
Advances in Engineering Software 99 (2016) 73–80

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Efficient GPU out-of-core visualization of large-scale CAD models

with voxel representations

Junjie Xue

a , c , Gang Zhao

a , b , c , ∗, Wenlei Xiao

a , b

a School of Mechanical Engineering and Automation, Beihang University, Beijing, China
b Key Laboratory of Aeronautics Smart Manufacturing, Ministry of Industry and Information Technology, Beijing, China
c State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China

a r t i c l e i n f o

Article history:

Received 23 December 2015

Revised 4 May 2016

Accepted 13 May 2016

Available online 24 May 2016

Keywords:

Voxel representation

Massive model rendering

GPU out-of-core

Visibility query

Geometry compression

a b s t r a c t

Visualizing large-scale CAD models has been recognized as one of the most challenging tasks in engineer-

ing software development. Due to the constraints of limited GPU memory size and computation capacity,

the CAD model of a complex product with hundreds of millions triangles cannot be loaded and ren-

dered in real-time using most of modern GPUs. In this paper, an efficient voxel assisted GPU out-of-core

framework is proposed for visualizing massive CAD models interactively. In order to reduce memory cost

and improve efficiency of data streaming, a parallel off-line geometry attributes compression scheme is

introduced to minimize the storage cost of each primitive by quantifying the LOD (levels of detail) ge-

ometries into a highly compact format. At the rendering stage, voxel representation is utilized to query

visible objects by efficient ray casting algorithms, which is distinguishable from primitive or bounding

box based visibility culling methods. The voxel representation is also utilized for shadow ray intersec-

tion test to generate soft shadow effect which results in enhancement of rendering realism. A prototype

software system is developed to preprocess and render massive models with the proposed framework.

Experimental results show that users can interactively visualize CAD models with hundreds of millions

of triangles at high frame rates using our framework.

© 2016 Elsevier Ltd. All rights reserved.

1

t

t

i

e

g

c

f

M

t

t

d

m

o

l

x

g

i

e

a

a

o

a

l

t

[

d

i

r

p

v

t

p

t

h

0

. Introduction

With the development of digital design and manufacturing

echnology, modern engineering modeling and simulation applica-

ions have created numerous highly complex 3D models, includ-

ng industrial CAD models of aircrafts, ships and production plants,

tc. These models consume large amounts of storage space and are

eometrically complex, which requires superior visual computing

apabilities for real-time rendering. Although the hardware per-

ormance of commodity PCs has increased constantly according to

oore’s law, it is still not sufficient to render these datasets at in-

eractive frame rates using brute-force approaches.

There have been several studies conducted in the field of real-

ime massive model rendering. OpenRT system was able to ren-

er large models at several frames per second using a single com-

odity desktop PC by combining real-time ray tracing with out-

f-core caching [1] . Some other research focus on utilizing paral-

el architecture to accelerate rendering process [2,3] , such as Gi-
∗ Corresponding author.

E-mail addresses: bitxue@foxmail.com (J. Xue), zhaog@buaa.edu.cn (G. Zhao),

iaowenlei@buaa.edu.cn (W. Xiao).

f

C

v

o

ttp://dx.doi.org/10.1016/j.advengsoft.2016.05.006

965-9978/© 2016 Elsevier Ltd. All rights reserved.
aWalk and Manta system. The GigaWalk system uses two graph-

cs pipelines with multiple processors, it was able to render CAD

nvironments composed of tens of millions of polygons at inter-

ctive rates on an a SGI workstation [4] . Manta system employs

 multi-threaded scalable parallel pipeline which takes advantage

f a Itanium2 SGI supercomputer [5] . Therefore, the system was

ble to achieve a good rendering quality and interactive functions

ike transparency and clipping. More recently, voxel representa-

ions offered significant potential for massive model visualization

6–10] . The voxel based rendering method uses hierarchical voxel

ata to view-dependently represent the primitives in an approx-

mate manner. Among them, Far-Voxels utilize cubical voxels to

epresent inner node of BSP tree [11] , while R-LODs consists of a

lane with material attributes [12] . More recently, VoxLOD uses a

oxel with six shading attributes (colors and normals of six planes)

o represent an inner Kd-tree node [13] . The voxels serve as a sim-

lification of triangle primitives contained in a Kd-tree node. Al-

hough these studies have greatly improved rendering efficiency

rom many aspects, however, the rendering efficiency of large-scale

AD models on commodity PCs is still low, the refresh rates in in-

estigated literatures are still low.

