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As a rule, mathematical modeling of dynamic processes in nuclear reactors is conducted using an
approach that treats a neutron flux in the multigroup diffusion approximation. In this approach, the basic
model involves a multidimensional system of coupled parabolic-type equations. Similarly to common
thermal phenomena, it is possible here to separate a regular mode of nuclear reactor operation that is
associated with a selfsimilar development of a neutron field at large times. In this case, the main feature
of dynamic processes is a minimal eigenvalue of the corresponding spectral problem. In the present
paper, calculations of various eigenvalues are performed via the two-group model and discussed for
the VVER-1000 reactor without a reflector and HWR reactor.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The physical processes in a nuclear reactor (Duderstadt and
Hamilton, 1976) depend on distribution of neutron flux, whose
mathematical description is based on the neutron-transport equa-
tion (Hetrick, 1971; Stacey, 2007). The general view of this equa-
tion is integro-differential one, and the required distribution of
neutrons flux depends on time, energy, spatial and angular vari-
ables. As a rule, the simplified forms of the neutron transport equa-
tion are used for practical calculations of nuclear reactors. The
equation system that is known as a multigroup diffusion approach
is mostly used for reactor analysis (Marchuk and Lebedev, 1986;
Lewis and Miller, 1993; Sutton and Aviles, 1996; Cho, 2005) and
is applied in most engineering calculation codes.

Modern reactor simulations are actually based on transport cal-
culations (see, for example, Smith and Rhodes, 2002; Sanchez,
2012; Boyd et al., 2014). In multiscale reactor-physics simulations
diffusion models are derived and applied using sophisticated
homogenization methodologies Sanchez (2009) which define
parameters of the multigroup diffusion equations that enable one
to take into account transport effects. The homogenization
methodologies use solution of specially defined transport prob-
lems to generate homogenized cross sections for the multigroup
diffusion equations. Most of current methodologies (see, for exam-
ple, Sanchez (2009)) use k-eigenvalue transport problems to calcu-
late averaging shape functions. Recently Dugan et al. (2016)
developed advanced homogenization methods apply a-
eigenvalue transport problems.

The standard methods of approximate solutions of non-
stationary problems are used for modelling of the dynamics of
neutron-physical processes. The most attention is paid to two-
level schemes with weights (h-method) (Ascher, 2008; LeVeque,
2007; Hundsdorfer and Verwer, 2003), the Runge–Kutta and
Rosenbrock schemes (Butcher, 2008; Hairer and Wanner, 2010)
are used. Let’s note a special class of methods for modelling of
non-stationary neutron transport in diffusion multigroup approxi-
mation, which is connected with multiplicative representation of
solution — space–time factorization methods and the quasistatic
method (Chou et al., 1990; Dahmani et al., 2001; Dodds, 1976;
Goluoglu and Dodds, 2001). The approximate solution is searched
in the form of the product of two functions, one of which depends
on time and is related to the amplitude, the second one (the shape
function) describes the spatial distribution. It is difficult to check
the accuracy of the approximate solution in such approach, in par-
ticular, while calculating the dynamic modes with complicated
changes in neutron flux distribution.

The processes occurring in a nuclear reactor are essentially non-
stationary. The stationary state of neutron flux, which is related to
the critical state of the reactor, is characterised by local balancing
of neutron absorption and generation. This boundary state is usu-
ally described by solution of a spectral problem (Lambda Modes
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problem, k-eigenvalue problem) provided that the fundamental
eigenvalue (maximal eigenvalue) that is called k-effective of the
reactor core, is equal to unity. In this case, the stationary neutron
field is related with the corresponding eigenfunction. Calculations
of k-effective of the reactor on the basis of the spectral Lambda
Modes problem solution are obligatory for developing a new
design of reactor installation.

Time behaviour of nuclear reactor is deemed sometimes to be
related to the deviation of k-effective from unity that involves, in
particular, concept of reactivity. This is not justified, since, while
calculating this parameter, the evolutionary nature of neutron
redistribution processes (nonstationary systems of the equations)
is considered in no way. The k-effective parameter deviates from
unity, though quite weakly, but anyway such a solution, generally
speaking, cannot be connected with the stationary solution of the
problem. There is simply no such a solution. Thus, the attempts
to correct the basic mathematical model of non-stationary neutron
diffusion by introducing some correcting multipliers to achieve the
strict criticality are not successful.

The spectral parameter a, which is not directly connected with
k-effective, is proposed to be used instead of k-effective for more
adequate characteristic of the dynamic nature of reactor. It is
defined as the fundamental eigenvalue of the spectral problem
(time-eigenvalue, a-eigenvalue problem), which is connected with
the non-stationary equations of neutron diffusion (Bell and
Glasstone, 1970; Modak and Gupta, 2007; Verdu et al., 2010). By
analogy with the usual problems of heat conductivity (see, for
example, Luikov, 1968; Samarskii and Vabishchevich, 1996) we
consider the regular reactor mode. At large times the behavior of
a neutron flux is asymptotic, and one can talk about space–time
factorization solution, whose amplitude is expðatÞ, the shape func-
tion is the eigenfunction of the spectral problem.

