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Fire regimes in Amazonia: The relative roles of policy and precipitation
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A B S T R A C T

Reducing carbon emissions from deforestation and forest degradation is now a vital component in
climate change mitigation strategies. Global initiatives such as REDD+ are receiving growing investments,
and in-country policy makers are under pressure to protect intact forests. In 2008, Brazil met these
pressures by making deforestation reduction a central piece of its climate change policy. Although
previous research found that this policy led to reduced deforestation, decreases in fire–another
significant factor in carbon emissions–were not observed. Here we revisit Amazonia, the target location
of Brazil’s anti-deforestation policies, to determine how precipitation may be affecting forest fires in the
area while controlling for other potential biophysical, economic, and institutional correlates. Using data
on precipitation and deforestation alongside MODIS active fire and burned area data, this article
examines the general spatial-temporal trends of fire in the region between 2001 and 2013. We then
implements statistical models to measure the relative impact of precipitation and anti-deforestation
policies on both fire events and burned area over the time period. The analysis shows that while
deforestation decreased under policy treatment, forest fires were less responsive to policies.
Furthermore, the analysis provides strong evidence for the existence of a precipitation effect on both
fire events and burned area. Results indicate that a one standard deviation decrease in precipitation from
its normal could increase fire events by 11–15% and burned area by 18–27%. The article concludes by
addressing the challenges in controlling fire in Amazonia under drier climatic conditions in the presence
of abundant fuel and ignition sources.
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1. Introduction

The mastery of fire was a turning point in our species’ biological
and technological evolution and is intricately linked to the onset of
the Anthropocene (Steffen et al., 2007; Glikson, 2013). Natural and
anthropogenic fires have long played a pivotal role in terrestrial
and atmospheric system processes (Bowman et al., 2009) but
encroachment of modern agriculture into tropical forests has
increased the quantity and frequency of fire in these ecosystems
(Neves et al., 2004; Bush et al., 2008). Now, with global initiatives
set to reduce carbon emissions from land change (Kollmuss et al.,
2008), policymakers are under increased pressure to not only curb
deforestation and forest degradation, but also combat fire.

Brazil is notable in this regard because its Amazonian forests
hold close to 35% of the world’s tropical forest carbon and produces
some of the largest emissions from forest loss (Saatchi et al., 2011;
Baccini et al., 2012). The Brazilian Amazon has also been hailed as a
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success story in the reduction of deforestation rates in the last
decade, attributed in large part to the successful implementation of
public policies (Soares-Filho et al., 2010; Arima et al., 2014;
Cisneros et al., 2015). Given the strong relationship between
deforestation and anthropogenic fires, the same steep reductions
in fire were expected. Instead, fire numbers fluctuated greatly from
year to year, possibly influenced by intervening abiotic factors.

The objective of this article is to tackle this issue and examine
the main factors that drive the current fire regime in Brazil’s
Amazonia. Specifically, we examine the relative roles of abiotic
factors and anti-deforestation policies in determining the amount
of forest fires, while controlling for other potential biophysical,
economic, and institutional correlates.1 To pursue this objective,
we first discuss the relationship between deforestation, agricul-
tural expansion, and fire in the basin, while acknowledging the role
1 Research has found that indigenous reserves and conservation areas experience
much lower levels of fire than their non-protected counterparts, even when
controlling for the fact that those protected areas are typically located in remote
areas far from agricultural activities (Arima et al., 2007; Nelson and Chomitz, 2011;
Barber et al., 2014).
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Fig. 1. Conceptual framework for the drivers of fire.
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of climatic factors and policy initiatives to date. Next, we show
evidence that fire and deforestation rates decoupled from each
other after 2007, a main motivation for our analyses. We then
present statistical analyses that reveal the extent to which two
factors—(1) recent policy measures and (2) deviations in regional
precipitation—have affected fire in the Amazon, both in terms of
total number of fire events and burned area. Finally, we translate
these results into practical significance for policymakers, whose
engagement in mitigation strategies may be offset by the
precipitation and climate trends of the future.

2. Background

2.1. Anthropogenic fires in Amazonia

Although natural wildfires are relatively rare in the Brazilian
Amazon, anthropogenic fires remain a regular threat (Uhl et al.,
1989; Uhl and Kauffman,1990; Cochrane et al.,1999; Nepstad et al.,
1999; Sorrensen, 2009; Aragão and Shimabukuro, 2010; Alencar
et al., 2011; Brando et al., 2013; Shlisky et al., 2009). These fires are
tightly linked to the encroachment of the agricultural and logging
frontiers into primary forest. Numerous studies have found a
strong statistical relationship between fire incidence and agricul-
tural activity, typically proxied by distance to roads, farmgate
prices, and distance to deforested areas (Nepstad et al., 2001;
Alencar et al., 2004; Arima et al., 2007; Barber et al., 2014). In
addition, logging and forest fragmentation increase fuel loadings (i.
e litter material) and decrease understory humidity (Uhl and
Kauffman, 1990; Cochrane and Schulze, 1999; Nepstad et al., 2001),
while millions of farmers and ranchers provide the ignition sources
as they use fire to burn forest biomass during the deforestation
process. Burns are often followed by the encroachment of grass
species, increasing fine fuel loads and fire intensity (Veldman et al.,
2009; Silvério et al., 2013; Brando et al., 2014). Once planted
pastures are established, ranchers often use fires to control
invasive shrubs and trees (i.e. maintenance fires) that compete
with the desired grasses (Uhl and Buschbacher, 1985; Nepstad
et al., 1999, 2001; Laurance et al., 2001; Sorrensen, 2009; Arima
et al., 2007; Schroeder et al., 2009; Walker et al., 2009). The end
result is that even accidental fires in the Amazon are anthropogenic
in origin; the result of deforestation or maintenance fires that
escape control and advance into logged or primary forests
(Holdsworth and Uhl, 1997; Nepstad et al., 1999, 2001).