At rendering stage, GPU out-of-core algorithm can continu-

usly stream coherent geometry data in host memory into GPU to

http://dx.doi.org/10.1016/j.advengsoft.2016.05.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.05.006&domain=pdf
mailto:bitxue@foxmail.com
mailto:zhaog@buaa.edu.cn
mailto:xiaowenlei@buaa.edu.cn
http://dx.doi.org/10.1016/j.advengsoft.2016.05.006

74 J. Xue et al. / Advances in Engineering Software 99 (2016) 73–80

Fig. 1. The overview of our approach. The pipelines of model preprocessing and runtime processing are demonstrated.

a

f

c

d

i

c

s

g

a

l

g

t

p

L

d

s

3

r

c

i

s

3

G

e

t

g

i

c

a

s

s

m

i

t

A

b

o

a

s
provide necessary data for rendering each frame. This algorithm

solves the issue that the massive CAD dataset cannot load into the

GPU memory at once. However, due to the widening gap between

data access speed and data computation speed [14] , the efficiency

of GPU out-of-core becomes the key factor affecting the render-

ing speed. Current rendering architectures using out-of-core algo-

rithms rely on suitable data layout algorithms to reduce the mem-

ory latency and data fetch time from the disk-based secondary

storage devices to the main memory. However, many factors can

affect the efficiency of the out-of-core algorithms, such as the rate

of memory, the storage size of individual primitives, and the prim-

itive selection time for each rendering frame. Therefore, the out-of-

core algorithms need to be optimized throughout the preprocess-

ing and rendering pipelines.

This paper presents an efficient voxel assisted GPU out-of-core

framework for real-time rendering of large-scale CAD dataset. The

framework generates a sparse voxel representation of the CAD

model and storages the voxel data into a compact graph structure.

The LODs is bound to a bounding volume hierarchy (BVH) struc-

ture and the geometry data is compressed into a highly compact

encoding format. In addition, LOD processing is integrated with

voxel based visibility query using a GPU based approach to im-

prove the runtime rendering performance. A prototype software

system is implemented and tested on desktop PCs with two large

CAD datasets (with 72 ∼337 million triangles).

2. Overview of GPU out-of-core framework

The overview of our voxel assisted GPU out-of-core framework

is shown in Fig. 1 . In order to accelerate the model preprocessing ,

we propose a parallel LOD generation algorithm utilizing file hier-

archy of the model dataset. This algorithm treats each leaf node

of the file hierarchy as an initial LOD geometry, and it uses multi-

ple threads to simplify geometry in parallel and produce separate

multi-resolution model files for each LOD geometry. Each LOD ge-

ometry is finally generated by combining each LOD level model file

in order.

We also design an aggressive GPU-based geometry attributes

compression scheme, which can encode the LOD geometry data

with compression ratio higher than 5. In this compression scheme,

the geometry vertex data is quantized from absolute coordinates

to relative coordinates (relative to its AABB box), which are then

encoded into 16-bit width GLushort data type. Moreover, all the

geometry normal data is deleted to minimize the storage size. In

order to fully utilize powerful computing capability of GPU, the en-

coded vertex data and normal data are decoded and reconstructed

in the GPU graphics pipeline. The model preprocessing pipelines
lso generate a sparse voxel representation of the original model

or efficient visibility query and shadow rendering in runtime pro-

essing. In order to reduce the storage size of high resolution voxel

ata, the voxel data is organized with an octree structure first and

s then converted into a directed acyclic graph (DAG) structure.

The runtime processing takes advantage of both CPU and GPU

omputation capacity. The visibility query employs multithreaded

parse voxel ray casting algorithm with the voxel representation

enerated in the model preprocessing stage. A list of visible objects

t current frame can be achieved after this query process. The LOD

evel of each object can be determined by LOD selection metric al-

orithm. And the model data which is needed to be transferred

o or to be released from the GPU memory can be filtered by com-

aring the visible object list with that of last frame. The transferred

OD geometry data is then decoded in the GPU graphics pipeline. A

eferred shading technique is utilized to get the final image where

oft shadow effect is calculated with the voxel representation.

