droplet acts like an ob-
stacle in themainflow and a small vortex forms behind it and one of the
bottom corner vortices disappears. This physics continues at t=0.56 s
and the droplet experiences more shear which causes to shape it like
a rod, again. At t=0.59 s, the droplet gained its previous shape with
shrinkage and it behaved like an obstacle and caused a vortex to appear
ahead of it. A corner vortexwith two cores is formed in the right bottom
corner and a young vortex appeared behind them, too. By letting time to
pass, it can be seen that the droplet is rotated at t=0.61 s and is moving
upward. The two corner vortices at the bottom are formed again. While
the droplet continues tomove it reaches the left side of the rotatingflow
with an approximate spherical shape at t=0.73 s. In this situation that
the droplet has a density ratio greater than one, contrary to the droplet
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Fig. 16. Time evolution of flow pattern and droplet behavior in the cavity for C=0.5 and ρh/ρl=10,
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with a density ratio of one, the droplet and themain flowwill not reach
a steady state but it continues to move without getting any steady state
situation. It isworthmentioning that in all situations thedroplet and the
main flow have a relative velocity and the flow pattern is completely
different from a standard cavity or cavities with obstacles on the walls
[67].

4.1.3. Density ratio 1000
In another test case, a droplet is considered which has a density

ratio 1000 times larger than the rotating flow around, Fig. 17. As
this figure demonstrates the flow pattern changes dramatically and
a chaotic pattern governs the main flow. In most situations, the
main vortex of the rotating flow is affected by the droplet and this in-
fluence is great sometimes (see cases f, i and k). Also, in case j, a vor-
tex is created in front of the droplet. Another point is that corner
vortices in the bottom are formed from moment e, but their shapes
change in each case and from case i this change becomes very
obvious.

It can be understood that for this density ratio, the droplet behaves
like a very heavy solid sphere. However, when there is a very heavy
solid sphere, the flow will finally become steady while the flow is
always unsteady here and this point is very important from a mixing
point of view.

The motion and deformation of droplet at a density ratio of
1000 show that the droplet movement is very slow and its deformation
is unnoticeable due to its high inertia. In comparison to the droplet the
with density ratio of 1, it can be seen that droplets at high density
ratios create an irregular pattern in the rotating flowwhile the rotating
flow surrounding a droplet with a density ratio of 1 behaves like a
standard cavity.



Fig. 17. Flow pattern and droplet behavior in the cavity for C=0.5 and ρh/ρl=1000, data of the present study.
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Also, the dropletmotion for different density ratios at different times
and locations are compared in Fig. 18, while the initial positions of all
drops are the same. The physics that governs in this figure is that for a
density ratio of 1 there is no relative velocity between the rotating
flow and the droplet. However, by increasing density ratios, there
would be a difference between the drop's speed and the main flow
velocity. The higher the droplet density ratio is, the higher is its relative
velocity difference. Consequently, heavier droplets move slower than
lighter ones, because of their higher inertia. Hence, they have different
pathlines and deformation rates. At t=0.2 s, the droplet with density
ratio 1 has stretched much and moved, but the other two droplets
have not moved much or deformed, especially for ρh/ρl=10. Another
point that should be mentioned is that a droplet with ρh/ρl=1 moves
toward the center of the rotating flow while others move toward the
wall because of the centrifugal force. This phenomenon is obvious at
t=0.37 s. At this time, the droplet with a density ratio of 5 is located
in an accelerating zone and is stretched, while the one with a density
ratio of 10 is starting to pass the accelerating zone andhas not deformed
much. Also, at t=0.56 s, when the density ratio is 5, the droplet
experiences a decelerating zone while the one with a density ratio of
10 experiences an accelerating zone.

It can be concluded that droplets with a higher density ratio will
move slower which is distinctive from the distance that droplets move
in a specified time. Also, droplets with different density ratios will
move in different pathlines depending on their density or inertia.
Another point which should be noted is that droplets with higher
density ratios will resist more against deformation.

4.2. Droplet deformation

This part discusses droplet deformation in a rotating flow, based
on results reported by Poon et al. [46], Egholm et al. [45] and
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Fig. 18. Comparison of dynamics of droplets with different density ratios at different times: C=0.5, data of the present study.
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Qiao et al. [56]. As mentioned before, the research performed
previously by others differs considerably with the present study.
This will be explained more when discussing their results. Our aim
is to develop a fundamental perspective about droplet dynamics in
somehow rotating flows.

