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This paper deals with delay compensation of vanadium Self Powered Neutron Detectors (SPNDs) using
Linear Matrix Inequality (LMI) based H-infinity filtering method and compares the results with Kalman
filtering method. The entire study is established upon the framework of neutron flux estimation in large
core Pressurized Heavy Water Reactor (PHWR) in which delayed SPNDs such as vanadium SPNDs are
used as in-core flux monitoring detectors. The use of vanadium SPNDs are limited to 3-D flux mapping
despite of providing better Signal to Noise Ratio as compared to other prompt SPNDs, due to their small
prompt component in the signal. The use of an appropriate delay compensation technique has been
always considered to be an effective strategy to build a prompt and accurate estimate of the neutron flux.
We also indicate the noise-response trade-off curve for both the techniques. Since all the delay compen-
sation algorithms always suffer from noise amplification, we propose an efficient adaptive parameter
tuning technique for improving performance of the filtering algorithm against noise in the measurement.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In Pressurised Heavy Water Reactors (PHWRs), the neutron flux
distributed over the entire core does not provide an absolute value
of reactor power. The neutron flux signal thus, heavily depends on
the calibration with respect to some reference power sensed by
other signals such as total thermal output of the core. Other factors
such as reactivity device fluctuations, non-linear core model,
uncertainty about reactivity information and sensor degradation
worsen the overall situation. The reactor control or protection sys-
tems heavily rely upon the prompt and accurate information of
neutronic flux for taking any control or safety action.

The detectors used for sensing the neutron or gamma flux are
known as Self Powered Neutron Detectors (SPNDs). These are in-
core instruments used for measuring neutron flux inside the reac-
tor core and are primarily used for regulation and protection of the
reactor. The neutron interacts with the SPND sensitive material
and undergoes several transitions out of which some of the transi-
tions are prompt while others are delayed depending upon the
characteristics of the sensitive material. The term ‘‘delay” is gener-
ally used across the industries to represent the first order lag
exhibited by the SPND output. The SPND based on n, b such as
vanadium is slow responding and its accuracy in terms of signal
to noise ratio is relatively higher as compared to SPNDs based on
n, c, e. The use of vanadium SPNDs has been limited to less critical
but important application such as online three dimensional flux
mapping along the different geometric planes in the reactor core.
Therefore, it is of much interest to develop a robust delay compen-
sation algorithm for n, b based SPNDs to make them useful for
safety critical application.

A dynamic delay compensation technique to make use of these
SPND signals into a more useful prompt signal has always been
considered a good strategy. The most common delay compensation
techniques initially used were based on direct inversion of the for-
ward transfer function from input flux to the SPND current output
and was introduced by Banda and Nappi (1976) for delay compen-
sation of Rhodium SPND primarily used in Light Water Reactors
(LWRs). The direct inversion technique provided a reasonable solu-
tion for SPND delay compensation; however, it is a well under-
stood fact that this technique tends to increase the noise in the
output signal if the measurement is affected by noise. The later
researches in similar line were made to address the above issue
by Yusuf and Wehe (1990) and Kulacsy and Lux (1997) by using
analog techniques. The widespread development of the Kalman fil-
ters introduced by Kalman (1960) and later by Maybeck (1982) and
Sorenson (1970), led to development of Kalman filter based delay
compensation techniques which performed better than the direct
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inversion technique in terms of noise in the final estimated output.
The Kalman filter based solution can be found in Auh (1994) and
Kantrowitz (1987). Some recent development in Kalman filter
based delay compensation can be found in Srinivasarengan et al.
(2012) and Mishra et al. (2013). The Kalman filter has limitation
in terms of the knowledge of the noise characteristics and linearity
and therefore the robust solutions based on H1 filtering was pro-
posed by Park et al. (1999) and the performance was further shown
to be improved. However the essential problem of noise amplifica-
tion has remained unsolved in all the previous research work
which obstruct their used for many practical purposes. An adaptive
technique based on the fading memory based H1 was proposed in
Tamboli et al. (2015) which adapts the rate of changes of measured
signal unto fading memory forgetting factor. This technique pro-
duce much improved results however requires a parallel filter for
filtering the noisy measurement and hence requires more compu-
tational effort.