. Model preprocessing

In this section, we present an algorithm to compute multi-

esolution hierarchy for massive models (LODs). The algorithm pro-

eeds in two steps: (1) the geometry attributes are compressed

nto a highly compact storage, (2) we build a sparse voxel repre-

entation of the original model and associate each object with it.

.1. Geometry attributes compression

In order to reduce bandwidth cost and memory footprint for

PU out-of-core rendering, it is necessary to compress LOD geom-

try data into a compact size. For a comprehensive view of geome-

ry compression, we refer the reader to [15,16] . Previous works re-

arding to geometry compression mainly focus on efficient encod-

ng and decoding algorithms that compresses geometry data into a

ompact size with/without loss of precision. This paper introduces

n aggressive geometry compression and GPU based decompression

cheme which possesses higher compression ratio (Fig. 2). In this

cheme, geometry normal attributes are deleted directly to mini-

ize geometry storage size and is reconstructed in the GPU graph-

cs pipeline, while others are quantized into a shorter bit width.

In this algorithm, an AABB box is calculated for each object,

hen each vertex coordinate is mapped into a relative coordinate.

nd each relative coordinate component is encoded from GLdou-

le or GLfloat data type into GLushort type. According to the size

f vertex number, the index data is encoded into GLubyte, GLushort

nd GLuint type respectively. Typically normal data takes up the

ame amount of storage as the vertex data. While in this paper,

J. Xue et al. / Advances in Engineering Software 99 (2016) 73–80 75

Fig. 2. Geometry attributes compression pipeline. The original absolute coordinate components of each vertex are encoded into relative coordinate components using

GLushort data type; Index components are encoded from GLuint to GLubyte or GLushort type; The normal data is deleted. At the rendering stage, the vertex data is de-

coded in a vertex shader, then the normal data can be reconstructed using a geometry shader.

a

i

p

o

g

w

e

c

f

L

i

e

o

f

p

v

o

r

p

V

V

w

n

n

r

n

s

b

v

t

d

w

p

t

i

c

t

d

p

t

3

t

v

g

i

i

b

t

v

a

r

e

e

a

l

s

c

b

r

e

t

t

c

u

v

g

t

4

L

o

i

m

t

i

r

e

f

m

f
ll the normal data is deleted in the preprocessing pipeline and

ntended to be recalculated on-the-fly in the GPU at the rendering

hase. For homogeneous CAD models, generally each geometry has

nly one material attribute (textures are not considered when re-

arding to massive model). Therefore, one color information which

ill be used to compute the diffuse lighting results is stored for

ach geometry.

Geometry quantization is conducted at the end of our prepro-

essing pipeline. All the data is written into a binary format file to

urther reduce the storage size and accelerate the speed of loading

ODs from extern storage to local memory at a subsequent render-

ng phase.

We use a vertex shader to decode the absolute coordinate of

ach vertex. Then normal reconstruction is implemented in a ge-

metry shader to compute a normal vector for each vertex. There-

ore, the decompression algorithm has taken advantage of the

owerful GPU computing capacity. Assuming that V represents a

ertex of the geometry, M 0 and M 1 are the min and max point

f the axis-aligned bounding box of the geometry, then the algo-

ithms of vertex data compression and decompression can be ex-

ressed as Eqs. 1 and 2 respectively:

 e = (2

n −1) (V − M 0) ./ (M 1 − M 0) (1)

 d = M 0 +

1

(2

n −1)
V e ◦ (M 1 − M 0) (2)

here V e and V d denote the encoded relative coordinate compo-

ent and the corresponding decoded absolute coordinate compo-

ent respectively. n is the bit width of the data type to store the

elative coordinate components (since we use GLushort data type,

 equals 16).

