
Annals of Nuclear Energy 99 (2017) 116–123
Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene
Fluctuations of the fission energy generated in a multiplying system
http://dx.doi.org/10.1016/j.anucene.2016.09.011
0306-4549/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: imre@chalmers.se (I. Pázsit).
L. Pál a, I. Pázsit b,⇑
aCentre for Energy Research, Hungarian Academy of Sciences, H-1525 Budapest 114, POB 49, Hungary
bChalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Göteborg, Sweden
a r t i c l e i n f o

Article history:
Received 25 June 2016
Received in revised form 5 September 2016
Accepted 7 September 2016
a b s t r a c t

The purpose of this work is to elaborate a master equation formalism for the evolution of the probability
distribution of the cumulative energy generated by fissions in a multiplying system with delayed neu-
trons. The formalism accounts for the fact that the fission energy v is also a random variable, thus the
fluctuations of the total energy generated are due to both the fluctuations of the number of fissions, as
well as to the fluctuations of the energy per fission. By comparing to the case where the fission energy
is taken as constant, the significance of the fluctuations of the fission energy can be assessed. The first
two moments of the cumulative fission energy are determined explicitly, and the time dependence of
the expectation and the variance is calculated for different reactivities. As expected, the variance of
the energy per fission does not play a significant role in the variance of the cumulative fission energy.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Regarding the random character of neutron multiplication in
subcritical systems driven by an extraneous source, so far only
the fluctuations of the discrete random variable representing the
detector counts have been investigated (Feynman et al., 1956;
Williams, 1974; Pázsit and Pál, 2008). For instance, the subcritical
reactivity can be determined from the dependence of the variance
to mean of the number of detections on the measurement time per-
iod T. Theoretically, one can also calculate the moments of the total
number of absorptions or fissions; however, these cannot be
measured.

A continuous random variable of interest is the cumulative
energy developed in a chain started by one neutron, or in a subcrit-
ical system driven by a source. In particular, the fluctuations of the
cumulative energy by fissions in a slightly supercritical system dri-
ven by a weak source, or the fluctuations of the time it takes for the
system to generate a certain amount of energy, can be of interest,
since these can show large variations (Williams, 1974).

The question can also be interesting from the practical point of
view. Safety regulations determine how much power a reactor
may be operated with. Reactors are operated with constant power;
however, the generated energy is a random variable with a certain
variance. To ensure with a certain confidence that one does not
exceed the allowed power limit, one has to operate the reactor with
a mean power which is below the nominal value with two or three
standard deviations of the fluctuations of the generated power.
Intuitively these fluctuations can be expected to be small, but it is
advisable to investigate the question theoretically.

If the energy generated in fission was constant, then the cumu-
lative generated energy would be also a discrete variable. This vari-
able would be proportional to the number of fissions in the system,
the (constant) fission energy being the scaling factor. This is then a
classic case, and correspondingly, results on the moments of the
number of fissions in such systems are found in the literature
(Pázsit and Pál, 2008).

The situation becomes though different if the fission energy
becomes a continuous random variable. In this case the fluctuations
in the energy generated in the fission chain will fluctuate not only
because of the fluctuations in the number of fissions during the
time period concerned, but also due to the fluctuations in the
energy generated in the individual fissions. It is an interesting ques-
tion how much the existence of the fluctuations of the fission
energy influences the fluctuations of the energy generated.

To incorporate the fluctuations of the fission energy, the tradi-
tional treatment has to be modified from handling only discrete
random variables to be able to accommodate also the continuous
energy variable. Such a formalism has become recently available.
In connection with the description of the stochastic properties of
fission chamber signals, a master equation technique was elabo-
rated by the present authors for the distribution of the sum of con-
tinuous random functions, associated with the discrete detection
events, for both independent and correlated events (Pál et al.,
2014; Pál and Pázsit, 2015). The same methodology, used for the
description of the statistics of neutron detector signals, with due
modifications, can also be used here to calculate the cumulative fis-
sion energy generated in a fission chain initiated either by a single
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neutron or by an extraneous source, as it will be developed in the
forthcoming sections. In the numerical computations the well
known 200 MeV mean energy per fission has been used, while
the second moment of energy per fission has been estimated from
the data published in the literature (Crouch, 1977). A comparison
with the case of constant fission energy makes it possible to assess
the significance of the fluctuations of the fission energy in the fluc-
tuations of the total cumulative energy developed in a fission
chain.