The paper deals with two issues in general; first is the formula-
tion for delay compensation along with the trade-off between
noise and response time when using the delay compensation algo-
rithms and second issue is the degradation in SNR associated with
delay compensation algorithms. For the latter issue we propose the
adaptive technique based on the dynamic tuning of the process
covariance matrix. The proposed technique in a broad sense con-
trols the filter parameter such that the contribution of delay com-
pensation algorithm exists only when the need arises, reflected in
terms of updated process covariance matrix. This way, the noise in
the estimated output reduces to a minimum, under the steady
state condition (i.e. in the absence of a transient) and the overall
signal to noise ratio improves considerably. The proposed tech-
nique is less computational intensive as compared to other pro-
posed method. The entire work is done primarily for vanadium
SPND however the same can be readily extended to other SPNDs
with more complex distribution of delayed fractions.

The paper is structured as follows: in Section 2, we describe the
PHWRs in brief followed by the description of SPND and its working
principle. In Section 3, we present the detailed derivation and study
of the delay compensation methodology followed by simulation
studies and the trade-off curves. In Section 4, we present the formu-
lation for the adaptive delay compensation technique based on state
difference, followed by the simulation studies. We also present off-
line simulation experiments on the real time sensor data for demon-
strating the performance of the proposed technique.

2. Pressurised Heavy Water Reactor (PHWR) model

The Pressurised Heavy Water Reactor (PHWR) is based on pres-
sure tube concept with heavy water (D2O) as both coolant and
moderator. The core diameter is approximately 7 m and length is
approximately 6 m. The detailed description of PHWR is beyond
the scope of this paper; however a brief description is necessary
before moving on to the flux estimation concepts. The reactor core
dynamic behaviour is explained by the Point Kinetic Equations
(PKEs) which are derived from the neutron transport equation
involving neutron diffusion and generation. The PKEs describe
the rate of change of neutron density (n:cm�2:sec�1) with respect
to reactivity and delayed neutron precursor concentration. The
point kinetic model can be written as (Tiwari et al., 1996):

dN
dt

¼ ðq� brÞ
l

N þ
X6
r¼1

krCr;

dCr

dt
¼ br

l
Cr � krCr;

9>>>=
>>>;

ð1Þ

where N is the neutron density (neutrons.cm�3). br and kr denote
the delayed neutron fractional yield and decay constant of the fis-
sion product neutron precursor group r. Cr represent the concentra-
tion of the precursor group r at time t. The expression for
concentration of the precursor group can be replaced with average
concentration C replacing br and kr with their average b and k. q
denotes reactivity controlled by the reactivity devices.

The above model explains the behaviour for small core homoge-
neous model. For large core reactor, the point kinetic model can be
expanded to multiple point kinetic equations each controlled by its
associated reactivity device and coupled to each other through
coupling coefficient as follows:

dNi
dt ¼ ðqi�bÞ

l Ni þ kC � 1
l

Pn
j¼1mijNi þ 1

l

Pn
j¼1mjiNj;

dCi
dt ¼ b

l Ni � kC;

)
ð2Þ

where n is the number of cells affected by localized flux variation.
Since we have used the normalized flux the Ni is replaced with
Ni=NF ¼ N0

i and Ci will be replaced with Ci=NT ¼ C0
i, where NT is

the flux at full power (i.e. 2� 1014 nv). The coupling coefficient
mij can be given by:

mij ¼
Dv lvij

dijV j
ði– jÞ;

mii ¼ 0;
ð3Þ

where D is the diffusion coefficient; v is thermal neutron speed; l is
prompt neutron life time; vij is the area of the interface between ith
and jth zone; dij the centre to centre distance between ith and jth
zone and Vj is volume of the jth zone. The coupling coefficient
between a zone and a non-neighbouring zone can be conveniently
assumed to be zero. The PKE is a set of stiff non-linear equation
since the rate of neutron density variations heavily depends upon
the reactivity. The proper zonal reactivity control can be only
achieved through accurate and prompt neutron flux information.
2.1. Self Powered Neutron Detectors

The reactor power for large core PHWR cannot be accurately
assessed by average flux information measured throughout core
neutron flux sensors such as Ionization Chamber. The core condi-
tion for such cases is assessed by a number of in-core sensor i.e. self
powered neutron detector. Various neutron or gamma sensitive
material is used for sensing the in-core flux such as rhodium,
cobalt, nickel, platinum or vanadium. The material based on
n; c; e exhibits prompt response whereas material based on n; b
such as vanadium and Rhodium exhibits delayed response. The
schematic of SPND is shown in the Fig. 1.