The Lambda and Alpha Modes spectral problems deal with a not
self-adjoint vector elliptic operator. Generally, the eigenvalues are
complex. The strict conclusion concerning the eigenvalue reality
was obtained (see, for instance, Habetler and Martino, 1961) under
reasonable physics assumptions only for the fundamental
eigenvalue. Performed precise calculations of the reactor test
problems (the VVER-1000 reactor without a reflector and HWR
reactor) confirm the fact that the next eigenvalues may be
complex with small imaginary parts. Our investigation clarifies
the results of other authors (González-Pintor et al., 2009), which
give only real parts of the eigenvalue for the same test problems.
These clarifications deal with the accuracy control during
eigenvalue and eigenfunction calculations using a set of fine
meshes and finite elements of different degree; also we used
applied software aimed to solve spectral problems with not self-
adjoint operators.

Study of the dynamic processes can be based on the discrimina-
tion of symmetric and skew-symmetrical parts of the neutron
transport operator. In this case, we can easily get the a priori
assessments of stability in the corresponding norm, while assess-
ing the operator of the symmetric part from below, and perform
the analysis of used time approximations (Samarskii, 2001;
Samarskii et al., 2002). To get this, the partial spectral problem is
solved to find the fundamental eigenvalue d of the Delta Modes
spectral problem.

The paper is organised as follows. The statement of the
boundary-value problem for the system of non-stationary diffusion
equations in multigroup approach is given in Section 2. Various
spectral problems are discussed in Section 3. A numerical example
of calculation of spectral characteristics within the frameworks of
two-dimensional test problems for VVER-1000 reactor and HWR
reactor using the two-group system of diffusion equations is dis-
cussed in Section 4. The results of the work are summarised in
Section 5.
2. Problem statement

The neutron flux is considered in multigroup diffusion
approximation. The neutron dynamics is considered in
the limited convex two-dimensional or three-dimensional area
Xðx ¼ fx1; . . . ; xdg 2 X; d ¼ 2;3) with boundary @X. The neutron
transport is described by the system of equations:

1
vg

@/g

@t
�r � Dgr/g þ Rrg/g �

XG
g–g0¼1

Rs;g0!g/g0

¼ ð1� bÞvg

XG
g0¼1

mRfg0/g0 þ evg

XM
m¼1

kmcm; g ¼ 1;2; . . . ;G: ð1Þ

Here /gðx; tÞ — neutron flux of g group at point x and time
t, G — number of energy groups, vg — effective velocity of neutrons
in the group g, DgðxÞ — diffusion coefficient, Rrgðx; tÞ — removal
cross-section, Rs;g0!gðx; tÞ — scattering cross-section from group g0

to group g, b — effective fraction of delayed neutrons, vg ; evg —
spectra of prompt and delayed neutrons, mRfgðx; tÞ — generation
cross-section of group g, cm — density of sources of delayed
neutrons of m-type, km — decay constant of sources of delayed
neutrons, M — number of types of delayed neutrons. The density
of sources of delayed neutrons is described by the equations:

@cm
@t

þ kmcm ¼ bm

XG
g¼1

mRfg/g ; m ¼ 1;2; . . . ;M; ð2Þ

where bm is a fraction of delayed neutrons of m-type, and

b ¼
XM
m¼1

bm:

System of Eqs. (1) and (2) is supplemented with corresponding
initial and boundary conditions.

The albedo-type conditions are set at the boundary @X of the
area X:

Dg
@/g

@n
þ cg/g ¼ 0; g ¼ 1;2; . . . ;G; ð3Þ

where n — outer normal to the boundary @X.
Let’s propose that the reactor was critical up to the initial time

moment (t ¼ 0):

/gðx;0Þ ¼ /0
gðxÞ; cmðx;0Þ ¼ c0mðxÞ: ð4Þ

For /0
gðxÞ and c0mðxÞ we get:

�r � Dgr/0
g þ Rrg/

0
g �

XG
g–g0¼1

Rs;g0!g/
0
g0

¼ ð1� bÞvg þ bevg

� �XG
g0¼1

mRfg0/
0
g0 ; g ¼ 1;2; . . . ;G;

kmc0m ¼ bm

XG
g¼1

mRfg/
0
g ; m ¼ 1;2; . . . ;M:

Let’s consider the problem without taking into account delayed
neutrons (all neutrons are prompt). We assume that all neutrons
(including delayed neutrons) are born as prompt, but their spectra
vg and evg are different. Then instead of (1) one can obtain the fol-
lowing equation:

1
vg

@/g

@t
�r � Dgr/g þ Rrg/g �

XG
g–g0¼1

Rs;g0!g/g0

¼ ð1� bÞvg þ bevg

� �XG
g0¼1

mRfg0/g0 ; g ¼ 1;2; . . . ;G: ð5Þ
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The problem for Eq. (5) is solved with boundary conditions of
form (3) and the following initial conditions:

/gðx;0Þ ¼ /0
gðxÞ; g ¼ 1;2; . . . ;G: ð6Þ

Let’s write the boundary problem (3), (5), (6) in operator form.
The vector / ¼ f/1;/2; . . . ;/Gg and matrices are defined as follows:

V ¼ ðvgg0 Þ; vgg0 ¼ dgg0v�1
g ;

D ¼ ðdgg0 Þ; dgg0 ¼ �dgg0r � Dgr;

S ¼ ðsgg0 Þ; sgg0 ¼ dgg0Rrg � Rs;g0!g ;