As mentioned, Poon et al. [46], studied a rotational droplet in a
uniform cross flow and demonstrated that when Ω⁎ was small, the
droplet was compressed by the free-stream inertia. The droplet
deformed into an oblate spheroid at early times of droplet evolution,
with both the upwind and lee side of the droplet being continuously
flattened. In later stages of the simulation, the deformation of the
upwind side of the droplet became slower while the lee side
smoothed. The droplet remained axisymmetric in the azimuthal
direction throughout the entire simulation time [46].

At Ω⁎=0.4, there was a notable change in the droplet evolution at
earlier stages. The compression of the droplet along the rotation axis
became more distinguish; the flattening of the droplet was linked to
the radial expansion of the droplet normal to its rotation axis. Also, it
was obvious that expansion of the droplet normal to the rotation axis
slowed down and the droplet became tilted. As the droplet expanded
radially, the tangential interface velocity decreased in order to conserve
the angular momentum. This reduction in tangential velocity may also
be attributed to the transfer of rotational kinetic energy from the droplet
to the surface energy at the interface. As the rotational kinetic energy
lessened, the droplet stopped expanding and the free-stream effect
dominated and compressed the upwind side of the droplet, which
resulted in the occurrence of a small depression, D. The dominating
free stream created a flat upwind interface whereas the history effect
of the droplet rotation compressed the lee side of the droplet along
the rotation axis, creating a depression as shown in Fig. 19b. The evolu-
tion of the droplet at Ω⁎=0.6 showed a similar trend Ω⁎=0.4, except
that the droplet was extended further away from the rotation axis due
to the higher rotational velocity. As the droplet spun further away
from the rotation axis, the surface tension at its edge increased and
prevented further deformation at its edge and took a biconcave shape.
As the depression appeared while the centrifugal force was still
expanding the droplet, this depression occurredmainly due to the drop-
let rotation instead of the presence of a free-stream momentum. The
tilting of the droplet was also delayed due to the stronger rotation,
which kept the droplet expanding for a longer period. A further increase
of Ω⁎ to 0.8 and 1 increased the centrifugal force such that the droplet
became biconcave in shape, Fig. 19a, at earlier stages compared to
Ω⁎b0.8 [46].

It is worth to note that the droplet in a Taylor–Couette flow or in a
simple uniform flow, [46] does not have a high degree of freedom for
motion. So, its dynamics and deformation change dramatically



Fig. 19. Instantaneousdroplet shape forRei=40,Wei=40, η=λ=50andΩ⁎=0.4. The snapshots are shown at dimensionless time t⁎, from left to right, of 0, 2.5, 5, 7.5, 10 and 12.5: (a) (x-
z)-plane and (b) (y-z)-plane. D is the depression of the interface due to the combined effect of free stream and rotation, according to [46].
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compared with our study here in which the flow field is highly compli-
cated with the presence of different vortices and high shear region.

Fig. 20 presents the deformation of a droplet in a rotating flowwhen
thedensity ratio is 1. Also, thisfigure compares droplet dynamics for dif-
ferent initial locations. The sequence of the numbers in these figures
presents the location of the droplet in consecutive times. In Fig. 20a,
the droplet initial location is at the center of the cavity. Since here the
density ratio is 1, there is no relative velocity between the droplet and
the carrying main flow. Therefore, the dropt follows the main flow
pathline. However, the size of the droplet is such that it lies between
vorticity fields of different strengths. Consequently, depending on the
forces exerted on the droplet, it can tilt, stretch, shrink and sometimes
breaks it up. For instance, as the droplet moves in the rotating flow, it
stretches and deforms when it goes near the upper wall (positions 4, 5
and 6). Thereafter the droplet shrinks. In positions 8 and 9, near the
rightwall, the droplet experiences a strong shear due to the accelerating
flow, gets stretched and deforms into a rod. Again, in position 10, the
droplet moves away from the right wall and looks more like a small
bean than a rod due to the deceleration. Finally, the droplet rotates
and goes back to its circle shape.

To see the effect of the initial position on the droplet dynamics and
its deformation, three other cases were considered where the initial
positions of the droplet were 1/8, 2/8 and 3/8 of the cavity length out
of the cavity center toward the rightwall (cf. Fig. 20b to d), respectively.
Comparison of the figures proves that the initial position of the droplet
has an enormous influence on the droplet dynamics and its deformation
because the pathline that guides the droplet is highly dependent on it.
Therefore, droplets with different initial positions pass different regions
where different shear forces are exerted on it. This is why the droplet in
case c has a completely different shape than in the other cases. Indeed, it
has been in a pathline that experiences high shear forcewhile in case b it
does not. On the other hand, the droplet in case d is located in a position
which it experiences a gradual shear force leading to a smooth gradual
deformation with respect to case c. It should be noted that among the
cases a to d, the droplet which is passing through case c has the highest
surface to volume ratio in the carrying flow which is very important
from the point of view of property exchange between the two-phases;
for example, exchange of mass and concentration.