Among the above mentioned materials, the SPNDwith n; b exhi-
bits higher signal strength and hence provides better signal to
noise ratio. Due to higher signal strength from vanadium SPND,
they provide more accurate readings and are used as a reference
to correct less accurate and prompt SPNDs.

The observation model is a first order linear dynamic model
with /k as input and yk as measured output and can be written as

xk ¼ e�Ts=sxk�1 þ ð1� e�Ts=sÞ/k�1 þwk�1 ð4Þ
yk ¼ ð1� kpÞxk þ kp/k; ð5Þ

where s = 325 s for vanadium SPND and kp is the prompt compo-
nent fraction which is equal to 0.07. The above expression is nor-
malised and brings the state and input vector to same dimensions
and is useful for building the adaptive technique later discussed
in the paper. The model can be generalised for the signal containing
various components with different time constant {s1; s2 . . .} and dif-
ferent proportion {k1; k2 . . .}. Fig. 2 shows the typical histogram for
50,000 data points of noise amplitude experimentally obtained for



Fig. 1. Typical SPND schematic.

Fig. 2. Noise histogram of SPND.
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an Inconel SPND of length 868 mm. The sampling interval was kept
as 50 ms.

The above experiment provides direct information of noise vari-
ance and its characteristics. Null hypothesis test for confirming
Gaussian distribution was performed before applying the algo-
rithm. It was observed that the Gaussian distribution cannot be a
generic nature for all SPNDs. Some SPNDs were observed to have
skewed Gaussian distribution of noise.

3. Delay compensation algorithm

3.1. Augmented Kalman filter for delay compensation

The Kalman filter provides the analytical solution for the state
estimation problem by minimizing the trace of estimation error
covariance matrix i.e. Pk for discrete time linear Gaussian dynamic
system defined as (Welch and Bishop, 2006):

xkþ1 ¼ Akxk þ Bkuk þwk ð6Þ
yk ¼ Ckxk þ Dkuk þ vk; ð7Þ
where x 2 Rn�1 is state vector to be estimated, y 2 Rp�1 is measure-
ment output vector, uk 2 Rm�1 is input vector. w 2 Rn�1 and
v 2 Rm�1 are process and measurement disturbance vectors respec-
tively. Ak;Bk; Ck and Dk are matrices of appropriate dimensions. For
the time invariant model these matrices are constants. The Kalman
filter algorithm requires knowledge of Qk and Rk, which are non-
negative definite matrices representing process and measurement
disturbance covariance matrices. Kk is Kalman gain vector at kth
instant. The Kalman filter recursive steps are written as

x�
kþ1 ¼ Akxþ

k þ Bkuk ð8Þ
P�
kþ1 ¼ AkP

þ
k A

T þ Qk ð9Þ
Kkþ1 ¼ P�

kþ1C
T
kþ1½Ckþ1P

�
kþ1C

T
kþ1 þ Rkþ1�

�1 ð10Þ
Pþ
kþ1 ¼ ðI � Kkþ1Ckþ1ÞP�

kþ1 ð11Þ
xþ
kþ1 ¼ x�

kþ1 þ Kkþ1ðykþ1 � Ckþ1x�
kþ1 � Dkþ1ukþ1Þ ð12Þ
For a forced system, Kalman filter requires knowledge of the
input vector. However in case of SPNDs with large delayed fraction,
only a small component of signal provides the information about
the prompt flux (forcing input) change. To compensate for large
delayed portion of the signal, the unknown input is augmented
in the state vector as another state variable with following hypo-
thetical model.