R ¼ ðrgg0 Þ; rgg0 ¼ ðð1� bÞvg þ bevgÞmRfg0 ;

L ¼ ðlgg0 Þ; lgg0 ¼ dgg0cg ;

g; g0 ¼ 1;2; . . . ;G;

where

dgg0 ¼
1; g ¼ g0;

0; g – g0;

�

is the Kronecker symbol. We shall use the set of vectors /, whose
components satisfy the boundary conditions (3). Using the set def-
initions, the system of Eqs. (5) can be written in the form of first-
order equation of evolution:

V
d/
dt

þ ðDþ SÞ/ ¼ R/: ð7Þ

The Cauchy problem is solved for (7), when

D
d/
dn

þ L/ ¼ 0; /ð0Þ ¼ /0; ð8Þ

where (see (6)) /0 ¼ f/0
1;/

0
2; . . . ;/

0
Gg.

3. Spectral problems

To characterize the reactor dynamic processes described by
Cauchy problem (7) and (8), let’s consider some spectral problems
Bell (Bell and Glasstone, 1970; Hetrick, 1971; Stacey, 2007).

The following spectral problem is usually solved:

ðDþ SÞu ¼ kðkÞRu: ð9Þ
This problem (9) is known as the Lambda Modes problem for a

given configuration of the reactor core. The minimal eigenvalue is
used for characterisation of neutron field, thus

k ¼ 1

kðkÞ1

is the effective multiplication factor (k-effective). The value

k ¼ 1=kðkÞ1 ¼ 1 is related to the critical state of the reactor, and the
corresponding eigenfunction u1ðxÞ is the stationary solution of
the Eq. (7). At k > 1, one can speak about supercriticality, at k < 1
— about subcriticality.

Due to nonself-adjoint operators of neutron transport we have,
generally speaking, the complex eigenvalues. The reality and posi-
tivity property of the fundamental eigenvalue for the system of
neutronics equations is proved using the principle of maximum
at some restrictions on factors of neutron transport operators
(Habetler and Martino, 1961). This is also true for the nonself-
adjoint elliptic operator of the second order (Evans, 1998).

The spectral problem (9) cannot directly be connected with the
dynamic processes in a nuclear reactor. At the best, we can get only
the limiting case — the stationary critical state. The more accept-
able spectral characteristics for the non-stationary Eq. (7) are
related the spectral problem

Au ¼ kðaÞVu; A ¼ Dþ S� R: ð10Þ
The fundamental eigenvalue

a ¼ kðaÞ1

is called Bell and Glasstone (1970) a–eigenvalues or period eigen-
values, because they are inversely related to the reactor periods.
The asymptotic behaviour of Cauchy problem solution (7) and (8)
at large times can be connected with the eigenvalue a. In this reg-
ular mode, the reactor behaviour is described by the function
expð�atÞu1ðxÞ. Critical state of the reactor is defined at a ¼ 0; when
a > 0 we get the supercritical state, and when a < 0 — subcritical
state of the reactor.

A priori assessments of solution at the current time are used to
characterize the evolution processes (Evans, 1998). Let’s define the
Hilbert space H ¼ L2ðXÞ, for vector functions, in which the scalar
product ð�; �Þ and norm k � k are as follows:

ð/;uÞ ¼
XG
g¼1

ð/g ;ugÞ; k/k ¼ ð/;/Þ1=2;

where

ð/g ;ugÞ ¼
Z
X
/gðxÞugðxÞdx; g ¼ 1;2; . . . ;G:

Let’s select the self-adjoint and skew-symmetric parts in the
operator A:

A ¼ A1 þ A2; A1 ¼ A�
1 ¼ 1

2
ðAþ A�Þ; A2 ¼ �A�

2 ¼ 1
2
ðA� A�Þ:

The diffusion operator D is self-adjoint at the set of functions
satisfying the boundary conditions (3): D ¼ D�. For A1 and A2 we
get

A1 ¼ að1Þgg0

� �
; A2 ¼ að2Þgg0

� �
;

að1Þgg0 ¼ �dgg0r � Dgrþ dgg0Rrg � 1
2

Rs;g0!g þ Rs;g!g0
� �

� 1
2

ðð1� bÞvg þ bevgÞmRfg0 þ ðð1� bÞvg0 þ bevg0 ÞmRfg

� �
;

að2Þgg0 ¼ �1
2

Rs;g0!g � Rs;g!g0
� �

� 1
2

ðð1� bÞvg þ bevgÞmRfg0 � ðð1� bÞvg0 þ bevg0 ÞmRfg

� �
:

Let’s consider the spectral problem

A1u ¼ kðdÞVu ð11Þ
for the self-adjoint part of the operator A. All eigenvalues of the
Delta Modes spectral problem (11) are real.

Let us find the fundamental eigenvalue in (7) and (8), to charac-
terize the dynamic processes described by the problem (11):

d ¼ kðdÞ1 ;

and (see, e.g., Hogben, 2013, Section 16.1) d 6 a. Taking into
account the skew-symmetry of A2 we obtain

ðA/;/Þ ¼ ðA1/;/Þ P dðV/;/Þ;
i.e.