2. Basic theory

The novel aspect of the present work is to account for the fluc-
tuations of the fission energy when calculating the distribution of
the total energy generated in a fission chain. Denote the energy
released in one fission reaction by the random variable v, and
the probability distribution function of this random variable by

P v 6 Ef g ¼ HðEÞ ¼
Z E

0
hðE0Þ dE0

: ð1Þ

It is assumed here that all energy production per fission is
prompt, whereas in reality about 6% is delayed. The concrete ana-
lytical form of the probability density function hðEÞ is not known,
but this does not bring about difficulties, because in the quantita-
tive calculations only the first moment

Q1 ¼
Z 1

0
EhðEÞ dE

and the second moment

Q2 ¼
Z 1

0
E2 hðEÞ dE

are needed.
Define the random function gðtÞ as the cumulative fission

energy at the time instant t P 0. Introduce the probabilities

P gðtÞ 6 E; t j nð0Þ ¼ 1f g ¼ PðE; t j nð0Þ ¼ 1Þ

¼
Z E

0
pðE0; t j nð0Þ ¼ 1Þ dE0 ð2Þ

and

P gðtÞ 6 E; t j cð0Þ ¼ 1f g ¼ PðE; t j cð0Þ ¼ 1Þ

¼
Z E

0
pðE0; t j cð0Þ ¼ 1Þ dE0 ð3Þ

that the random sum of the fission energy released in the time
interval ð0; t� is not larger than E, provided that at time t ¼ 0 one
neutron and no precursors, as well as one precursor and no neu-
trons were present in the multiplying system, respectively.

The derivation of the backward equation for pðE; t j nð0Þ ¼ 1Þ
goes as follows. If at t ¼ 0 one single neutron exists in the system,
then in the time interval ð0; t� the following three mutually exclu-
sive events can take place:

� the neutron will not have any reaction;
� on its first reaction, the neutron is captured in the subcritical
medium with intensity kc;

� the first reaction of the neutron is a fission in the subcritical
medium with intensity kf .

The total intensity of a reaction in the system is kr ¼ kc þ kf . Fur-
ther, denote by f ðk; ‘Þ the probability that in a fission reaction
k P 0 neutrons and ‘ P 0 precursors of the same type are pro-
duced, and assume that the number of neutrons and that of precur-
sors are independent, i.e.
f ðk; ‘Þ ¼ f ðpÞk f ðdÞ‘ : ð4Þ
For later use, introduce the generating functions

qðpÞðzÞ ¼
X1
k¼0

f ðpÞk zk and qðdÞðzÞ ¼
X1
‘¼0

f ðdÞ‘ z‘: ð5Þ

With these preliminaries, the following integral backward
equation can be written down for the distribution
pðE; t j nð0Þ ¼ 1Þ:

pðE;t jnð0Þ¼1Þ¼ e�kr t dðEÞþkc

Z t

0
e�krðt�t0 ÞdðEÞdt0

þkf

Z t

0
e�kr ðt�t0 Þ f ðpÞðkÞf ðdÞð‘Þ� hðE0ÞUkðE1;t0

jnð0Þ¼1ÞV ‘ðE2;t0 j cð0Þ
¼1ÞdE0 dE1dE2dt

0
;
X
k

X
‘

Z Z Z
E0þE1þE2¼E

ð6Þ

where

UkðE1; t0 j nð0Þ ¼ 1Þ ¼ 1� DðkÞ½ �dðE1Þ þ DðkÞ

�
Z

� � �
Z

E11þ���þE1k¼E1

Yk
j¼1

pðE1j; t0 j nð0Þ ¼ 1Þ dE1j ð7Þ

and

V ‘ðE2; t0 j cð0Þ ¼ 1Þ ¼ 1� Dð‘Þ½ �dðE2Þ þ Dð‘Þ

�
Z

� � �
Z

E21þ���þE2‘¼E2

Y‘
j¼1

pðE2j; t0 j cð0Þ ¼ 1Þ dy2j: ð8Þ

Here, UkðE1; t0 j nð0Þ ¼ 1Þ stands for the probability that the k
prompt neutrons, generated by the single starting neutron in the
fission at time t � t0, will jointly generate E1 cumulative energy
during the time interval t0, whereas V ‘ðE2; t0 j cð0Þ ¼ 1Þ is the same
for the l delayed neutrons generated in the same fission to generate
a cumulative energy E2. Note that in (6) the summation for k and ‘

starts from zero, because even if the number of the neutrons, or of
the precursors in the first fission reaction is zero, hence the corre-
sponding chain dies out, this single fission will already generate a
random energy larger than zero.