ukþ1 ¼ uk þ nk; ð13Þ

where nk 2 Rm�1 is the disturbance vector, which is required for
defining a large uncertainty term. The input vector is augmented
to state vector increasing the overall order of the filter. The aug-
mented model can be described as:

xkþ1

ukþ1

� �
¼ Ak Bk

0 1

� �
xk

uk

� �
þ wk

nk

� �
ð14Þ

yk ¼ Ck Dk½ � xk

uk

� �
þ vk ð15Þ

or

~xkþ1 ¼ A0
k
~xk þ ~wk ð16Þ

yk ¼ C 0
k
~xk þ ~vk; ð17Þ

where ~xk 2 RðnþmÞ�1 is augmented state vector. The Kalman filter
recursion can now be applied to the augmented model for the esti-
mation of both the state. The state variable defined for unknown
input is estimated in this process and appear as delay compensated
output. The augmented model considering unknown % flux input as
another state variable can be written as:

xkþ1

/kþ1

� �
¼ e�Ts=s 1� e�Ts=s

0 1

" #
xk
/k

� �
þ w1

k

w2
k

" #
ð18Þ

yk ¼ 1� kp kp
� � xk

/k

� �
þ vk ð19Þ

The Kalman filter assumes the uncertainties to be Gaussian,
however this may not be the case always in real life situation.
For such cases the Kalman filter still provide minimum error vari-
ance but does not guarantees the unbiased estimates (Chen et al.,
2004).

3.2. LMI-based a priori augmented H1 filter

The limitations of Kalman filter for non-Gaussian uncertainty
can be solved by using robust estimation techniques i.e. H1 filter-
ing method. The H1 filtering also known as minimax filtering does
not require probabilistic knowledge of the uncertainty or distur-
bance. It minimizes the maximum singular value of the matrix val-
ued transfer function from disturbance input vector to estimation
error vector. The H1 filtering finds an estimate of the xk, which
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minimizes the worst-case estimation error energy kek2 for all
bounded energy disturbance kxk2 (Yaesh and Shaked, 1991) i.e.

min sup
x2L2 ½0;1Þ

kHxeðjeÞk1 < c2 ð20Þ

where kHxeðjeÞk1 is the transfer function from disturbance xk to
the estimation error ek. The linear discrete time augmented model
defined in Eqs. (16) and (17) can be written in an augmented form

~xkþ1 ¼ A0
k
~xk þ B0

k
~xk ð21Þ

yk ¼ C 0
k
~xk þ D0

k
~xk; ð22Þ

where

B0
k ¼

B1
k 0 0

0 B2
k 0

" #
ðnþmÞ�ðnþmþpÞ

ð23Þ

D0
k ¼ 0 0 Dk½ �p�ðnþmþpÞ: ð24Þ
~xk 2 RðnþmþpÞ�1 can be considered to be an augmented distur-

bance vector consisting of three uncorrelated disturbance vectors
x1

k ;x
2
k and x3

k . Each disturbance signal (vector valued) is defined
as having unit covariance matrix.

Efðxi
kÞðxi

kÞ
Tg ¼ I for i ¼ 1;2 and 3 ð25Þ

The disturbance error vectors defined in Eqs. (16) and (17) can
be related with disturbance vector ~xk as

wk

nk

� �
¼ B0

k
~xk ð26Þ

vk ¼ D0
k
~xk ð27Þ

The discrete time estimator has the following form:

~̂xkþ1 ¼ A0
k
~̂xk þ A0

kKkðyk � C 0
k
~̂xkÞ ð28Þ

The estimation error dynamic is given by

ekþ1 ¼ ðA0
k � KkC

0
kÞek þ ðB0

k � KkD
0
kÞ ~xk ð29Þ

The discrete time Bounded Real Lemma for c stability for
Eq. (29) can be written as (Park et al., 1999)