As mentioned before, when the droplet density ratio is 1, the drop-
lets will reach into a steady state and will rotate on a specified pathline
starting from the initial position. Fig. 21 shows the steady state of the
droplets for the three cases of Fig. 20a to c. There are three important
points in their motion that should draw our attention: i) the shapes of
the droplets are the same and spherical-like in all three cases which



Fig. 20. Deformation of a droplet in a rotating flow with different initial positions: C=0.5 and ρh/ρl=1, data of the present study.
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means that the droplets are in a flow fieldwhere they do not experience
any relative shear force and just rotate. That is why they save their
approximate spherical shape, ii) the droplets move in a constant radius
and iii) this constant radius depends on their initial position, such that
when the initial position of the droplet is closer to the center of the
cavity, its rotating radius is smaller.

Among the researchers investigating droplet deformation, Egholm
et al. [45] have studied the droplet deformation rate in a unidirectional
flowwithout any report on droplet deformation itself. They studied the
deformation rate of a single droplet suspended in a liquid in which the
flowwas generated in a rotor-stator device consisting of two concentric
cylinders with teethed walls. Fig. 22 illustrates the deformation of the
droplet versus time. Furthermore, the configuration of the cylinders
and thedroplet position in the channelwere shown at three experimen-
tal times. The figure shows that a maximum deformation happened
when there was a local minimum in the gap width and that the
Fig. 21. Final position of droplet in a rotating flow with different in
maximum deformation (last peak) was obtained when the gap width
was close to the global minimum [45].

In another research, Qiao et al. [56] made an experimental study on
droplet deformation in a semi unidirectional flow in which the droplet
deformation is not sensed much and only oval stretching of the droplet
can be seen. While in the present study, the droplet is exposed into a
complex rotationalflowand experiences different deformations passing
through different regions. By detail, Qiao et al. [56] performed an
experimental study on the behavior of individual droplets in a Taylor
vortex of an immiscible surrounding fluid, a mineral oil with density
of 0.86 g/cm3 and viscosity of 0.066 Pa s. The behavior of the droplets
was investigatedwith a high speed camera and a phase Doppler particle
analysis (PDPA) system. Again, here, the droplet deformation was
studied between two concentric cylinders in which the flow physics is
like a simple one-dimensional flow and the droplet does not pass
through any complex flow field, so that the droplet dynamics and
itial positions: C=0.5 and ρh/ρl=1, data of the present study.



Fig. 22. Plot of drop deformation as a function of time. Also, shown is the configuration of the system and the drop position (white dot) at three experiment times. The arrow originating
from the cylinders indicates the location of the drop, according to [45].
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deformations are not complicated. The deformation of the droplet when
moving along the annulus is demonstrated in Fig. 23. In all cases, the
droplets showed ellipsoidal shaped orbits, with the major axis aligned
along themoving direction. Compared to the spherical shape, suchmor-
phology was considered to pose minimal resistance to the motion of
droplet. On the other hand, the shear stress experienced by the droplet
varied at different locations and, therefore, the droplet morphology
showed a periodic change correspondingly [56].

To have a better examination on the droplets behavior, their dynam-
ics at a density ratio of 5 is studied here. Fig. 24 tracks a droplet motion
in a rotating flow at different initial positions of the droplets. Since the
Fig. 23.Deformation ofwater droplet (A) and an ethanol droplet (B) studied at different angles i
density ratio of the droplet is larger than 1, the droplet and the carrying
flow do notmovewith the same velocity and the same direction but the
droplet crosses the carrying flow streamlines. This fact is because of the
centrifugal force that moves the droplet out of the main streamline
passing from the droplet position (cf. Fig. 24c). Therefore, the droplet
will move away from its initial position in a spiral way. It should be
mentioned that here the buoyancy force, due to the difference of
pressure distribution around the droplet surface, is unnoticeable in
comparison to the centrifugal force.

Also, due to the higher density ratio of the droplet, its initial
inertia is larger and has the tendency to save its initial shape in
n the annulus of amineral oil. The snapshotswere taken from thebottom, according to [56].