In a similar manner, taking into account the two mutually
exclusive events that the delayed neutron precursor will not decay
or will decay with intensity k, the following equation can be
derived for the case when the branching process is started by
one precursor:

pðE; t j cð0Þ ¼ 1Þ ¼ e�kt dðEÞ þ k
Z t

0
e�kðt�t0 Þ pðE; t0 j nð0Þ ¼ 1Þ dt0;

ð9Þ
which connects the density function pðE; t j cð0Þ ¼ 1Þ with
pðE; t j nð0Þ ¼ 1Þ.

Define the characteristic functions by Laplace transforms:

ehðxÞ ¼
Z 1

0
e�xE hðEÞ dE; ð10Þ

gðx; t j nð0Þ ¼ 1Þ ¼
Z 1

0
e�xE pðE; t j nð0Þ ¼ 1Þ dE ð11Þ

and

gðx; t j cð0Þ ¼ 1Þ ¼
Z 1

0
e�xE pðE; t j cð0Þ ¼ 1Þ dE: ð12Þ

From (6) and (9) one obtains the equations of characteristic
functions gðx; t j nð0Þ ¼ 1Þ and gðx; t j cð0Þ ¼ 1Þ in the following
form:
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gðx; t j nð0Þ ¼ 1Þ ¼ e�kr t þ kc

Z t

0
e�krðt�t0 Þ dt0þ

kf

Z t

0
e�krðt�t0Þ ehðxÞqðpÞ

� gðx; t0 j nð0Þ ¼ 1Þ½ �qðdÞ gðx; t0 j cð0Þ ¼ 1Þ½ �; ð13Þ
and

gðx; t j cð0Þ ¼ 1Þ ¼ e�kt þ k
Z t

0
e�kðt�t0Þ gðx; t0 j nð0Þ ¼ 1Þ dt0: ð14Þ

It is seen that the dynamics of the branching is compressed into
the non-linear functions qðpÞ½. . .� and qðdÞ½. . .�.

2.1. Expectation of the cumulative fission energy generated by one
neutron

The expectation of the cumulative energy generated in a chain
induced by one neutron during the time interval ð0; t� can be deter-
mined from the characteristic function (6) as

E gðtÞjnð0Þ ¼ 1f g ¼ m1ðt; jnð0Þ ¼ 1Þ ¼ � @gðx; t jnð0Þ ¼ 1Þ
@x

� �
x¼0

:

ð15Þ
After elementary calculations one obtains the following integral

equation:

m1ðt j nð0Þ ¼ 1Þ ¼ kf

Z t

0
e�kr ðt�t0Þ Q1 þ qðpÞ

1 m1ðt0 j nð0Þ ¼ 1Þ
h

þ qðdÞ
1 m1ðt0 j cð0Þ ¼ 1Þ

i
dt0; ð16Þ

where the expectation m1ðt0 j cð0Þ ¼ 1Þ is obtained from Eq. (14) as

m1ðt0 j cð0Þ ¼ 1Þ ¼ k
Z t

0
e�kðt�t0Þm1ðt0 j nð0Þ ¼ 1Þ dt0: ð17Þ

In (16) the following notations were introduced:

Q1 ¼ � @ehðxÞ
@x

" #
x¼0

; qðpÞ
1 ¼ dqðpÞðzÞ

dz

" #
z¼1

¼ mp and

qðdÞ
1 ¼ dqðdÞðzÞ

dz

" #
z¼1

¼ md: ð18Þ

The integral Eq. (16) can be readily solved by applying the
method of Laplace transformation. Using the expressions

em1ðs j nð0Þ ¼ 1Þ ¼
Z 1

0
e�st m1ðt j nð0Þ ¼ 1Þ dt ð19Þ

and

em1ðs j cð0Þ ¼ 1Þ ¼
Z 1

0
e�st m1ðt j cð0Þ ¼ 1Þ dt; ð20Þ

respectively, one obtains from (16) the following algebraic equation:

em1ðs j nð0Þ ¼ 1Þ ¼ kf
sþ kr

Q1

s
þ qðpÞ

1
em1ðs j nð0Þ ¼ 1Þ þ qðdÞ

1
em1ðs j cð0Þ ¼ 1Þ

� �
;

ð21Þ
where

em1ðs j cð0Þ ¼ 1Þ ¼ k
sþ k

em1ðs j nð0Þ ¼ 1Þ: ð22Þ

Applying the conventional notations:

qðpÞ
1 ¼ mp ¼ ð1� bÞm; and qðdÞ

1 ¼ md ¼ bm; ð23Þ
where
m ¼ mp þ md and b ¼ md
m

� 0:0064; ð24Þ

and remembering that

kr ¼ kc þ kf ; ð25Þ
by also accounting for (22), Eq. (21) can be rewritten in the form:

sþ kc þ kf 1� ð1� bÞm� bm
k

sþ k

� �� � em1ðs j nð0Þ ¼ 1Þ ¼ Q1

mK
1
s
;

ð26Þ
where

K ¼ 1
mkf

ð27Þ

is the prompt neutron generation time. Introducing the reactivity

q ¼ ðm� 1Þkf � kc
mkf

; ð28Þ

after some manipulations Eq. (26) is obtained as

ðsþ kÞ sþ b�q
K

� �� k b
K

sþ k
em1ðs j nð0Þ ¼ 1Þ ¼ Q1

mK
1
s
: ð29Þ

By using the traditional notation

a ¼ b� q
K

; ð30Þ

for the prompt neutron decay constant, the negative roots of the
equation

ðsþ kÞ ðsþ aÞ � k
b
K

¼ s2 þ ðkþ aÞ s� k
q
K

¼ 0 ð31Þ

are given by

s1 ¼ 1
2

kþ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ að Þ2 þ 4

kq
K

r" #
ð32Þ

and

s2 ¼ 1
2

kþ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ að Þ2 þ 4

kq
K

r" #
: ð33Þ

Hence, from Eq. (29) one obtains

em1ðs j nð0Þ ¼ 1Þ ¼ Q1

mK
1
s

sþ k
ðsþ s1Þ ðsþ s2Þ : ð34Þ

The inverse Laplace transform of (34) is obtained as

m1ðt jnð0Þ¼1Þ¼ Q1k
Kms1 s2

þ Q1

Kmðs1� s2Þ 1� k
s2

	 

e�s2t � 1� k

s1

	 

e�s1t

� �
;

ð35Þ

q – 0;

which gives the expectation of the cumulative fission energy in the
time interval ð0; t� in a non-critical multiplying system, generated by
one neutron injected at t ¼ 0.

In order to show some quantitative results, we need to choose
the first two moments Q1 and Q2, respectively. As mentioned
already, in the numerical calculations we will use the value
Q1 ¼ 0:2 GeV. For the second moment Q2, by applying the data of
fission-product yields of thermal neutron-induced fissions of 235U
(Crouch, 1977), we estimated an approximate value
Q2 � 0:0400162 GeV2. This indicates that the variance of the energy
generated per fission, i.e. Q2 � Q2

1, is rather small: the relative stan-
dard deviation is approximately 2%. This can be expected on physi-
cal grounds: the total number of nucleons in the primary fission
products varies only about 1%, because of the variation in the
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Fig. 2. The initial time dependence of the expectation of the cumulative fission
energy.
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number of prompt free neutrons, and the binding energy per
nucleon in the relevant range of mass numbers is an almost linear
function of the mass number.

Fig. 1 shows the time dependence of the expectation of the cumu-
lative fission energy generated by one injected neutron for three dif-
ferent reactivities of themultiplyingmedium. The time dependence
is characterised by two different domains. For short times, the effect
of the prompt chain is seenwhich, after the chain died out, leads to a
plateauof the cumulative energy generated. The second region starts
at times corresponding to the time constant of the delayed neutron
precursors. When the delayed chain also dies out, the cumulative
energy reaches a second, higher plateau, which is equal to the
asymptotic valueof the cumulativeenergygeneratedbyone injected
neutron. It is interesting to note that in systems close to critical, the
delayed chain generates larger energy (through generatingmore fis-
sions) than the prompt chain. For q ¼ �0:003, the energy generated
in the delayed chain is twice as large as in the prompt chain.