A P dV : ð12Þ
Based upon the assessment (12) the corresponding priori

assessment for the Cauchy problem solution (7) and (8) is set.
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Let us connect the operator V ¼ V� > 0 with the Hilbert space
HV , in which the scalar product and norm are

ð/;uÞV ¼ ðV/;uÞ; k/kV ¼ ð/;/Þ1=2V :

Scalar multiplying in H the Eq. (7) by / and taking into account
(12), we obtain:

V
d/
dt

;/

� �
þ dðV/;/Þ 6 0:

Taking into account

V
d/
dt

;/

� �
¼ 1

2
d
dt

ðV/;/Þ ¼ k/kV
d
dt

k/kV ;

we get

d
dt

k/kV þ dk/kV 6 0:

Considering the initial condition (8), based upon the Gr€onwall’s
lemma we come to an a priori assessment:

k/ðtÞkV 6 expð�dtÞk/0kV ð13Þ
for the solution of the problem (7) and (8). Such assessments
expressing the stability of the solution against the initial data, are
the reference points, while constructing the time approximations
(Samarskii, 2001; Samarskii et al., 2002).

The spectral problem (11) is more convenient for numerical
solving than the spectral problems (9) and (10) (Golub and Van
Loan, 2012; Saad, 2011). This is explained by the fact that in this
case, all eigenvalues and eigenfunctions are real. The value d
defines not only the criticality of the reactor (at d ¼ 0), but also
the dynamics of the neutron field of the reactor — see the assess-
ment (13).

The k-eigenvalue of the Lambda Modes spectral problem (9),
namely its deviation from the unity, is a reactor criticality charac-
teristic. The fundamental a-eigenvalue of the Alpha Modes spectral
problem (10), under condition of its separation from other eigen-
values, is the basic characteristic of dynamic processes at relatively
large times, when the regular regime takes place. Only the funda-
mental d-eigenvalue of Delta Modes spectral problem (11) is con-
nected with the whole neutron distribution behavior (see a priori
estimate (13) for the solution norm) at any time moment. The dif-
ference between d and a is a measure of not self-adjoint effect
(non-symmetricity) of the problem operator, which is, in particu-
lar, due to neutron transition between separate groups. On the
basis of the fundamental d-eigenvalue of Delta Modes spectral
problem we can analyze the evolution problem in details; define
a stability estimate for the problem solution at differential and dis-
crete levels.

The corresponding spectral problems for the system of Eqs. (1)
and (2) are similarly formulated taking into account the delayed
neutrons — total modes Verdu et al., 2010. Let’s introduce the vec-
tor of density of delayed neutron sources c ¼ fc1; c2; . . . ; cMg. The
Eq. (1) will be written in the form:

V
d/
dt

þ ðDþ SÞ/ ¼ R/þ Bc; ð14Þ

where now

R ¼ ðrgg0 Þ; rgg0 ¼ ð1� bÞvg ; g; g0 ¼ 1;2; . . . ;G;

and B — a rectangular matrix:

B ¼ ðbgmÞ; bgm ¼ evgkm; g ¼ 1;2; . . . ;G; m ¼ 1;2; . . . :;M:

The Eq. (2) in the vector–matrix designations has the form:

dc
dt

þKc ¼ Q/; ð15Þ
at

K ¼ ðkmm0 Þ; kmm0 ¼ kmdmm0 ; m;m0 ¼ 1;2; . . . :;M;

Q ¼ ðqmgÞ; qmg ¼ bmmRfg ; m ¼ 1;2; . . . :;M; g ¼ 1;2; . . . ;G:

Initial conditions (4) will give

/ð0Þ ¼ /0; cð0Þ ¼ c0; ð16Þ
where c0 ¼ fc01; c02; . . . ; c0Mg.

The spectral problems that are similar to (9)–(11) are used for
characterization of dynamic processes, which are described by
the Cauchy problem (14)–(16). The spectral problem (9) can be
matched with the spectral problem

ðDþ SÞu ¼ kðkÞ Ruþ Bsð Þ;
Ks ¼ kðkÞQu:

The spectral problems, for example, of form (10) can be formu-
lated similarly. In this case one can get

ðDþ S� RÞu� Bs ¼ kðaÞVu;

Ks� Qu ¼ kðaÞs:

The analogous of the spectral problem (11) looks a little be
more cumbersome, when the self-adjoint part of the problems
operator is separated.

4. Numerical examples

We shall give some results of eigenvalue calculation. The ele-
mentary two-group model (G ¼ 2) is used. With reference to the
problem (9) one can obtain (Rs;2!1 ¼ 0)

�r � D1ru1 þ Rr1u1 ¼ kðkÞðmRf1u1 þ mRf2u2Þ;
�r � D2ru2 þ Rr2u2 � Rs;1!2u1 ¼ 0:

ð17Þ

Now we give the spectral problem (10). Within the used two-
group approximation:

�r � D1ru1 þ Rr1u1 � ðmRf1u1 þ mRf2u2Þ ¼ kðaÞ
1
v1

u1;

�r � D2ru2 þ Rr2u2 � Rs;1!2u1 ¼ kðaÞ
1
v2

u2:

ð18Þ

The following problem is compared with the spectral problem (11)
in two-group approximation:

�r � D1ru1 þ ðRr1 � mRf1Þu1 �
1
2
ðmRf2 þ Rs;1!2Þu2 ¼ kðdÞ

1
v1

u1;

�r � D2ru2 þ Rr2u2 �
1
2
ðmRf2 þ Rs;1!2Þu1 ¼ kðdÞ

1
v2

u2:

ð19Þ
The method of finite elements (Brenner and Scott, 2008;

Quarteroni and Valli, 2008) on triangular calculation grids is used
for the approximate solution of the spectral problem. The number
of triangles per one assembly j varies from 6 to 96 (Fig. 1). The
standard Lagrangian finite elements of degree p ¼ 1;2;3 are used.
The software has been developed using the engineering and scien-
tific calculation library FEniCS (Logg et al., 2012). SLEPc Hernandez
et al. (2003, 2005) has been used for numerical solution of the
spectral problems.