2.2. The role of abiotic conditions

Ignition sources from human activities are necessary but
wildfires can only ignite and spread if abiotic conditions are
adequate to transform vegetation into flammable material.
Climatic parameters, including precipitation, humidity, wind
speed (Aragão et al., 2008; Marengo et al., 2008; Alencar et al.,
2015), and events such as the El Niño Southern Oscillation (ENSO)
or extreme droughts are all important factors (Nepstad et al., 1995;
Barbosa and Fearnside, 2000; Nepstad et al., 2001; Galindo et al.,
2003; Marlon et al., 2008; Alencar et al., 2011; Brando et al., 2013;
Brando et al., 2014). For instance, recurrent fires occur more often
during ENSO years (Alencar et al., 2004, 2011, 2015), and recent
work has also shown a strong linkage between the Atlantic
Multidecadal Southern Oscillation Index and patterns of precipi-
tation and fire in the southern and southwestern Amazon (Chen
et al., 2011). If burned more than once, these forests experience a
dramatic increase in the risk of understory fire (Alencar et al.,
2004; Morton et al., 2013) and up to a 28% increase in their chances
of being burned a subsequent time (Alencar et al., 2011).
Subsequent burns may lead to altered regeneration patterns
(Balch et al., 2013), increased susceptibility and burn intensity
(Cochrane and Schulze, 1998; Cochrane et al., 1999) and increases
in global atmospheric CO2 (a figure that reached 395.31 �0.10 ppm
in 2013 according to the Quéré et al. (2015)). In some parts of the
Brazilian Amazon, the return interval for fires is already 5–11 times
more frequent than estimates for natural fire regimes (Alencar
et al., 2011).

2.3. Environmental policies and the link between deforestation, fire &
precipitation

In this section, we review the recent anti-deforestation policies
implemented in Brazil and show how, despite an early correlation,
fire and deforestation rates decouple from each other after 2007;
perhaps because fire regimes respond not only to policies but also
to abiotic conditions.

Following the 27,772 km2 of deforestation observed in 2004,
Brazil enacted the first Action Plan to Prevent and Control
Deforestation in Amazonia (PPCDAm-I). Implemented between
2004 and 2007, this plan restructured Brazil’s environmental
agency’s mission (IBAMA) to focus exclusively on enforcement and
regulation. IBAMA began using INPE’s ‘real-time’ deforestation
detection (DETER) to target its enforcement efforts in the field
(Abdala, 2008), and the country’s protected areas were expanded
dramatically. Between 2004 and 2008, 25 million hectares of
federal conservation units, 10 million hectares of indigenous lands,
and 25 million hectares of state conservation units were added to
the protected areas system in Amazonia (Abdala, 2008). These
efforts were followed by the second phase of PPCDAm (2008–
2011), focused on monitoring and enforcement of environmental
legislation. As part of this new phase, 36 municipalities were
placed on a list for special enforcement efforts due to historically
high deforestation rates. This list was later expanded to 43 (2009)
and 48 municipalities (2011). As of 2012, 46 municipalities remain
on the list (52 municipalities were blacklisted in total) (Fig. 2).

Once on the list, landholders in those municipalities were
subjected to greater monitoring scrutiny (i.e. more fines and
citations for non-compliance with environmental laws) (Barreto
and Silva, 2010; Arima et al., 2014). To this day, removal from the
list is contingent upon sustained reduction of deforestation rates,
creation of georeferenced cadastral maps of private properties, and
plans for restoring areas deforested illegally in each property
(MMA, 2013). In addition, in 2009, federal prosecutors initiated
civil actions against meat packing plants purchasing cattle from
non-compliant farms. As part of the initiative, prosecutors offered
to suspend the actions if companies agreed to purchase cattle only
from ranches that followed the directives established by PPCDAm.
Together, these actions have been hailed as a success story in



Fig. 2. PPCDAm-II originally placed 36 municipalities on a list for special enforcement efforts due to historically high deforestation rates. This list was later expanded to 43
(2009) and 48 municipalities (2011), after two municipalities were dropped from the list. Since 2012, 46 municipalities remain on the list (52 municipalities were blacklisted
in total).
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reducing deforestation to historically low levels (Soares-Filho et al.,
2010; Arima et al., 2014; Assunção et al., 2012).

While deforestation declined under these policies, fire did not
follow the same downward pattern. In 2010, a study by Aragão and
Shimabukuro found that fire occurrence increased in 59% of the
area where deforestation had been reduced. A closer examination
of deforestation data from INPE alongside MODIS fire events2 and
burned area3 reveals that this trend began even earlier. While
deforestation rates correlate positively with fire events (r = 0.532)
and burned area (r = 0.430) from 2001 and 2006, this positive
correlation breaks in 2007. At this point, fire events increase by 70%
(from 236,684 to 406,408) and burned area quadruples with
respect to the previous year (from 19,811 to 90,100 km2), despite a
continuing decline in deforestation. This decoupling between fire
and deforestation persists in the 2008–2013 period when the
correlation between burned area and deforestation becomes
negative (r = �0.156) and almost zero with respect to fire events
(r = 0.008). Interestingly, the most prominent years of fire
increase—2007 and 2010—were also years of below-normal
precipitation,4 suggesting abiotic conditions may have a role to
play (Fig. 3).

These changes in correlations between fire and deforestation, as
well as the inconsistent impact of anti-deforestation policies, lends
support to two hypothetical lines of reasoning behind the observed
fire regime. On one hand, decrease in fires could be due to anti-
deforestation policies; on the other, increase in fires may be due to
below normal precipitation in certain years. The goal of this article
is to determine the effect of those two confounding factors on
forest fires in Amazonia between the years 2001 and 2013.

3. Analytical framework & data processing

A main analytical challenge of this study is to control for the
effect of non-random blacklisting of municipalities. The Brazilian
government used historical deforestation information (INPE-
PRODES) to decide which municipalities should be blacklisted
under the policy (Arima et al., 2014). Since wildfires are linked to
deforestation, any attempt to calculate the effect of this policy on
2 Fire events are defined as the annual count of fire occurrences according to
MODIS Collection 5 Active Fire Data, Fire Information for Resource Management
System (FIRMS) product MCD14ML.

3 Burned Area is defined as the number of 0.25-km2 pixels according to MODIS
Collection 5.1 Burned Area Data product MCD45A1, which uses Terra and Aqua
satellites to identify what areas have burned on a monthly basis.