For further insight, the initial time dependence of the process is
shown in Fig. 2. It is worth to note that in the present calculations,
the asymptotic mean of the total fission energy generated by one
neutron at reactivities q ¼ �0:007; �0:005 and � 0:003 equals
to 12; 16; and 27 GeV, respectively.

It is also worth to note the influence of the delayed neutrons,
which manifests itself in Fig. 1 by the two plateaus at two different
time scales. For systems close to critical, the cumulative fission
energy remains small for an initial time period, up to the decay
time of the precursors, after which a second, larger increase of
the cumulative energy follows. This is rather different from the
case when the process is entirely based on the prompt neutrons
only. For an illustration, the time dependence of the mean cumula-
tive fission energy in a multiplying system without precursors is
shown for three negative reactivities in Fig. 3.

For critical systems, that is if

q ¼ 0;

one obtains

mðcrÞ
1 ðt j nð0Þ ¼ 1Þ ¼ Q1

bþ bþ kKð Þk t � b expf�ðkþ b=KÞ tg
m bþ kKð Þ2

;

ð36Þ
which shows that after a sufficiently large time interval, the expec-
tation of the cumulative fission energy increases unbounded in a
linear manner.

To show the temporal evolution of the expectation of the cumu-
lative fission energy in a critical system, a quantitative realisation
of Eq. (36) is shown in Fig. 4, and its initial part is shown in Fig. 5.
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Fig. 1. Time dependence of the expectation of the cumulative fission energy
generated by one neutron injected into a subcritical multiplying system with
different reactivities.
For subcritical systems, accounting for the relation

s1 s2 ¼ �k
q
K
;

one obtains

lim
t!1

m1ðt j nð0Þ ¼ 1Þ ¼ Q1 k
Kms1 s2

¼ � Q1

mq
; q < 0: ð37Þ

In contrast, one notes that limt!1m1ðt j nð0Þ ¼ 1Þ ¼ 1, when
qP 0.

2.2. Variance of the cumulative fission energy generated by one
neutron

A suitable quantity to characterise the stochastic behaviour of
the cumulative fission energy generated by one neutron in a mul-
tiplying system is the variance

D2 gðtÞ j nð0Þ ¼ 1f g ¼ E g2ðtÞ j nð0Þ ¼ 1
� �

� E gðtÞ j nð0Þ ¼ 1f g½ �2

¼ m2ðt j nð0Þ ¼ 1Þ � m1ðt j nð0Þ ¼ 1Þ½ �2: ð38Þ
Since the expectation m1ðt j nð0Þ ¼ 1Þ has already been deter-

mined in (35), to obtain the variance it remains to calculate the
second moment m2ðt j nð0Þ ¼ 1Þ. This can be calculated from Eq.
(13) as
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m2ðt jnð0Þ ¼ 1Þ ¼ @2gðx; t jnð0Þ ¼ 1Þ
@x2

" #
x¼0

¼ kf

Z t

0
e�krðt�t0 Þ Q2þqðpÞ

1 m2ðt0 jnð0Þ ¼1Þ
n

þqðdÞ
1 m2ðt j cð0Þ ¼ 1Þþ2qðpÞ

1 Q1m1ðt0 jnð0Þ ¼ 1Þ
þ2qðdÞ

1 Q1m1ðt0 j cð0Þ ¼ 1ÞþqðpÞ
2 m1ðt0 jnð0Þ ¼ 1Þ½ �2

þ2qðpÞ
1 qðdÞ

1 m1ðt0 jnð0Þ ¼ 1Þm1ðt0 j cð0Þ ¼ 1Þ
þqðdÞ

2 m1ðt0 j cð0Þ ¼ 1Þ½ �2
o
dt0 ð39Þ

where the parameters qðpÞ
1 ¼ mp and qðdÞ

1 ¼ md are the first moments of
the neutron and precursor multiplicities, respectively, and further