To solve spectral problems with non-symmetrical matrices we
use the SLEPc (Scalable Library for Eigenvalue Problem Computa-
tions, http://slepc.upv.es/). We use a Krylov–Schur algorithm, a
variation of Arnoldi method, proposed by Stewart, 2001. The error
estimates used for the convergence test are based on the residual
norm and the value of the tolerance is 10�15.

http://slepc.upv.es/


Fig. 1. Discretization of assembly into 6, 24 and 96 finite elements.

Fig. 2. Geometrcial model of the VVER-1000 reactor core.
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4.1. VVER-1000 problem

The test problem for reactor VVER-1000 without reflector Chao
and Shatilla, 1995 in two-dimensional approximation (X is the
Table 1
Diffusion neutronics constants for VVER-100.

Material 1 2

D1 1.38320e�0 1.38299e�0
D2 3.86277e�1 3.89403e�1
Rr1 2.48836e�2 2.62865e�2
Rr2 6.73049e�2 8.10328e�2
Rs;1!2 1.64977e�2 1.47315e�2
mRf1 4.81619e�3 4.66953e�3
mRf2 8.46154e�2 8.52264e�2

Table 2
The eigenvalues kn ¼ 1=kðkÞn ; n ¼ 1;2; . . . ;5.

j p k1

1 1.00483
6 2 1.00640

3 1.00645

1 1.00600
24 2 1.00645

3 1.00634

1 1.00645
96 2 1.00645

3 1.00646
section of reactor core) is considered. The geometrical model of
the VVER-1000 reactor core consists of a set of hexagonal assem-
blies and is presented in Fig. 2, where the assemblies of various
types are marked with various digits. The total size of assembly
equals 23.6 cm. Diffusion neutronics constants in the common
units are given in Table 1. The boundary conditions (2) are used
at cg ¼ 0:5; g ¼ 1;2.

4.1.1. Solution of Lambda Modes spectral problem
The results of solution of the spectral problem (17) for the first

eigenvalues kn ¼ 1=kðkÞn ; n ¼ 1;2; . . . ;5; kðkÞ1 6 kðkÞ2 6 . . . using the
different grids and finite elements are shown in Table 2. These data
demonstrate the convergence of approximate computed eigenval-
ues as the computational grid crowds and degree of the approxi-
mating polynomials increases — h� p finite element method
Vidal-Ferrandiz et al., 2014.

For the test under consideration, the eigenvalues
k2; k3; k4; k5; k9; k10 of the spectral problem (9) are the complex val-
ues with small imaginary parts, and the eigenvalues k1; k6; k7; k8
are the real values. Below we give the graphs of real and imaginary
parts of uðnÞ eigenfunctions which correspond to the first eigenval-
ues kn; n ¼ 1;2; . . . ;5. They were calculated using a computational
grid with 96 triangles for one assembly and the finite elements of
the third degree. The eigenfunctions are normalized so that the
norm of real or imaginary part is equal to 1, for example:

kRe uðnÞ
g k ¼ 1; g ¼ 1;2:
3 4 5

1.39522e�0 1.39446e�0 1.39506e�0
3.86225e�1 3.87723e�1 3.84492e�1
2.45662e�2 2.60117e�2 2.46141e�2
8.44801e�1 9.89671e�2 8.93878e�2
1.56219e�2 1.40185e�2 1.54981e�2
6.04889e�3 5.91507e�3 6.40256e�3
1.19428e�1 1.20497e�1 1.29281e�1

k2; k3 k4; k5

0.99272 ± 1.12018e�06i 0.97055 ± 1.18100e�06i
0.99473 ± 1.31480e�06i 0.97362 ± 2.49505e�06i
0.99481 ± 1.52505e�06i 0.97376 ± 2.89368e�06i

0.99422 ± 1.55055e�06i 0.97285 ± 2.95842e�06i
0.99480 ± 1.51144e�06i 0.97376 ± 2.87450e�06i
0.99482 ± 1.51566e�06i 0.97377 ± 2.88024e�06i

0.99466 ± 1.52518e�06i 0.97353 ± 2.90209e�06i
0.99482 ± 1.51541e�06i 0.97377 ± 2.87990e�06i
0.99482 ± 1.51558e�06i 0.97378 ± 2.88002e�06i



Fig. 3. The eigenfunctions uð1Þ
1 (left) and uð1Þ

2 (right).

Fig. 4. Real part of eigenfunctions uð2Þ
1 ; uð3Þ

1 (left) and uð4Þ
1 ; uð5Þ

1 (right).

Fig. 5. Imaginary part of eigenfunctions uð2Þ
1 ;�uð3Þ

1 (left) and uð4Þ
1 ;�uð5Þ

1 (right).