4 TRMM average annual precipitation in mm*pixel�1 per year according to
Tropical Rainfall Measuring Mission (TRMM) product 3B43.
fire without controlling for selection into treatment (i.e. black-
listing) is likely to be biased. One alternative would be to use
matching estimators to identify the counterfactual scenario of
what would have happened with fire in the absence of policies.
However, although matching methods with panel data exist, they
usually involve shrinking the time dimension into two periods,
pre- and post-policy. This strategy could identify the average effect
of blacklisting (i.e. average treatment effect) on fire, but it would
not identify the marginal impact of rainfall variation on fire
throughout the period or assess the longer term impact of
blacklisting in subsequent years. One alternative is to implement
panel econometric models due to their ability to identify the static
and dynamic effects of blacklisting as well as the effect of rainfall
variation, provided that selection into treatment is controlled for
(Wooldridge, 2010). Given the strengths of both matching and
panel estimators, we adopt a two-pronged approach whereby
matching estimators are used as a pre-processing step to select
sample units that are comparable with respect to certain pre-
blacklisting characteristics. Panel models are then applied on that
matched dataset to estimate the effect of the variables of interest.
By removing sample units in one group (not listed or listed)
without a comparable unit in the other group (listed or not listed)
we reduce bias in the subsequent regressions.5 This approach has
been shown to make parametric models (e.g. panel regressions)
less-model dependent and more accurate in causal inference
(Hsiao, 2007).

The matching procedure was implemented as follows. First, we
created a cross-sectional dataset of all municipalities in Amazonia
(n = 772) and a treatment binary variable if the municipality was
ever blacklisted in any given year. We then calculated the
propensity score of being listed or not through a logit regression
with explanatory variables that included historical deforestation
prior to 2001, which was the main criteria for blacklisting (see
Table A1 in Appendix A). One municipality was matched to one or
more municipalities from the other treatment group if their
propensity scores were within a caliper distance of 0.093. This
value is the product of the standard deviation of the propensity
scores (s.d. = 0.169) by 0.55. The scalar 0.55 is the upper bound of
the range of values that minimized the bias in a Monte Carlo
simulation study when at least one of the covariates used in the
propensity score was continuous (Austin, 2011). Forty-eight
municipalities were discarded, of which 15 were from the
blacklisted group and the remaining were from the non-listed
5 This is known as the overlap condition in propensity matching estimators
literature.



Fig. 3. Amazonian deforestation rates, TRMM average annual precipitation (mm*pixel�1 per year), amount of burned area (number of 0.25-km2 pixels), and amount of fire
events (annual count), 2001–2013, Brazil. Sources: INPE, TRMM, MODIS Burned Area, MODIS Active Fire.

Table A1
This table shows the standard error (SE) for each variable. Asterisks indicate
significant values: *p < 0.1, **p < 0.05, ***p < 0.001.

Variable Coefficients (Std Err)

Protected Area 0.00 (0.00)
TRMM 0.01 (0.00)**
Deforestation prior to 1997 0.00 (0.00)
Deforestation 1997–2000 0.01 (0.00)***
Percent Cerrado �0.02 (0.02)
Constant �6.98 (1.38)***
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group, yielding a final sample of 724 municipalities. Table A2 in
Appendix A shows the descriptive statistics of covariates before
and after matching.

In the second step, we used panel regression models on the sub-
sampled municipalities to assess the impact of environmental
policies and rainfall variation on fire. Policies include the
expansion of the protected area system and blacklisting, both
found to be the most important and effective public policies in the
reduction of deforestation in Amazonia (Soares-Filho et al., 2010;
Arima et al., 2014). Let fireit denote either the number of fire events
or burned area in municipality i in year t = 2001, . . . ,2013. The
Table A2
Matching methods result in smaller differences in standardized error for every
variable used.

Difference of Standardized Means

Before Matching After Matching

3-month SPI 0.116904 0.111926
Protected Area �0.47789 �0.40523
Wood Extraction �1.30755 �1.19817
TRMM �0.15689 �0.1417
Deforestation prior to 1997 �1.74084 �1.52936
Deforestation 1997–2000 �2.32638 �2.24886
Percent cerrado 0.58531 0.536501
basic model can be written as follows:

f ireit ¼ a þ b1MOLit þ b2PAit þ b3SPIit þ b4woodit þ tX
0
ig þ ci

þ mit ð1Þ
The variable ‘municipalities on the list’ (MOL) is defined as:

MOLit ¼ 1 for municipality i listed in year t and in all subsequent years
0 otherwise

�

Although certain municipalities were removed from the list
later, we first consider the effect to last for all subsequent years
because removal is contingent upon improved governance over
illegal deforestation and therefore is long-lasting. In the Results
section, we expand our analysis and test the dynamic effect of
blacklisting and if it varies over time. Fig. 4 shows those
municipalities that fall into the MOL treatment group. The variable
Fig. 4. Amazonian municipalities. Municipalities in gray are those municipalities
that were placed on the list between 2008 and 2011, and constitute our treatment
group (MOL). Untreated municipalities are shown in beige.
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PA is the area under protection and includes conservation units and
indigenous lands; and SPI is the standard precipitation index, a
variable that captures the deviation of precipitation from the
historical normal. The variable ‘wood’ is the volume of roundwood
extracted from native forests and controls for the impact of logging
on fire. The vector X includes time invariant variables to control for
“initial conditions” (Jalan and Ravallion, 1998) in each municipality
prior to 2001, the first year in the series. These variables include
prior deforestation rates, long term precipitation averages, and the
percent of the municipality that is cerrado, a fire-adapted tropical
savanna ecoregion. The variables are interacted with t and
therefore remain in the equation in fixed effects estimation
procedures (see below). These initial conditions provide a strong
control for factors that affect the amount of fire and that are
correlated with the onset of environmental policies. Without such
controls, the regression will be biased even after matching because
municipalities were placed on the list precisely because of high
levels of deforestation, and presumably high levels of fire (see
biased regression, Table A3 in Appendix A). The vector g contains
the parameters associated with X, ci is the municipality unob-
served fixed effect, and mit denotes the error term.