Q2 ¼
Z 1

0
E2 hðEÞ dE; ð40Þ

and
eRðsÞ ¼ 2Q2
1

m2K2 � hmpðmp � 1Þi s
3 þ ðs1 þ s2 þ 3kÞs2 þ s1 ðs2 þ 2kÞ þ ð2s2 þ½

s ðsþ s1Þ ðsþ 2s1Þ ðsþ s2Þ ðsþ s1 þ

(

þmp md 3sþ 2ðs1 þ s2Þ½ � ðsþ 2kÞk
s ðsþ s1Þ ðsþ 2s1Þ ðsþ s2Þ ðsþ s1 þ s2Þ ðsþ 2s2Þ þ hmdðmd � 1
mjðt j cð0Þ ¼ 1Þ ¼ k
Z t

0
e�kðt�t0Þmjðt j nð0Þ ¼ 1Þ dt0; j ¼ 1;2:

ð41Þ
From (41) one obtains

m1ðt j cð0Þ ¼ 1Þ ¼ Q1 k
Kms1 s2

þ Q1

Km ðs1 � s2Þ
k
s1

e�s1t � k
s2

e�s2t

� �
; ð42Þ

which will be needed in the forthcoming. The second factorial

moments qðpÞ
2 and qðdÞ

2 of the prompt and delayed neutron multiplic-
ities, respectively, are determined from the generating functions
qðpÞðzÞ and qðdÞðzÞ, defined by (5) as

d2qðpÞðzÞ
dz2

" #
z¼1

¼qðpÞ
2 ¼ hmpðmp � 1Þi; ð43Þ

d2qðdÞðzÞ
dz2

" #
z¼1

¼qðdÞ
2 ¼ hmdðmd � 1Þi: ð44Þ

Next, let us introduce the function

RðtÞ ¼ qðpÞ
2 m1ðt0 j nð0Þ ¼ 1Þ½ �2

þ 2qðpÞ
1 qðdÞ

1 m1ðt0 j nð0Þ ¼ 1Þm1ðt0 j cð0Þ ¼ 1Þ
þ qðdÞ

2 m1ðt0 j cð0Þ ¼ 1Þ½ �2 ð45Þ
and write down the Laplace transform of the integral Eq. (39). By
using the notations

em1ðs j nð0Þ ¼ 1Þ ¼
Z 1

0
e�st m1ðt j nð0Þ ¼ 1Þ dt; ð46Þ

em2ðs j nð0Þ ¼ 1Þ ¼
Z 1

0
e�st m2ðt j nð0Þ ¼ 1Þ dt; ð47Þ

eRðsÞ ¼ Z 1

0
e�st RðtÞ dt; ð48Þ

and performing some rearrangements, we obtain the following:

sþkcþkf 1�ð1�bÞm�bm
k

sþk

� �� � em2ðs jnð0Þ¼1Þ

¼ 1
mK

Q2

s
þ2qðpÞ

1 Q1 em1ðs jnð0Þ¼1Þþ2qðdÞ
1 Q1 em1ðs jcð0Þ¼1ÞþeRðsÞ� �

;

ð49Þ
from which, by applying the same method as in the previous Sec-
tion, the formula

em2ðs j nð0Þ ¼ 1Þ ¼ sþ k
ðsþ s1Þ ðsþ s2Þ

� 1
mK

Q2

s
þ 2qðpÞ

1 Q1 em1ðs j nð0Þ ¼ 1Þ
�

þ2qðdÞ
1 Q1 em1ðs j cð0Þ ¼ 1Þ þ eRðsÞi ð50Þ

can be derived, where em1ðs j nð0Þ ¼ 1 is given by (34) and

em1ðs j cð0Þ ¼ 1Þ ¼ Q1

mK
1
s

k
ðsþ s1Þ ðsþ s2Þ ; ð51Þ

respectively. After elementary but lengthy calculations for eRðsÞ one
obtains
3kÞk� sþ 2 ðs1 þ s2Þk2
s2Þ ðsþ 2s2Þ