Fig. 6. The eigenfunctions uð6Þ
1 (left) and uð7Þ

1 (right).
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The eigenfunctions for fundamental eigenvalue (n ¼ 1) are
shown in the Fig. 3. The real part of the eigenfunctions

uðnÞ
1 ; n ¼ 2;3;4;5 is shown in the Fig. 4. Fig. 5 shows the imaginary

part of the eigenfunctions. Fig. 6 shows the eigenfunctions uð6Þ
1 at

k6 � 0:95520 and uð7Þ
1 at k7 � 0:94838.

The obtained results for the Lambda Modes spectral problem
can be compared with the results obtained by González-Pintor
et al. (2009). Using the high order finite element method for the
test problem (VVER-1000 reactor without a reflector) they give
the following eigenvalues:

k1 ¼ 1:0064540; k2 ¼ 0:9948153; k3 ¼ 0:9948153;
k4 ¼ 0:9737733:

These values are close to our calculational results for real parts
of these eigenvalues. In particular, the second and third eigenval-



Table 3
The eigenvalues an ¼ kðaÞn ; n ¼ 1;2; . . . ;5.

j p a1 a2;a3 a4;a5

1 �105.032 159.802 ± 0.025510i 659.109 ± 0.034667i
6 2 �139.090 115.793 ± 0.029186i 591.782 ± 0.034667i

3 �140.223 114.035 ± 0.033814i 588.762 ± 0.069025i

1 �130.422 126.984 ± 0.034409i 608.734 ± 0.070724i
24 2 �140.187 114.089 ± 0.033512i 588.849 ± 0.068555i

3 �140.281 113.887 ± 0.033604i 588.415 ± 0.068695i

1 �137.704 117.345 ± 0.033823i 593.818 ± 0.069254i
96 2 �140.284 113.886 ± 0.033599i 588.419 ± 0.068687i

3 �140.308 113.842 ± 0.033603i 588.336 ± 0.068690i

Fig. 7. The eigenfunctions uð1Þ
1 (left) and uð1Þ

2 (right).

Fig. 8. Difference of eigenfunctions duð1Þ
1 (left) and duð1Þ

2 (right).

Fig. 9. Real part of eigenfunctions uð2Þ
1 ; uð3Þ

1 (left) and uð4Þ
1 ; uð5Þ

1 (right).
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ues are equal. The principal point is the complexity of the eigenval-
ues with small imaginary parts and we proved this fact.

4.1.2. Solution of Alpha Modes spectral problem
The problem (18) is solved at v1 ¼ 12;500;000 and

v2 ¼ 250;000. The results of solution of the spectral problem

(18) for the first eigenvalues an ¼ kðaÞn ; n ¼ 1;2; . . . ;5; kðaÞ1 6
kðaÞ2 6 . . . at different computational grids using different finite-
element approximations are shown in Table 3. The eigenvalues
a2;a3;a4;a5;a9;a10 of the spectral problem (10), like for the spec-
tral problem (9), are the complex values with small imaginary
parts, and the eigenvalues a1;a6;a7;a8 are the real values.

The eigenfunctions for fundamental eigenvalue (n ¼ 1) of the
spectral problem (18) are shown in the Fig. 7. Due to the fact that
a state of the reactor is close to critical (k ¼ k1 � 1:00646), the fun-
damental eigenfunctions of the spectral problem (17) are close to
the fundamental eigenfunctions of the spectral problem (18).
Fig. 8 shows the difference of a-eigenfunction and k-eigenfunction.

The real part of the eigenfunctions uðnÞ
1 ; n ¼ 2;3;4;5 is shown

in the Fig. 9. Fig. 10 shows the imaginary part of these eigenfunc-



Fig. 10. Imaginary part of eigenfunctions uð2Þ
1 ;�uð3Þ

1 (left) and uð4Þ
1 ;�uð5Þ

1 (right).

Fig. 11. The eigenfunctions uð6Þ
1 (left) and uð7Þ

1 (right).

Table 4
The eigenfunctions dn ¼ kðdÞn ; n ¼ 1;2; . . . ;5.

j p d1 d2 d3 d4 d5

1 �22170.12 �22058.40 �22058.39 �21768.84 �21768.82
6 2 �22933.98 �22830.17 �22830.16 �22563.69 �22563.67

3 �22982.60 �22878.57 �22878.56 �22611.14 �22611.12
1 �22745.06 �22639.74 �22639.73 �22369.01 �22368.99

24 2 �22923.50 �22819.17 �22819.17 �22551.00 �22550.98
3 �22989.87 �22885.85 �22885.84 �22618.47 �22618.44

1 �22923.50 �22819.17 �22819.17 �22551.00 �22550.98
96 2 �22989.61 �22885.60 �22885.59 �22618.22 �22618.20

3 �22991.05 �22887.04 �22887.03 �22619.66 �22619.63

Fig. 12. The eigenfunctions uð1Þ
1 (left) and uð2Þ

1 (right).
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tions. Fig. 11 shows the eigenfunctions uð6Þ
1 at a6 � 1028:440 and

uð7Þ
1 at a7 � 1180:547.
The first eigenfunctions of the problems (17) and (18) are close

to each other in topology. The eigenvalues kðaÞ1 6 kðaÞ2 6 . . . are well
separated. In our example, the fundamental eigenvalue is negative
and therefore the main harmonic will increase, while all others will
attenuate. A regular mode of the reactor is thereby defined. The
value a ¼ kðaÞ1 determines the amplitude of neutron field develop-
ment and connects directly with reactor period in the regular
mode.
4.1.3. Solution of Delta Modes spectral problem
The results of solution of this spectral problem for the first five

eigenvalues are shown in Table 4. All the eigenvalues are real, and



Fig. 13. Geometrcial model of the HWR reactor core.
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the value d ¼ d1 � �22991:05 is far enough from the value
a ¼ a1 � �140:308. The eigenvalues of the problem (19) are of lit-

tle importance. Therefore only uð1Þ
1 and uð2Þ

1 are given in Fig. 12.