P 0 A0T
k P � C 0T

k W
T I

0 c2I B0T
k P � D0T

k W
T 0

PA0
k �WC0

k PB0
k �WD0

k P 0
I 0 0 I

2
66664

3
77775 > 0 ð30Þ

P > 0 ð31Þ
where Kk ¼ P�1W . The optimal H1 filter is obtained by solving the
LMI optimization problem subject to the LMI constraints above.
The above LMI can be solved iteratively. A filter gain Kk is obtained
and can be applied to the filter equation. In this setting, the aug-
mented model can be again written as

xkþ1

/kþ1

� �
¼ e�Ts=s 1� e�Ts=s

0 1

" #
xk
/k

� �
þ b1 0 0

0 b2 0

� � x1
k

x2
k

x3
k

2
64

3
75 ð32Þ

yk ¼ 1� kp kp
� � xk

/k

� �
þ 0 0 d½ �

x1
k

x2
k

x3
k

2
64

3
75 ð33Þ

where x1;x2 and x3 are the uncorrelated disturbance input signal
each one of them being zero mean white Gaussian noise with unit
intensity. Since the expression for input matrices B0 and D0 for
disturbances input is analogous to process and measurement error
covariances Q and R in Kalman filter they can be related as The pro-
cess and measurement error covariance matrices can be related as:

Q ðnþmÞ�ðnþmÞ ¼ B0B0t ð34Þ
Rp�p ¼ D0D0t ð35Þ

Choosing a large value for Qð2;2Þ element is equivalent to
choosing large value of B2;1 term.

3.3. Simulation studies for delay compensation (using fixed value of
fictitious process noise)

To compare the performance of both filtering techniques for
delay compensation under worst case (i.e. assuming the prompt
fraction in both signal and the estimator model is zero), we apply
a step change at the input to vanadium SPND model using both the
techniques. The model uncertainty or process covariance matrix is

defined as; Q ¼ 0:1 0
0 102

� �
, where a value of 102 for Qð2;2Þ term

has been used to define the model uncertainty for the assumed
model for input flux. A small measurement noise equal to the real
time noise obtained experimentally in Section 2.1 was added to the
measurement i.e. R ¼ ½0:1�. The equivalent B0 and D0 matrices for
the H1 model are defined as

B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qð1;1Þp

0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qð2;2Þp

0

" #
ð36Þ

D0 ¼ ½0;0;
ffiffiffi
R

p
� ð37Þ

We use the two standard parameters for comparing the perfor-
mance of the filter. One is the ‘‘response time” defined as the time
to reach 90% of the final value for a step change at the input. Sec-
ond parameter the ‘‘Root Mean Square (RMS) value of the noise sig-
nal” calculated from the steady state variance in the estimated flux
signal when there is. All the values used for calculations are nor-
malised in percentage with respect to the full or rated power of
the core.

3.3.1. Without prompt fraction
The worst case scenario for any delay compensation technique

is when no prompt fraction is observed at the measured output (kp
= 0%) and the same is used inside the Kalman filter formulation. We
conduct the simulation for this case first and the results are plotted
in Fig. 3 for both the techniques. The response time of the filter can
be defined in terms of estimated output as the time to reach 90% of
its final value. It can be seen that for the assumed fictitious value of
process noise covariance (Qð2;2Þ), the response time is typically
26 s. However the noise during the estimation has been increased
due to the high filter gain.

3.3.2. With prompt fraction
Another set of simulations are performed to study the perfor-

mance of both the techniques with respect to different prompt
fraction assuming the prompt fraction is exactly known and has
been considered while developing the estimator. It is to be noted
that if smaller prompt fraction is used in the model while the
actual prompt fraction in the signal is large, it will result in large
overshoots and undershoot in the opposite case.

It is expected that with the increase of prompt fraction the
response of the delay compensation algorithm is improved i.e. it
reduces the response time as well as improves the SNR. The nor-
malised noise RMS and response time verses different prompt frac-
tion is shown in Fig. 4 for H1 filter and in Fig. 5 for Kalman filter.
The black line shows response time in seconds and grey line shows



Fig. 3. Kalman filter based delay compensation for vanadium SPND signal: 0%
prompt fraction.

Fig. 5. Effect of prompt fraction: Kalman filter.
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normalised RMS noise. The smallest response time obtained for
10% prompt fraction is 1 s.