Four different estimators are implemented and compared: a
pooled OLS (POLS), fixed effect model (FEM), a two stage
instrumental fixed effect model (FEIV), and a Hausman-Taylor
estimator (HTM). The POLS assumes the composite error
eit ¼ ci þ mit is uncorrelated with the observed variables. The
FEM is the standard fixed effect model where the municipality
unobserved effect ci is eliminated by subtraction of the corre-
sponding individual means. FEM leads to consistent estimators
even if ci is correlated with the observables (Wooldridge, 2010). In
the FEIV, we assume MOL is endogenous and correlated with mit .
We use ‘deforestation until 19970 and deforestation from 1997 to
2000 as instruments for MOL. This requires the assumption that
past deforestation does not directly determine fire after 2001 but is
correlated with MOL (Wooldridge, 2010); a plausible assumption
according to the literature (Lima et al., 2012). Finally, the HTM is
based on the so called random-effects transformation. Unlike fixed
effects, random-effects models can identify time-invariant effects
through a stronger assumption that all regressors are uncorrelated
with mit . Here we assume that MOL (time-varying) and prior
deforestation (time invariant) are endogenous and SPI, percent of
municipality in cerrado, and long term precipitation are exoge-
nous.

3.1. Data processing

3.1.1. Fire events and burned area
For these analyses, our dependent variable takes two forms. The

first is a measurement of fire occurrence using the MODIS
Table 1
Descriptive statistics for variables of interest. For time varying variables, the number of 

years for which data was available (724 �13). In contrast, the number of observation
regression. These observations indicate that the panel is strongly balanced. All values f

Variable No. of Obs. Min Max Mean Std.

Time Varying
Burned Area 9,412 0.00 20,267.00 196.40 8
Fire Events 9,412 0.00 7110.00 288.64 5
3-month SPI 9,412 �2.93 2.53 �0.23 

Protected Area 9,412 0.00 143,347.10 2,364.58 8,6
Wood Extraction 9,412 0.00 1,500,000.00 16,141.86 68,5

Time Invariant
TRMM 724 1089.40 3,454.40 1,972.30 4
Deforestation prior to 1997 724 0.00 5,040.00 586.28 7
Deforestation 1997–2000 724 0.00 533.98 59.90 1
Percent Cerrado 724 0 100 23.80 
Collection 5 Active Fire Data, Fire Information for Resource
Management System (FIRMS) product MCD14ML. The second is
a measurement of burned area using the MODIS Collection 5.1
Burned Area Data product MCD45A1, which uses Terra and Aqua
satellites to identify what areas have burned on a monthly basis.
While burned area can be detected by other sensors such as TM,
ETM and OLI from Landsat, the information is not available for all of
Amazonia for all years. MODIS is the only time-series, wall-to-wall
dataset available. Additionally, while past research found that early
versions of the MODIS burned area products reported considerably
fewer fire detections in South America than the active fire product,
the products were found to have a similar temporal pattern (Roy
et al., 2008), and improvements have been made in recent years.
The Collection 5.1 Global Burned Area Product improved on the
previous product (Collection 5.0) by removing all MODIS band6
multi-temporal tests, which caused omission errors over certain
forest and agricultural areas, and by introducing mono-temporal
spectral tests to reduce burned commission errors associated with
agriculture. Collection 5.1 also incorporates the Collection 5.1
MODIS land cover product, improving accuracy and resolution. The
500 m resolution pixels in the MCD45A1 dataset are each given a
value of 1–4 to indicate whether the pixel was burned and with
what degree of confidence the burn was detected. The “Burned
Area Pixel QA” has also been refined to include QA = 5; a value
indicating burned areas that are detected within an agricultural
land cover class.

Because this study focuses on wild fires in forest areas, only
those cells with a burned area value of 1 (most confident wildfires)
were used for analysis. While a cell value of 5 indicates detections
over agricultural areas, these are likely to be controlled agricultural
fires for maintenance and thus were not used in our analysis. To
determine the burned area for a given year, all monthly layers from
the MCD45A1 were combined in a GIS into one single raster for
each year were the value of the cell i was determined as min(BAjan,
BAfev,...BAdec). MODIS FIRMS product MCD14L was also available at
a monthly resolution. In this case, monthly point layers were
unioned for their given year (i.e. the count of fires for all months
was summed) and the number of fires in each municipality and the
number of burned cells were counted using simple zonal GIS
operations. The fire event data differ from the burned area data by
including not only forest fires but all other types of fire such as
maintenance fires on agricultural areas.

Burned area per municipality averages 40 km2 (196 0.25-km2

pixels) from 2001 to 2013 with a minimum of 0 km2 and a
maximum of 5,066.75 km2 (20,267 0.25-km2 pixels). Similarly, fire
events per municipality average 288.64 events from 2001 to 2013,
with a minimum of 0 events and a maximum of 7110 events
(Table 1). Fig. 5 shows both burned area and fire events for every
three years 2004–2013. Of the 724 municipalities used in this
observations is equal to the number of municipalities multiplied by the number of
s for time invariant variables is simply the number of municipalities used in the
or every period across all municipalities are present in the sample.

 Dev. Unit

57.67 Total number of 0.25 km2pixels
63.06 Number of fire events per municipality
0.82 Number of standard deviations from historical normal

94.87 Sum of all protected areas and Indigenous areas in km2

58.71 Wood extraction in cubic meters per municipality per year

20.82 Average mm/year for each pixel from 2001–2013
35.18 Accumulated deforestation per municipality according to PRODES (km2)
06.07 Accumulated deforestation per municipality according to PRODES (km2)
36.82 Percent of the total municipality that is cerrado ecosystem (%)



Fig. 5. Burned Area and Fire Events for the study region during 2004, 2007, 2010, and 2013. It should be noted that both 2007 and 2010 were considered drought years (see
TRMM Annual Precipitation, Fig. 3).

Fig. 6. A quick comparison of municipalities on (MOL) and off (MNL) the blacklist highlights the dramatic differences between the two. Here, deforestation (green line), fire
events (orange bars) and burned area (red bars) are shown for both MOL and MNL counties, on shared axes.
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study,170 do not show any burned area during the period. Forty-six
municipalities experienced over 1000 fire events per year on
average.

3.1.2. Municipalities on the list
As described above, municipalities that underwent policy

treatment are designated as MOL and are differentiated from
counties that did not undergo treatment. This treatment is
identified in our analyses through a binary blacklist variable. Data
for the blacklist variable was obtained from the Brazilian govern-
ment’s Ministry of the Environment (www.mma.gov.br), which
generated an annual list of counties (Lista de Municípios Prioritários
da Amazônia) considered priorities for preventative action against
deforestation in the Amazon biome (article 2 of decree 6.321/07).
Employing this variable on a yearly basis not only separates the
treatment group (MOL) from the untreated group, but also allowed
us to account for changes in enforcement over time. These dynamic
effects of blacklisting are investigated in a subsection following the
presentation of main results, wherein we also present the models’
details (Fig. 6).