Fig. 24. Deformation of a droplet in a rotating flow with different initial positions: C=0.5 and ρh/ρl=5, data of the present study.
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comparison with the droplet at the density ratio of 1. This large
inertia causes the droplet to resist against deformation or movement
and saves their spherical shape. This fact is more obvious when the
density ratio is 10 (see Fig. 25). In addition, when the density ratio
of the droplet is larger than 1, the centrifugal force on the droplet
increases with time, which means that the final position of the
droplet cannot be identified. It should be mentioned that the
sequence of the numbers in these figures present the location of
the droplet in consecutive times.

In order to study the droplet dynamics and its behavior in more
detail, a droplet with a density ration of 10 is considered in Fig. 25.
The corresponding droplet behavior shows that with increasing inertia
of the droplet its deformation decreases and it can save its approximate
spherical shape in most positions. Also, the droplet dynamics shows
that whatever the density of the droplet increases, the mass or inertia
of the droplet increases. On the other hand, the increase in density
leads to a decrease of the absolute velocity of the droplet with the
power of two. A simultaneous action of these two parameters results
in amore intensive deviation of the droplet from themain flow stream-
line, aswe can see in Fig. 25c. On the other hand, comparing Fig. 25with
Fig. 24we can see that the droplets with higher density will deform less
due to their higher inertia. For example, in Fig. 24e, the droplet has bro-
ken up into two parts in the accelerating zone because of the exerted
large shear forcewhile in Fig. 25e, the droplet has deformed to some ex-
tent. This fact is evenmore significant for the data shown in Figs. 25 and
20.

4.3. Droplet pathline

Let us nowdiscuss the pathline and trajectories of droplets in a liquid
flow field. The results of Arkhipov et al. [47] and Qiao et al. [56] are now
analyzed here. Arkhipov et al. [47] performed a numerical study on



Fig. 25. Deformation of a droplet in a rotating flow with different initial positions: C=0.5 and ρh/ρl=10, data of the present study.
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droplet dynamics by reporting droplet trajectory without any results of
its deformation. However, in the present study, droplet dynamics is
studied by detailed perusing of droplet deformation, its trajectory
and global flow physics. Arkhipov et al. [47] determined the motion
trajectory of a droplet, the axial, radial and tangential components of
its velocity vector and similarity numbers in a twisted flow. The motion
trajectory of the droplet (Fig. 26)was a spiral expanding in the direction
of the Oz axis. The form of the spiral depended on the experiment
parameters, in particular, on the droplet diameter. Fig. 27 illustrates
the motion trajectories of different sized droplets in the projection
onto a plane perpendicular to the rotation axis. Large-diameter droplets
got to the reservoir periphery faster than smaller ones. With increasing
viscosity of the surrounding liquid, the time for the liquid to get to the
periphery of the reservoir increased (Fig. 27).
In another work by Qiao et al. [56], the authors have studied water
and ethanol droplets trajectory in a mineral oil. In their study, they
have investigated only droplet trajectory without considering droplet
deformation or its complete dynamics. Fig. 28 shows the trajectories
of water and ethanol droplets in the annulus studied by Qiao et al.
[56] at different Reynolds numbers. HereX and Ywere the two displace-
ment components taken from the center of the inner cylinder normal-
ized by the radius of the outer cylinder, respectively. For low Reynolds
number, the water droplet was trapped near the vortex center, with
equal distance to the center of the inner cylinder at any time. Therefore,
the 2-D trajectory of the water droplet captured from the bottomwas a
circle (Panel A). For higher Reynolds numbers, the water droplet
showed a three-dimensional toroidal motion along the annulus. As a
result, the bottom view of the droplet trajectory had the shape of an



Fig. 26. Trajectory of droplet motion, according to [47].
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ellipse as shown in Panel B. This motion continued for higher Reynolds
numbers. The evolution of the ethanol droplet trajectory with increas-
ing Reynolds numbers followed a totally different trend. For example,
when the Reynolds number was 122, the projection of the droplet
trajectory on the horizontal planewas anoval orbit (Panel D). At a Reyn-
olds number of 213, the droplet was trapped at the vortex center and
therefore its trajectory along the annulus was a circle (Panel F) [56].

In the present study, the determined droplet trajectories for differ-
ent density ratios and initial positions are presented in Figs. 29 to 31.
The initial positions of the droplet are marked with “×”. For a density
ratio one of 1, the pathline of the droplet and the main flow are the
same and the droplet moves with the pathline of the carrying flow.
Meanwhile, as was mentioned before, by increasing the density ratio,
due to the higher inertia of the droplet and centrifugal force, it would
not go through the pathline of the main flow; the higher the density
ratio, the larger is the deviation from the carrying flow pathline,
e.g. ρh/ρl=10. In addition, as the density ratio increases, the droplet
will get closer to the wall and it would be affected by the wall. This
phenomenon is similar to the fact that an aerodynamical body is flying
toward the ground and is affected by ground effects. Therefore, in high
density ratios, the droplet will get closer to the wall, and would be af-
fected by the ground such that a lift force resulting from an increasing
Fig. 27. Droplet motion trajectory at n=5.7 rps; a, d) D=
pressure between the droplet and the wall will be exerted on the
droplet and forces it to go away from the wall. This phenomenon is
illustrated well in Figs. 25a–c and 31.