The steady state filter gain matrix K in Eq. (28) for vanadium
SPND has two components, i.e. Kð1;1Þ and Kð2;2Þ. These are plot-
ted to demonstrate the effect on filter gain of different prompt frac-
tion in Fig. 6. It can be observed that filter gains decreases for large
prompt fraction since less weight is required to be given to mea-
surement to compensate for the delay. Another observation can
be made with respect to H1 filter that filter gain is usually higher
resulting in lower response time as well as higher noise.

The noise RMS value in case of H1 filter based delay compensa-
tion is determined by the fictitious noise value Qð2;2Þ and perfor-
mance bound c.
Fig. 6. Filter gain Kð1;1Þ and Kð2;1Þ variation with prompt fraction.
3.3.3. The noise-response trade-off
The large filter gain decreases response time at the same time

increases noise gain or estimation error variance under steady
state. It can be therefore understood that, a trade-off exists
between the response time verses noise RMS gain. The trade-off
for both the filters hence can be created as one useful selection cri-
teria before applying the delay compensation. Since H1 filtering
has an additional tuning parameter c, multiple trade-off curves
pertaining to various c values can be obtained.

The trade-off curves can be used to compare the two filters. The
simulation results presented in this report are for vanadium SPND
however similar trade-off curves and performance curves can be
Fig. 4. Effect of prompt fraction: H1 filter (c ¼ 20;000).
evaluated for other types of SPNDs with delayed components e.g.
rhodium, platinum etc. The trade-off curve for Kalman filter based
delay compensation is shown in Fig. 7. Similar trade-off curves for
H1 filter based delay compensation is shown in Fig. 8 for c values
of 1:5� 104 (solid lines), 2� 104 (dashed lines) and 2� 105 (dotted
lines). The RMS noise plotted in both the figures are absolute val-
ues of the high frequency components of the estimated output. It
is to be noted from the observation that, as the c value tends to
1, the response of H1 filter becomes similar to Kalman filter.

The trade-off curves show that, for lower c (stricter perfor-
mance bound), the overall response time achieved by the H1 filter
are lower at the same time, RMS noise values are higher as com-
pared to Kalman filter. The additional tuning parameter c in H1
provides better adjustability from the application point of view.
4. Adaptive H‘ delay compensation based on the state
difference

The problem of noise increase during all type of delay compen-
sation techniques is well understood phenomenon and becomes
very severe if measurement has unknown glitches (anomaly).
The main factor responsible for increase in noise is high filter gain
applied to innovation for the augmented state (input flux). The
high filter gain is a results of high fictitious noise variance defined
in delay compensation algorithm, which is selected arbitrary.



Fig. 7. Trade-off curve for Kalman filter.

Fig. 8. Trade-off curve for H1 filter.

Fig. 9. Simulation Results for adaptive H1 filtering for a = 1.
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In place of selecting the high process noise arbitrary, we pro-
pose a different solution based on adaptive parameter tuning to
improve the steady state noise at the same time maintaining the
response time. In this approach, the information contained in the
estimated states during every state is exploited to generate process
noise variance information. It should be noted that the SPNDmodel
can be represented in many different ways, however the state
space representation in Eqs. (4) and (5) normalises the two states
on the same scale and the parameter proportional to their differ-
ence can be calculated.

The adaptive technique requires calculation of filter gain at each
instant. The LMI based H1 filter is quite computation intensive and
might not be suitable in this case. We use here a simpler recursive
H1 filtering technique similar to Kalman filter’s recursion
explained in Simon (2006) and Banavar and Speyer (1991). For
the augmented model explained in Eqs. (16) and (17), the H1
recursion can be written as
~̂x�
kþ1 ¼ A0

k
~̂xþ
k ð38Þ

P�
kþ1 ¼ A0

kP
þ
k A

0T
k þ Qk ð39Þ

Kkþ1 ¼ P�
kþ1 I � 1

c2
SkP

�
kþ1 þ C0T

k R
�1C 0

kP
�
kþ1

� ��1

C 0T
k R

�1
k ð40Þ

~̂xþ
kþ1 ¼ ~̂x�

kþ1 þ Kkþ1ðykþ1 � C 0
k
~̂x�
kþ1Þ ð41Þ

Pþ
kþ1 ¼ P�

kþ1 I � 1
c2

SkP
�
kþ1 þ C 0T

k R
�1
k C 0

kP
�
kþ1

� �
: ð42Þ

The above set of equations provide an upper bound c on the
following cost function.