3.1.3. Precipitation
Two types of precipitation data were also employed for our

analyses: (1) TRMM product 3B43 and (2) CAMS-OPI 3-month SPI.
The Tropical Rainfall Measuring Mission (TRMM) product 3B43
Version 7 reports monthly precipitation in mm/hr and combines
the estimates generated by the TRMM satellite sensors, other
satellite products, and CAMS global gridded rain gauge data. While
this mission ended on April 15, 2015, it provided 17 years of
scientific data and ultimately became the space standard for
measuring precipitation. In contrast, CAMS-OPI is a precipitation
estimation technique that produces real-time monthly analyses of
global precipitation by combining observations from rain gauges
(CAMS data) with precipitation estimates from a satellite algo-
rithm (OPI). CAMS-OPI analyses are on a 2.5 � 2.5� latitude/
longitude resolution, are updated each month, and extend back to

http://www.mma.gov.br
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1979. While other datasets were available for Standardized
Precipitation Indexes (SPI), the CAMS-OPI 3-month SPI was
selected due to its spatial resolution and because its temporal
range overlapped with the fire data (monthly resolution from 1979
through present day). The 3-month SPI compares the precipitation
over a specific 3-month period with respect to the historical
precipitation during that same period. For example, a 3-month SPI
for the month of June 2010 shows how much the total precipitation
between April, May, and June 2010 deviates from the historical
total between the same April-June period.

The TRMM data was used for two purposes. First, we created a
thirteen-year average rainfall value for each municipality to
control for climatic variations across municipalities (time-constant
variable in vector X, see above). This variable controls for the
pronounced north-south and east-west precipitation gradient
across Amazonia. Second, we used the TRMM to identify the driest
month of the year in each municipality, which was then used to
select the relevant 3-month CAMS-OPI month. This identification
is important for two reasons. First, the dry and wet seasons are very
distinct between the northern and southern portions of the
Brazilian Amazon. In the southern part, the dry season is typically
between June-September and in the northern part between
December-February. Second, fire is more likely to occur during
the dry seasons. Thus, by using the driest month as the identifier
for the best 3-month SPI, we assume that more or less rainfall in
the three months preceding the driest month of the year will have
the largest impact on the overall amount of fire in a given
municipality.

TRMM precipitation averages 1,972.30 mm/year from 2001 to
2013 with a minimum of 1,089.40 mm/year and a maximum of
3,454.40 mm/year (Table 1). Four-hundred eighty municipalities
experienced below average TRMM during the period. Of these, 84
had averages below 1500 mm/year. In contrast, SPI averages �0.23
from 2001 to 2013, with a minimum of �2.93 and a maximum of
2.53. An SPI below �1 occurs in 16% of the samples (1619 pooled
observations). Of these, nearly 70% (1090) have occurred as of
2008.

3.1.4. Deforestation
Deforestation data was obtained from the Projeto de Monitor-

amento do Desmatamento na Amazônia Legal por Satélite (PRODES)
dataset of Brazil’s National Institute for Space Research (INPE,
2015). The PRODES deforestation dataset was used in some of our
statistical analyses to account for prior deforestation conditions in
both MOL and MNL counties and in our matching procedure
because it was the primary criteria used for blacklisting. Although
other deforestation datasets exist, we opted to use PRODES
precisely because it is the “official” source of information used by
Brazil’s Environmental Ministry for policy implementation.6

PRODES data is issued yearly and reports the number of hectares
deforested in a given municipality. PRODES reports a gross total of
deforestation per municipality up to the year 1997 (accumulated
deforestation), and has annual reports of incremental deforesta-
tion from 1998 onward. Since our fire dataset begins in 2001, we
used both the total accumulated deforestation until 1997 and
deforestation from 1997 to 2000 in the analyses. Prior to 1997,
deforestation averaged 586.28 km2 per municipality with a
minimum of 0 km2 and a maximum of 5,040.00 km2 (Table 1).
6 It should be noted that while INPE’s PRODES dataset is the primary criteria for
blacklisting and was selected as the deforestation dataset for this study, it is not
without its flaws. Hansen et al. (2008) found that PRODES overlooked clearing of
forest regrowth as a component of deforestation. Other recent studies have also
highlighted the challenges associated with measuring tropical deforestation,
including inconsistent results (Kim et al., 2015) and the need for a single,
unambiguous definition of forest (Sexton et al., 2015).
From 1997–2001, an additional 159.17 km2 were deforested on
average per municipality, with a minimum of 0 km2 and a
maximum of 2469.12 km2. From 1997–2001, approximately one-
third (38%) of all municipalities experienced zero deforestation.

3.1.5. Protected areas
Protected Area data were obtained in GIS vector format from

Brazil’s Environmental Ministry website (MMA, 2015) and
included information on sustainable use areas, integral protection
area, and indigenous areas. Included in the attribute table were
also dates when each area was created and whether it belonged to
the federal or state government. This dataset was intersected with
a municipality GIS vector file to determine the amount of protected
areas in each municipality from 2001 to 2013. During the study
period, protected areas average 2,364.58 km2 per municipality. Of
these, an average 744.50 km2 per municipality were sustainable
use areas, 468.16 km2 were integral protection areas, and
1,162.56 km2 were indigenous reserves. On average, 123.18 km2

in each municipality were state-run while 344.97 km2 were
federally run.

3.1.6. Cerrado
Data for the spatial extent of the cerrado ecoregion were also

obtained from Brazil’s Environmental Ministry website (MMA,
2015), in GIS vector format. This dataset was intersected with a
municipality GIS vector file to determine the area (km2) and
percent of cerrado for each municipality. Of the 772 municipalities,
348 are at least partially comprised of cerrado. Overall, percent
cerrado averages 23.80% (Table 1).

3.1.7. Wood production
We obtained the volume of native roundwood extracted in each

municipality from 2001 to 2013 from the Brazilian Institute of
Geography and Statistics (IBGE) online portal SIDRA, Table 7.1
(IBGE, 2015). This is the only municipality level, time-series dataset
on wood extraction in Brazil available to the general public, and
includes only legal logging and wood extraction. For the study
period, legal wood extraction averages 16,141.86 m3yr�1 munic-
ipality�1 with a minimum of 0 m3yr�1 municipality�1 and a
maximum of 1,500,000 m3yr�1 municipality�1 (Table 1).