4.2. HWR problem

This benchmark simulate the active zone of a large heavy-water
reactor HWR Chao and Shatilla, 1995. The geometrical model of the
Table 5
Diffusion neutronics constants for HWR.

Material Group D

1 1 1.38250058
2 0.89752185

2 1 1.38255219
2 0.89749043

3 1 1.37441741
2 0.88836771

4 1 1.31197955
2 0.87991376

6 1 1.38138909
2 0.90367052

7 1 1.30599110
2 0.83725587

8 1 1.29192957
2 0.81934103

9 1 1.06509884
2 0.32282849

Table 6
The eigenvalues kn ¼ 1=kðkÞn ; n ¼ 1;2; . . . ;5.

j p k1

1 0.99198
6 2 0.99199

3 0.99196

1 0.99198
24 2 0.99197

3 0.99196

1 0.99197
96 2 0.99196

3 0.99196
HWR reactor core consists of a set of hexagonal assemblies and is
presented in Fig. 13. The total size of assembly equals 17.78 cm.
Diffusion neutronics constants in the common units are given in
Table 5. The boundary conditions (2) are used at cg ¼ 0:5; g ¼ 1;2.

4.2.1. Solution of Lambda Modes spectral problem
The results of solution of the spectral problem (17) for the first

eigenvalues kn ¼ 1=kðkÞn ; n ¼ 1;2; . . . ;5; kðkÞ1 6 kðkÞ2 6 . . . using the
different grids and finite elements are shown in Table 6. We have
the convergence of approximate computed eigenvalues as the
computational grid crowds and degree of the approximating poly-
nomials increases.

The eigenvalues k2; k3; k4; k5; k9; k10 of the spectral problem (9)
are the complex values with small imaginary parts, and the eigen-
values k1; k6; k7; k8 are the real values. We give the graphs of real
and imaginary parts of uðnÞ eigenfunctions which correspond to
the first eigenvalues kn; n ¼ 1;2; . . . ;5. The eigenfunctions for fun-
damental eigenvalue (n ¼ 1) are shown in the Fig. 14. The real part

of the eigenfunctions uðnÞ
1 ; n ¼ 2;3;4;5 is shown in the Fig. 15.

Fig. 16 shows the imaginary part of the eigenfunctions.
For this test problem (HWR reactor) González-Pintor et al.

(2009) give the following eigenvalues:

k1 ¼ 0:9919610; k2 ¼ 0:9835926; k3 ¼ 0:9835926;
k4 ¼ 0:9642380:

These values are close to our results for real parts of these
eigenvalues.

4.2.2. Solution of Alpha Modes spectral problem
The problem (18) is solved at v1 ¼ 12;500;000 and

v2 ¼ 250;000. The results of solution of the spectral problem
Rr R1!2 mRf

1.1105805e�2 8.16457e�3 2.26216e�3
2.2306487e�2 2.30623e�2

1.1174585e�2 8.22378e�3 2.22750e�3
2.2387609e�2 2.26849e�2

1.0620368e�2 8.08816e�3 2.14281e�3
1.6946527e�2 2.04887e�2

1.2687953e�2 1.23115e�2 0.0
5.2900925e�2 0.0

1.056312e�2 7.76568e�3 2.39469e�3
2.190298e�2 2.66211e�2

1.1731321e�2 1.10975e�2 0.0
4.3330365e�3 0.0

1.1915316e�2 1.15582e�2 0.0
3.0056488e�4 0.0

2.8346221e�2 2.61980e�2 0.0
3.3348874e�2 0.0

k2; k3 k4; k5

0.98360 ± 1.06467e�05i 0.96414 ± 1.96893e�05i
0.98362 ± 1.16182e�05i 0.96427 ± 2.15201e�05i
0.98360 ± 1.16441e�05i 0.96424 ± 2.15627e�05i

0.98361 ± 1.13901e�05i 0.96423 ± 2.10911e�05i
0.98360 ± 1.16422e�05i 0.96424 ± 2.15595e�05i
0.99359 ± 1.16449e�05i 0.96424 ± 2.15643e�05i

0.98360 ± 1.15799e�05i 0.96424 ± 2.14440e�05i
0.98359 ± 1.16448e�05i 0.96424 ± 2.15640e�05i
0.98359 ± 1.16447e�05i 0.96424 ± 2.15639e�05i



Fig. 14. The eigenfunctions uð1Þ
1 (left) and uð1Þ

2 (right).