Þi 3sþ 2ðs1 þ s2Þ½ �k2
s ðsþ s1Þ ðsþ 2s1Þ ðsþ s2Þ ðsþ s1 þ s2Þ ðsþ 2s2Þ

)
: ð52Þ
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Fig. 6. The time dependence of the variance of the cumulative fission energy
generated by one neutron in multiplying systems with different subcritical
reactivities.
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Fig. 7. The initial part of the time dependence of the variance of the cumulative
fission energy generated by one neutron in different subcritical multiplying
systems.
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Fig. 8. Dependence of the limit variance of the energy Vð1Þ on the negative
reactivity.
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In order to obtain the second momentm2ðt j nð0Þ ¼ 1Þ, we have
to determine the inverse Laplace transform em2ðs j nð0Þ ¼ 1Þ. This
can be performed analytically with the symbolic manipulation
code Mathematica (Wolfram Research, 2014), but it results in an
extremely long formula, which will not be listed here. To get some
insight it is much more expedient to plot the variance of gðtÞ. The
time dependence of the variance is given by the expression

D2 gðtÞ j nð0Þ ¼ 1f g ¼ m2ðt j nð0Þ ¼ 1Þ � m1ðt j nð0Þ ¼ 1Þ½ �2

¼ Vðt j nð0Þ ¼ 1Þ; ð53Þ

q– 0;
V
ðcrÞ
0 ðtÞ ¼ A0 6Q2v4 v� kþ vk tð ÞK2 m2 þ Q2

1 hmpðmp � 1Þik2 ð�27kþ 30

n

þhmdðmd � 1Þi �27k3 þ 30vk2 ð2þ ktÞ � 3v2 k ð13þ 16kt þ 4
�

þ2m 27ð�1þ bÞbk3 m� 15v ð�1þ bÞbk2ð3þ 2ktÞmþ 3v4K
��

�2 ð�1þ bÞm� 2ktð1þ ð�2þ bÞmÞÞ þ 3v2 k 4 ð�1þ bÞbmþ 4
�

þk 12 tb ð�1þ bÞmþK ð6m� 1Þð ÞÞ þ v3 k �t ð�1þ bÞb� ð6þ�
Fig. 6 illustrates how, for large times, the precursors modify the
time dependence of the variance of the cumulative fission energy
generated by one neutron in three subcritical multiplying systems.
At the same time Fig. 7 clearly shows that at the beginning of the
process, the prompt neutrons play the decisive role.

It is also interesting to calculate the dependence of the limit
variance

lim
t!1

D2 gðtÞ j nð0Þ ¼ 1f g ¼ Vð1Þ

on the reactivity q < 0 in subcritical systems. This is obtained as

Vð1Þ ¼ � 1
m3q3 Q2 m2q2 þ Q2

1 hmpðmp � 1Þi þ hmdðmd � 1Þi
n
þm 2bm� 2b2 mþ q� 2mq

� ���
: ð54Þ

Fig. 8 shows the dependence of the limit variance of the energy
Vð1Þ on the negative reactivity. Naturally, in critical and supercrit-
ical systems, i.e. for q P 0, the limit variance is infinite. Calculation
of the time dependence of the variance in a critical multiplying sys-
tem shows the nature of this divergence. After lengthy calculations
one obtains that

lim
q!0

Vðt j nð0Þ ¼ 1Þ ¼ VðcrÞðt j nð0Þ ¼ 1Þ

¼ V
ðcrÞ
0 ðtÞ þV

ðcrÞ
1 ðtÞ exp � kþ b

K

	 

t

� �
þV

ðcrÞ
2 ðtÞ exp �2 kþ b

K

	 

t

� �
: ð55Þ

In order to simplify the formulae, let us introduce the notation

v ¼ kþ b
K
: ð56Þ

With this the result can be written as
v ð1þ ktÞ � 12v2 t ð2þ ktÞ þ 2v3 t2ð3þ ktÞ
k2t2Þ þ 2v3 ð3þ 9kt þ 6k2t2 þ k3t3Þ�
�1þ k2t2 ðm� 1Þ
ð�1þ bÞbmþ 4bð�1þ bÞmk2t2
9kt þ 2k2t2Þmþ 6K 1þ 2ð�2þ bÞmþ kt ð1� 2mÞð Þ����;