To summarize, the unit of observation for this article is the
municipality (or county) and the universe for statistical analysis
comprises a total of 724 municipalities after matching, of which 37
are MOL. The time dimension is from 2001 to 2013 and the panel is
strongly balanced, i.e. no missing values across municipalities or
time. Statistical analyses examine the impact of both the CAMS-OPI
3-month SPI and blacklisting on fire in the Brazilian Amazon. For
the purposes of this article, fire is measured in terms of fire events
(FIRMS MCD14ML), which include agricultural fires, and burned
area (MCD45A1), which may be more representative of forest fires.
Variables for past deforestation have been included in our
regression equations as well.7 In this case, past deforestation is
used to control for the fact that municipalities were listed because
of high deforestation in the past. Since this variable is correlated
with determinants of deforestation such as roads, it also provides a
good proxy for those other drivers of fire that are not included in
the regression. Time constant physical attributes (soils, size of
municipality, elevation, etc.) of the municipalities are controlled
for in the fixed and random effects models.
7 It should be noted that the data provided for past deforestation.



Table 2
Results from Pooled Orthogonal Least Square (POLS), Fixed Effects Method (FEM), Fixed Effect with Instrumental Variables (FEIV) and Hausman-Taylor Method (HTM) for both
burned area (A) and fire events (B). Values indicate the coefficient for each variable, with standard error indicated by parentheses (SE). Asterisks indicate significant values:
*p < 0.1, **p < 0.05, ***p < 0.001.

(A) BURNED AREA

Variable POLS FEM FEIV HTM

SPI �37.09*** (10.08) �31.62*** (7.16) �31.90*** (7.98) �35.31*** (7.64)
Blacklisting 41.08 (96.36) �130.45** (64.92) �24.28 (141.18) �117.54** (57.22)
Protected Area 0.0044*** (0.00) 0.0011** (0.00) 0.0008 (0.00) 0.0012 (0.00)
Wood �0.0002*** (0.00) �0.0001 (0.00) �0.0000 (0.00) �0.0000 (0.00)
Deforestation up to 1997 0.1218*** (0.02) 0.0006 (0.00) Instrument �0.2578 (0.32)
Deforestation 1997–2000 0.4715*** (0.12) 0.0089 (0.01) Instrument 2.1309 (1.32)
TRMM �0.0023 (0.01) �0.0013** (0.00) �0.0011 (0.00) �0.0597 (0.10)
Percent Cerrado 7.52*** (0.40) 0.1858*** (0.05) 0.1845*** (0.04) 5.799** (1.93)
Constant �93.47** (35.87) 3,645.35*** (935.75) 4,696.12 (4074.40) 191.61 (345.09)
Number of Observations 9412

(B) FIRE EVENTS

Variable POLS FEM FEIV HTM

SPI �25.30*** (6.11) �37.16*** (5.06) �34.62*** (4.84) �28.73*** (4.35)
Blacklisting �31.17 (71.72) �737.60*** (110.84) �2,001.79*** (85.62) �1,001.32*** (32.54)
Protected Area 0.0094*** (0.00) 0.0059* (0.00) 0.0089*** (0.00) 0.0043*** (0.00)
Wood 0.0008*** (0.00) �0.0004** (0.00) �0.0010*** (0.00) �0.0003** (0.00)
Deforestation up to 1997 0.0528*** (0.01) 0.0030 (0.00) Instrument 0.4133 (0.27)
Deforestation 1997–2000 2.52*** (0.13) �0.1528*** (0.03) Instrument 3.34** (1.14)
TRMM �0.0165 (0.01) �0.0018** (0.00) �0.0022*** (0.00) 0.2060** (0.09)
Percent Cerrado 3.15*** (0.15) 0.0770*** (0.02) 0.0713** (0.03) 6.59*** (1.65)
Constant 24.14 (25.95) 22,173.46*** (2,003.36) 8,999.82*** (2471.15) �708.14** (296.21)
Number of Observations 9,412
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4. Results & discussion

All statistical methods indicate a highly significant (p < 0.001)
negative SPI impact on both fire events and burned area. For each
one standard deviation decrease in SPI, burned area is estimated to
increase by 31–37 0.25-km2 pixels yr�1 municipality�1 (34 pixels
on average) and fire events are anticipated to increase by 25–37
events yr�1 (31 events per year on average) (Table 2a & b).
Blacklisting had a significant (p < 0.001) negative effect on fire
events in all models except POLS and was expected to result in a
decrease of 737–2001 fire events yr�1 municipality�1 (excluding
POLS result, which estimates 31 additional events). In contrast,
POLS showed a non-significant effect of blacklisting on both fire
events and burned area, indicating that the unobservable fixed
effects (such as size of the municipality, soil type, etc.) are likely
correlated with the observables and therefore should be controlled
for or eliminated through differencing.

Though blacklisting negatively impacted fire events, the effect
of blacklisting on burned area was less clear. The POLS model found
blacklisting to have a non-significant positive effect on burned area
while the FEIV model found only a slight negative, non-significant
impact. FE and Hausman-Taylor models found blacklisting to have
a significant (p < 0.05) negative effect. Assuming the latter two
regression models are estimating the correct effect, blacklisting
would decrease burned area by 117–130 0.25-km2 pixels per year.

Percent cerrado had a significant positive effect (p < 0.05 in all
cases and p < 0.001 in most) on both fire events and burned area in
all models. For each one percent increase in cerrado area, burned
area is estimated to increase by up to 7 0.25-km2 pixels per
municipality per year (3.67 pixels on average) and fire events are
anticipated to increase by up to 6 events per year (3.26 events per
year on average). In contrast, effects of protected areas, wood
extraction, TRMM precipitation, and prior deforestation on fire
events and burned area remained less clear. Outside of the biased
POLS model, few significant results were found. Additionally,
coefficients were consistently negligible in magnitude (coefficients
<0.01), indicating that even if one of the variables were found to
impact fire events or burned area, they would only result in a
decrease of less than 0.01 fire events per municipality, or
0.0025 km2 of burned area per year. These minor effects were
observed even when we ran different specifications of the model
(results not shown but available upon request to the authors). For
instance, all four models were run using lagged protected area and
lagged wood extraction (t-1, t-2) to test if actions taken in one year
would realize an effect in the following year or two. We also used
different categories of protected areas instead of the combined
total (e.g. integral protection only, state, federal protected areas)
and only one prior deforestation period. Results of those models
were consistent with the reported results, indicating robustness
across specifications. The results seem to imply that the increment
on protected areas did not have an impact on fires once you control
for the other covariates. This is not to say that the overall level of
protected areas does not have any impact but rather that the
additional areas were not as effective, at least in the short post-
implementation period. As the frontier advances into the forests
and closer to newly established protected areas, those effects will
be more likely to be observed in the future.