Table 7
The eigenvalues an ¼ kðaÞn ; n ¼ 1;2; . . . ;5.

j p a1 a2;a3 a4;a5

1 42.28145 85.12917 ± 0.05604i 183.97351 ± 0.10320i
6 2 42.13522 84.73725 ± 0.06117i 182.79517 ± 0.11345i

3 42.25852 84.86342 ± 0.06130i 182.91188 ± 0.11367i

1 42.19593 84.86062 ± 0.05997i 183.11506 ± 0.11104i
24 2 42.25260 84.85735 ± 0.06129i 182.90628 ± 0.11365i

3 42.26300 84.86756 ± 0.06130i 182.91450 ± 0.11367i

1 42.24114 84.86101 ± 0.06096i 182.96129 ± 0.11301i
96 2 42.26235 84.86689 ± 0.06130i 182.91391 ± 0.11367i

3 42.26266 84.86709 ± 0.06130i 182.91375 ± 0.11367i

Fig. 16. Imaginary part of eigenfunctions uð2Þ
1 ;�uð3Þ

1 (left) and uð4Þ
1 ;�uð5Þ

1 (right).

Fig. 15. Real part of eigenfunctions uð2Þ
1 ; uð3Þ

1 (left) and uð4Þ
1 ; uð5Þ

1 (right).
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(18) for the first eigenvalues an ¼ kðaÞn ; n ¼ 1;2; . . . ;5; kðaÞ1 6
kðaÞ2 6 . . . at different computational grids using different
finite-element approximations are shown in Table 7. The
eigenvalues a2;a3;a4;a5;a9;a10 of the spectral problem (10), like
for the spectral problem (9), are the complex values with small
imaginary parts, and the eigenvalues a1;a6;a7;a8 are the real
values.
The eigenfunctions for fundamental eigenvalue (n ¼ 1) of the
spectral problem (18) are shown in the Fig. 17. The real part of

the eigenfunctions uðnÞ
1 ; n ¼ 2;3;4;5 is shown in the Fig. 18.

Fig. 19 shows the imaginary part of these eigenfunctions. The first
eigenfunctions of the problems (17) and (18) are close to each

other in topology. The eigenvalues kðaÞ1 6 kðaÞ2 6 . . . are well
separated.



Fig. 17. The eigenfunctions uð1Þ
1 (left) and uð1Þ

2 (right).

Table 8
The eigenfunctions dn ¼ kðdÞn ; n ¼ 1;2; . . . ;5.

j p d1 d2 d3 d4 d5

1 �1127.55257 �1009.80617 �1009.80398 �871.60140 �871.59855
6 2 �1132.64216 �1018.75605 �1018.75385 �883.21855 �883.21571

3 �1132.81177 �1019.03389 �1019.03169 �883.53871 �883.53587

1 �1131.36452 �1016.52656 �1016.52435 �880.32945 �880.32661
24 2 �1132.80333 �1019.02010 �1019.01790 �883.52291 �883.52007

3 �1132.82161 �1019.05019 �1019.04798 �883.55788 �883.55504

1 �1132.44380 �1018.39826 �1018.39605 �882.72667 �882.72383
96 2 �1132.82067 �1019.04865 �1019.04644 �883.55611 �883.55327

3 �1132.82240 �1019.05153 �1019.04932 �883.55955 �883.55671

Fig. 19. Imaginary part of eigenfunctions uð2Þ
1 ;�uð3Þ

1 (left) and uð4Þ
1 ;�uð5Þ

1 (right).

Fig. 18. Real part of eigenfunctions uð2Þ
1 ;uð3Þ

1 (left) and uð4Þ
1 ;uð5Þ

1 (right).
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4.2.3. Solution of Delta Modes spectral problem
The results of solution of this spectral problem for the

first five eigenvalues are shown in Table 8. All the eigenvalues
are real, and the value d ¼ d1 � �1132:82 is far enough from the

value a ¼ a1 � 42:26. Eigenfunctions uð1Þ
1 and uð2Þ

1 are given in
Fig. 20.



Fig. 20. The eigenfunctions uð1Þ
1 (left) and uð2Þ

1 (right).
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5. Conclusions

The spectral problems that may characterize the reactor
dynamic behavior are considered. Within the multi-group diffu-
sion approximation, the standard Lambda Modes spectral problem
which is related to the definition of k-effective of the reactor core is
considered. The Alpha Modes spectral problem is muchmore infor-
mative for considering the dynamic processes. We can relate the
dynamics of the reactor at asymptotic stage at large times to fun-
damental a-eigenvalue and a-eigenfunction. A new spectral prob-
lem (Delta Modes spectral problem) is formulated, which is
connected to self-adjoint part of operator of neutron absorption-
generation. Solution of this problem allows making an a priori esti-
mate of neutron flux dynamics.

The computational algorithm for approximate solution of the
spectral problems is based on a standard finite-element approxi-
mation using Lagrange finite elements of p ¼ 1;2;3. The matrix
spectral problem is solved using a scalable and flexible toolkit for
the solution of eigenvalue problems SLEPc. Approximate solution
accuracy is checked at a sequence of condensing grid using finite
elements of varying degrees.

Test calculations are made in two-dimensional approximation
for a model of VVER-1000 reactor without reflector and and
HWR reactor using two-group diffusion approximation. The first
real and complex eigenvalues and eigenfunctions in the Lambda
Modes spectral problem are got. A good separability of the eigen-
values in the Alpha Modes spectral problem is identified. The
results of the numerical solution of the Delta Modes spectral prob-
lem to assess neutron flux dynamics are given.
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