V
ðcrÞ
1 ðtÞ ¼ A1 Q2v4 ðk� vÞK2 m2 � Q2

1 hmpðmp � 1Þik2 4v� v3 t2 � 4kþ v2 tð2þ ktÞ� �þ hmdðmd � 1Þiðv� kÞ �4vkþ 4k2v3 t ð2þ ktÞ�
n
�v2 kt ð4þ ktÞ�þ m �12v ðb� 1Þbk2 mþ 8 ðb� 1Þbk3 m� 2v5 t ðb� 1ÞKm� 2v2 k �ðb� 1Þbm þ t2 ðb� 1Þbk2 m��
þk Kþ 3 t ðb� 1Þbmþð ÞÞ�gv3 k t ðb� 1Þbð4þ 3ktÞmþ 2K 2þ 2 ðb� 2Þmþ ktð1þ mÞð Þð Þ þ v4 �t2 ðb� 1Þkm�
þ2K �1þ m� bmþ kt �1þ ðb� 2Þmð Þð ÞÞ�g

and
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V
ðcrÞ
2 ðtÞ ¼ A2Q

2
1 hmpðmp � 1Þik2 ðk� 2vÞ�

�hmdðmd � 1Þi ðv� kÞ2 ð2v� kÞ � 2 ðv� kÞm v3K� v2 kK



þ2v ðb� 1Þbkm�g;
where
A0 ¼ 1

6v6K3 m3
; A1 ¼ 1

v6K3 m3
and A2 ¼ 1

2v6K3 m3
:

Fig. 9 shows the time dependence of the variance of the fission
energy in a critical multiplying system. The rapid divergence of
the variance starts around the time corresponding to the precursor
decay time.

In order to show the initial time dependence of the variance,
where the prompt neutrons play the deceiving role, the beginning
of the time dependence of the variance is shown in Fig. 10.
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Fig. 9. Time dependence of the variance of the fission energy in a critical system.
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Fig. 10. Initial part of the time dependence of the variance of the fission energy in
critical multiplying system.
3. Discussion

It is interesting to quantify the influence of the variation of the
fission energy per fission to the total cumulative fission energy
released in the process, compared to the case when the energy
released in each fission is constant, and the only source of the fluc-
tuations of the cumulative fission energy is the fluctuations of the
number of fissions.

To this order, we consider the case when the fission energy is
constant, the constant being equal to the first moment Q1. Hence
the probability density function hcðEÞ can be written as
hcðEÞ ¼ dðE� Q1Þ: ð57Þ

The expectation is Q1, whereas the second moment Q2 ¼ Q2
1.

The fluctuation of the cumulative fission energy in this case, when
the fission energy is constant, can simply be obtained by replacing
Q2 with Q2

1.
A quantitative comparison is shown in Fig. 11. It is seen that the

difference tends to saturate with increasing time. Moreover, a com-
parison with the value of the variance with random fission energy,
Fig. 11 shows that the relative difference between the variances is
extremely small. In other words, as the fission chain develops, the
significance of the variations in the cumulative fission energy aris-
ing from the fluctuations of the fission energy in individual fissions
diminishes in comparison to the fluctuations due to the fluctua-
tions of the number of fission events. Since this latter is related to
the branching process, one can say as the chain develops, the statis-
tics of the cumulative energy is more and more dominated by the
statistics of the branching properties of the process. Similar results
were obtained also when changing the numerical value of the sec-
ond moment Q2, up to much larger (i.e. non-physical, several tens
of percents) relative standard deviations of the individual fission
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energy; the results remained quantitatively very similar, leading to
the same conclusions.

4. Conclusions

In order to get an insight into the stochastic behaviour of the
cumulative fission energy production generated by one starting
neutron in a neutron multiplying system, a backward generating
function equation was derived, which made it possible to calcu-
late the time dependence of the moments of the cumulative fis-
sion energy for the case the fission energy in the individual
fissions is a random variable. The expectation and the variance
of the cumulative fission energy was determined in systems of
various reactivities. In order to assess the significance of the ran-
dom fission energy, a comparison was made with the case when
the fission energy is constant. The difference proved to be very
minute, from which one can conclude that the variance of the
cumulative fission energy is mainly due to the variance of the
number of fissions. This also means that in calculations of the
higher order moments of the cumulative fission energy, the fluc-
tuations in the energy generated in individual fissions can be
safely neglected.
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