Another parameterwhich is analyzed here is the effect of the droplet
diameter on its pathline. In Fig. 32, the pathline of four droplets corre-
sponding to a density ratio of 100 anddifferent diameters are compared.
Increasing the droplet diameter means increasing the droplet mass or
inertia which in turn increases the relative velocity between the droplet
and the main carrying flow or decreases the absolute velocity of the
droplet and its pathline radius. The centrifugal force exerted on
the droplet depends on two important factors: droplet mass and its
absolute velocity. As mentioned before, by increasing the density ratio,
the droplet mass would increase and the resulting centrifugal force,
too. On the other hand, increasing the density ratio means the absolute
velocitywill decrease and also, the decrease of the centrifugal forcewith
the power of two, mV2/R. Therefore, as an outcome, the more the
diameter increases, themore decreases the centrifugal force. As a result,
the droplet of larger diameter will experience the centrifugal force less
and will move in a pathline with a smaller radius, e.g. D/L=0.2.
5. Summary

This paper discusses the droplet dynamics and its complexity in a
rotating flow, including the physics of the rotating main flow, droplet
deformation and droplet trajectories. It is shown that at a density ratio
of 1, there is no relative velocity between the droplet and the main car-
rying flow and the droplet moves with the same velocity as the main
flow does. The pathline on which the droplet is moving is the main
flow pathline starting from the initial position of the droplet. However,
with increasing time of the rotating flow, the droplet is affected by the
vorticity field and finally when it reaches the steady state the droplet
lies between constant streamlines of the main flow. Hence, its shape
remains unchanged while rotating at a constant radius around the
center of the cavity depending on its initial position.

By increasing the density ratio, the global flow physics becomes af-
fected by the droplet. Since the densities of two fluids are different,
there is a relative velocity between them. Here, due to centrifugal forces,
the droplet is thrown toward the wall by the main flow. At higher
density ratio of the droplet, the initial inertia is greater and has tendency
4 mm; b, e) 4.5 mm; c, f) 5.3 mm, according to [47].



Fig. 28. Trajectories of water droplet (A–C) and ethanol droplet (D–F) in a Taylor vortex (bottom view) both in a mineral oil. (A) Re=122, (B) Re=163, (C) Re=217, (D) Re=186.6,
(E) Re=197 and (F) Re=213, according to [56].
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to save the droplet's initial shape, i.e. it helps to resist against deforma-
tion or movement. Comparison of the droplets with different density
ratios demonstrates that droplets with higher density ratios have de-
formed less even in accelerating zones. In addition, the centrifugal
Fig. 29. Pathline of a droplet in a rotating flow with differen
force on the droplet is increasing with time which means that the final
position of the droplet cannot be identified. At very large density ratios,
e.g. ρh/ρl=100, the droplet behaves like a very heavy solid sphere
causing a chaotic unsteady flow pattern at any time.
t initial positions: ρh/ρl=1, data of the present study.



Fig. 30. Pathline of a droplet in a rotating flow with different initial positions: ρh/ρl=5, data of the present study.

Fig. 31. Pathline of a droplet in a rotating flow with different initial positions: ρh/ρl=10, data of the present study.
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The analysis of the droplet trajectories for different initial positions
proves that by increasing the density ratio, due to the higher inertia of
the droplet and centrifugal forces, it would not go through the pathline
of the main flow; the higher the density ratio, the larger the droplet
trajectories deviate from the carrying flow pathline.

An important point that should be considered is that with increasing
density ratios the droplet will get closer to the wall and it would be
affected by the ground such that a lift force resulting from increasing
pressure between the droplet and the wall will be exerted on the
droplet and forces it to move away from the wall.

Also the droplet size has strong effects on its pathline. Increasing the
droplet diameter leads to an increase in droplet mass or inertia. On the
other hand, it decreases the absolute velocity of the droplet. The reduc-
tion of the absolute velocity exceeds the effects of the increased mass
and decreased the centrifugal force. This fact causes the droplets with
larger diameter to experience less centrifugal force and move in a
pathline with a smaller radius.
Fig. 32. Effect of diameter on pathlines of droplets, ρh/ρl=100, data of the present study.
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