J ¼

XN�1

k¼0

k~xk � ~̂xkk2Sk

k~x0 � ~̂x0k2P�1
0

þ
XN�1

k¼0

ðkwkk2Q�1
k

þ kvkk2R�1
k
Þ
< c2: ð43Þ

When all the states are given equal weight, the matrix Sk can be
assumed to be Identity matrix. Keeping our discussion limited to
vanadium SPND model with two state variables, the process can
be explained as follows: as the measurement variation starts to
appear, the normalised value of the two states also start differing.
At this point the model uncertainty Qkð2;2Þ is made to differ pro-
portionately with the difference between the two estimated states.
The increase in the model uncertainty value results into increased
filter gain, which further increases the value of estimated flux
input. After a few step when the model uncertainty reaches its
peak, the estimated flux becomes almost equal to true flux. The
model uncertainty starts decreasing beyond this point. We can
introduce a factor h, which is proportional to the difference
between the estimated states at every instant:

hk ¼ ðx̂k � /̂kÞ
2 ð44Þ

The process noise covariance matrix Qk during kth can be
related with hk at each instant as follows:

Qk ¼
Qð1;1Þ 0

0 aþ bhk

� �
; ð45Þ

where Qð1;1Þ is the model uncertainty defined for the first state
and is a fixed value. The unknown model uncertainty Qð2;2Þ is
replaced with an equation relating the state difference at each
point. b is a constant defined for controlling the response time
and can be considered as learning or sensitivity parameter for the
state difference. a is another term required for defining a minimum
variance term and also sets the minimum steady state noise vari-
ance when there is no variation in signal.



Fig. 10. Simulation Results for adaptive H1 filtering for a = 0.

Fig. 11. Results of adaptive H1 delay compensation on vanadium SPND during
reactor trip.
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4.1. Simulation studies for adaptive H1 delay compensation

The performance of the adaptive dynamic filtering is shown in
Fig. 9. The minimum variance a and sensitivity factor b were kept
as 1. The maximum variance during the step change is obtained in
simulation is 150.

It can be seen that the adaptive filter reduces the steady state
noise variance much effectively for the same response time. How-
ever the plot shows an increase in noise for the short duration dur-
ing transient, which can be reduced to certain extent by more
tuning. The important role played by a during the beginning of
the transient can be seen in Fig. 10 where a is made zero. To
demonstrate the performance of adaptive delay compensation
algorithm developed, we conducted an off-line experiment using
real time sensor data recorded from 540 MWe PHWR with scan-
ning rate of 1 s. The reactor trip data was used to test the prompt-
ness achieved by the proposed method since fasted rate if flux
change can be observed during reactor trip. The vanadium SPND
signal was captured from SPND amplifier and a recorder that
converts the raw signal into normalised flux value with respect
to full power. The parameter a and b were chosen as 10 for apply-
ing a higher initial rate and sensitivity. The plot in Fig. 11 shows
that the response time achieved by using the adaptive filter is
10 s along with very low noise under steady state.

5. Conclusion

In this paper, we have presented a study that compares the Kal-
man filter based approach and H1 filter based approach with
respect to delay compensation of SPNDs. The results indicate that
although both the method can be modified to build a suitable delay
compensation algorithm, the H1 due to its strict upper bound on
performance, results into higher filter gain and provides a lower
response time with slightly increase noise. We have built the
trade-off curves for both the technique that makes the selection
process much simpler for choosing the parameters. The recursive
implementation and more number of tuning parameters makes
the H1 a better choice. We also propose the adaptive technique
for H1 filtering based delay compensation, which reduces the
steady state noise significantly. The results were simulated for real
time sensor data during reactor trip from full power and show that
the SPND with adaptive delay compensation can become a good
alternative with respect to better SNR as compared to the prompt
SPNDs.
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