Though wood extraction is expected to be a key factor in
Amazon fire, the dataset used here is based on official estimates of
wood extraction and therefore does not account for illegal
extraction, which may explain the lack of effect. Similarly, though
SPI has a significant impact on fire events and burned area, the lack
of significance of the TRMM precipitation variable may be due to
the fact that we are using prior deforestation as a control. Given
that prior deforestation is already correlated with gradients of
precipitation (more deforestation occurs in drier areas of the
Amazon), controlling for this history may confound the real effect
of differences in precipitation across the region.

4.1. Dynamic effect of blacklisting

In this section, we investigate the effect of blacklisting on fire
events and area burned in the five years following the time when
municipalities were first blacklisted. Although we have shown in
the previous section that blacklisting had a strong impact in the
reduction of fire events, it is possible that this effect may have



Table 3
Results from Fixed Effect Model (FEM) including dummy variables for both burned
area (A) and fire events (B). Values indicate the coefficient for each variable, with
standard error indicated by parentheses (SE). Asterisks indicate significant values:
*p < 0.1, **p < 0.05, ***p < 0.001.

FEM with Dummies

Variable (A) BURNED AREA (B) FIRE EVENTS

SPI �29.91*** (6.78) �36.89*** (4.98)
D0 �233.50** (91.79) �559.2*** (92.96)
D1 �255.9* (143.75) �782.8*** (148.28)
D2 745.48** (338.35) 156.72 (163.46)
D3 �254.3** (102.38) �925.3*** (142.92)
D4 �200.6** (98.77) �549.8*** (90.78)
Protected Area 0.0009** (0.00) 0.00525** (0.00)
Wood 0.00 (0.00) �0.00029** (0.00)
TRMM �0.00121** (0.00) �0.00142** (0.00)
Deforestation up to 1997 0.000522 (0.00) 0.002544 (0.00)
Deforestation 1997–2000 �0.00384 (0.01) �0.18902*** (0.02)
Percent Cerrado 0.1865*** (0.05) 0.0761*** (0.02)
Constant 4,833.4*** (890.67) 25,623*** (1755.60)
Number of Observations 9,412
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waned over time once the impact of the first years had passed. One
possible explanation for this reduced effect could be due to the lack
of budgetary and institutional commitment to enforce environ-
mental regulations once the policy was deemed “successful” after
the first initial years. The alternative hypothesis is that environ-
mental enforcement continued in the region and the impact of
blacklisting is long-lasting.

To account for this dynamic effect of blacklisting, we reformulated
Eq. (1) into Eq. (2), as follows:

f ireit ¼ a þ D0k
itrk þ b2PAit þ b3SPIit þ b4woodit þ tX0

ig þ ci

þ mit

X4
k¼0

where D
0k
it is a set of dummy variables that takes the value one in k

years after the municipality i was blacklisted and zero for all other
years. For example, suppose a municipality i was blacklisted in
2008. Then
D0
i;2001 ¼ 0; . . . ; D0

i;2008 ¼ 1; D0
i;2009 ¼ 0; . . . :; D1

i;2001 ¼ 0; . . . ;

D1
i;2008 ¼ 0; D1

i;2009 ¼ 1; . . . :; . . . .; D4
i;2001 ¼ 0; . . . ; D4

i;2011 ¼ 0; . . . :;

D4
i;2012 ¼ 1; D4

i;2013 ¼ 0:
Fig. 7. Feedback between fire and deforestation, with the added components of 
Thus, the coefficient rk measures the effect of blacklisting k
years after the municipality was blacklisted. We estimated Eq. (2)
using fixed effects estimators and results are presented in Table 3.

Our results show that blacklisting had a significant impact on
fire events even four years after blacklisting, with the exception of
the second year following blacklisting; the coefficient r2 ¼ 156:72
is positive and not statistically significant. This positive effect is
likely representing the confounding effect of less precipitation in
2010 since most municipalities were blacklisted in 2008 (Fig. 2).
The SPI coefficient is still negative and significant despite the
inclusion of the yearly dummy variable. As for burned area, the
same pattern is observed: the effect of blacklisting is negative and
(marginally) significant after four years of blacklisting but is
positive and statistically insignificant in the second year, an
indication that the dry weather in 2010 outweighed the policy
effect.

5. Conclusion

While this analysis provides strong evidence for the effect of
blacklisting on reducing fire events, the effect of blacklisting on
burned area is not consistently negative. Considering that burned
area is the variable more likely to identify forest fires as opposed to
agricultural fires, these results indicate that PPCDAm-II, which has
been shown to reduce deforestation (i.e. clear cutting of the forest
(Arima et al., 2014)), may not be preventing forest degradation
caused by wildfires in dry years.

The implications of these results could not be more important.
Without addressing degradation, policies focused solely on
deforestation are only partially effective. The degradation that
occurs when the forest is disturbed by anthropogenic fire and
logging can reduce aboveground carbon by 40% on average and
constitutes an important source of emissions (Berenguer et al.,
2014). Such degradation also furthers the risks of future
fragmentation, burning, and grass invasion (see Fig. 1).

Climate change will likely worsen these effects (Jolly et al.,
2015). Tight linkages between climate, forest flammability, and
deforestation (Cochrane, 2001; Laurance and Williamson, 2001;
Cochrane and Laurance, 2002, 2008; Alencar et al., 2015) as well as
the strong influence of ENSO years (Alencar et al., 2004; Alencar
et al., 2006; Marlon et al., 2008; Alencar et al., 2011; Alencar et al.,
2015) indicate that climate will play a larger role in driving fire
patterns and affecting carbon emissions in the Brazilian Amazon.
Our analysis adds to this literature and provides strong evidence
for the existence of a precipitation effect on fire events and burned
area. Results indicate that a one standard deviation decrease in SPI
could result in 11–15% more fire events and a 9–13 km2 (18–27%)
climate change and savannization that are to come (red arrows, black text).



Table A3
Results of Pooled OLS regression, without controlling for prior deforestation. The
effect on both burned area and fire events is listed. Values indicate the coefficient for
each variable, with standard error indicated by parentheses (SE). Asterisks indicate
significant values: *p < 0.1, **p < 0.05, ***p < 0.001.

POOLED OLS, NO CONTROLS

Variable Burned Area Fire Events

SPI �61.46*** (10.81) �55.26*** (9.07)
Blacklisting 145.91* (77.59) 586.05*** (82.22)
Protected Area 0.01*** (0.00) 0.02*** (0.00)
Wood �0.00** (0.00) 0.00*** (0.00)
TRMM �0.35*** (0.02) �0.23*** (0.01)
Constant 860.37*** (40.75) 676.43*** (27.60)
Observations 9633 9633
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increase in burned area per year. Given that a one standard
deviation decrease in SPI occurs in about 15–17% of the samples,
the predicted decreases in precipitation are expected to have high
practical significance for fires in the future.

Dry-season length over southern Amazonia has increased
significantly since 1979 (Fu et al., 2013) and precipitation in Brazil
is expected to further decrease in the coming decades (Sampaio
et al., 2007; Fu et al., 2013). Consecutive dry years interspersed
with years of only average or below average rainfall is thought to
increase forest flammability, and decrease the forest’s ability to
resist future droughts (Alencar et al., 2011). Additionally, despite
uncertainty in the spatial pattern of future rainfall shifts, climate
models consistently predict that the changes will affect a large
portion of tropical land (Chadwick et al., 2015). These changes are
expected to be substantial, and may occur by the mid twenty-first
century, continuing to intensify as global temperatures rise
(Chadwick et al., 2015).

In addition to climate change driven by external forcings (e.g.
CO2), studies suggest a feedback loop between deforestation and
climate that may further exacerbate the problem (Fig. 7). Regional
climate models indicate that widespread deforestation may lead to
declines in precipitation and consequently to the savannization of
southern Amazonia and desertification of Northeast Brazil (Oyama
and Nobre, 2003; Nepstad et al., 2008). Increases in deforestation
are also expected to create a warmer, drier post-deforestation
climate in southern Amazonia (Fu et al., 2013; Sampaio et al.,
2007). These changes are likely to affect both carbon balances and
future fire risk in the Amazon region (Cochrane et al., 1999;
Nepstad et al., 2001; Lewis et al., 2011).

In conclusion, humans today are faced with an irony. After
setting fires to non-fire-prone landscapes for years in an effort to
conquer nature (Neves et al., 2004; Steffen et al., 2007; Bush et al.,
2008; Glikson, 2013), anthropogenic fires in the Amazon have
gotten out of our control. These anthropogenic fires may become a
serious environmental challenge. The reduction of carbon emis-
sions from deforestation and forest degradation is now a vital
component in climate change mitigation strategies. Global
initiatives such as REDD+ are receiving growing investments
and in-country policy makers are under pressure to protect intact
forests (Kollmuss et al., 2008). While Brazil met these pressures in
2009 by making the first “D”, deforestation, a central piece of its
climate change policy (Brasil, 2009), the initiative does not seem to
have slowed the second “D”, degradation caused by forest fires.
This means that Brazil will likely continue to experience increased
carbon emissions as well as a high rate of fire in the coming years,
despite the seeming success of its deforestation reduction efforts.
Even as we try to regulate these fires through policy and
suppression, climate change may make efforts more costly and
less effective (Nepstad et al., 2008). Brazil will face a different, drier
climate in southern Amazonia in the coming decades. The Amazon,
particularly its southern portion, is a place sufficiently wet to
produce huge quantities of fuel (i.e. biomass) but also dry enough
to allow fires to occur. As climate shifts, the area may become even
more susceptible to burning. Remaining intact tropical forests may
shift from being sinks of carbon dioxide and to being contributors
(Lewis et al., 2011). Controlling these outbreaks and curbing carbon
emissions will require innovative strategies to manage the
landscape and prevent further forest degradation. This is a big
task at hand that Brazil will have to address seriously in the
decades to come.
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Appendix A.

Propensity score matching

We implemented propensity score matching to create a
balanced sample of municipalities. This method tries to find a
municipality in one group (e.g. listed) that is similar to a
municipality in the other group (e.g. not listed). The procedure
essentially finds municipalities that had the same chance of being
listed (i.e. to receive treatment) where some were in fact listed and
some were not. This is called the overlap condition in treatment
effects literature. If this condition is satisfied, then the sample is
said to be balanced. Similarity is established by propensity scores,
which in our case is the estimated probability of being listed from a
logit regression, where the dependent variable is whether the
municipality was ever listed and the explanatory variables are past
deforestation, precipitation, percent cerrado, and protected areas
in 2001. Past deforestation is the main criteria used by the Ministry
of the Environment to list or not list a municipality. We set the
caliper distance to 0.093, which is the standard deviation of the
estimated propensity scores multiplied by 0.55, according to the
procedure advised by Austin (2011). Below we report the logit
results.

Difference of means, before and after matching

This table (below) displays the difference in standardized
means between listed and non-listed groups both before and after
matching methods were applied. The exclusion of municipalities in
one group without a counterpart in the other group within the
caliper distance reduced the difference in standardized means for
every variable.

Biased regression (Pooled OLS, without controls)

As can be seen below, a simple Pooled OLS, without controlling
for prior deforestation rates, results in a positive effect of
blacklisting on both fire events and burned area. These results
indicate that if selected for policy treatment—and therefore higher
enforcement of environmental laws—municipalities could expect
to see an increase of over 32 km2 (145.910.25-km2 pixels) in
burned area and over 586 fire events per year (Table A3, below).
These spurious results are due to the fact that municipalities
targeted for blacklisting were selected on the basis of higher initial
rates of fire and deforestation. Without controlling for initial
differences between MOL and untreated municipalities,
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regressions remain biased and erroneously indicate that higher
deforestation and fire is due to treatment.
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