Rounding error is produced in the conversion process from ab-

olute coordinate to relative coordinate, as shown in Eq. 1 , which

ring about the final compression error of vertex data. The error

alue is calculated by the distance between the decompressed ver-

ex with the original vertex. The value of the compression error

epends on the bounding box size of the compressed geometry as

ell as the data type used to store the relative coordinate com-

onents. Based on this, the compression error can be well con-

rolled if a compatible combination of data type and geometry size

s used. In order to have a small error value, large-sized geometry

an be split into small ones by utilizing SAH (Surface Area Heuris-

ic) model partition algorithm [17] while using the same bit width

ata type. The experimental result of the compression and decom-

ression shows minor compression error with 16-bit vertex quan-

ization compared with the original geometry (shown in Fig. 3).
.2. Fast voxelization of large-scale mesh

Voxels can be generated from triangle meshes through voxeliza-

ion algorithm. The algorithm firstly calculate a cubical bounding

olume of the mesh, and then divide the volume into a uniform

rid with a preset resolution along 3 axes. Each small cubical grid

s called a voxel. With respect to each voxel, whether the voxel

s empty or is occupied by the model is determined by a triangle-

ox intersection test. All the non-empty voxels form an approxima-

ion of the original triangle surface model, which are called sparse

oxels. Typically each non-empty voxel contains position, material,

nd normal information, wherein the position can be given by grid

esolution and index coordinates, the material and normal can be

stimated by sampling the triangle mesh. In this paper, since vox-

ls are only used for ray-voxel intersection test in visibility query

nd shadow rendering, these attributes do not need to be calcu-

ated.

Sparse voxel data management is mainly based on octree data

tructure. For sparse voxels without shading attributes, using DAG

an reduce the storage size by an order of magnitude. We use a

ottom-up approach to convert the sparse voxel octree into a di-

ected acyclic graph. In order to lessen memory consumption, we

mploy block processing method: (1) first generates a low level of

he octree; (2) each node generates a sub-tree of preset resolu-

ion, and convert the octree into a DAG; (3) after all subtrees have

ompleted conversion, continue to convert the subgraphs upwards

ntil we come to the root node, and finally a complete sparse

oxel DAGs is generated. In order to improve the efficiency of voxel

eneration, the block processing phase is accelerated with multi-

hreading, the total voxelization time is shown in Table 1.

. Voxel assisted GPU out-of-core rendering

In the previous section, an algorithm to generate compressed

ODs is described. In this section, we present a voxel based GPU

ut-of-core rendering algorithm that combines the voxel based vis-

bility query with view-dependent LOD refinement.

The core concept of the rendering algorithm is to determine a

inimal scale of primitives to be transferred for each frame within

he shortest time (Fig. 4). For current frame, a visible object set

s determined by voxel based visibility query method, which casts

ays from viewpoint towards voxels and test intersections using

fficient sparse voxel DAGs ray casting algorithm; the LOD level

or each object to be rendered is determined by a LOD selection

etric. The resulted objects list is compared with the one in last

rame: (1) the objects that were displayed in last frame but will

76 J. Xue et al. / Advances in Engineering Software 99 (2016) 73–80

Fig. 3. Vertex quantization. Top row shows shaded result for quantized vertexes, with the difference to the ground truth below, multiplied by 10. The right figure shows

compression error distribution of the tested CAD model. The model has a bounding box of [66,66,33] in size. The error value is estimated by the distance from the new

vertex position to the original vertex position.

Table 1

Construction statistics for the test models. The number of triangles in the model, the size of the compressed LODs data structure and voxel data, the

compression ratio, and the build time.

Models Triangles (million) Storage Size (GB) LOD Build time (minute)

Original Compressed LOD Voxels compression ratio Avg. Num. of LODs LOD Voxelization

Power Plants 72 9 .4 1 .8 0 .3 5 .24 3 .7 20 12

Boeing 777 337 41 .4 7 .8 1 .3 5 .31 4 .8 63 38

Fig. 4. The concept of primitive selection with integration of visibility query and LOD processing. (a) Camera position of last frame. (b) Camera position of current frame. (c)

Primitive selection procedure. (d) Voxel based visibility query.

Fig. 5. Principle of voxel based visibility query.

p

o

t

l

not display in current frame are deleted from GPU to release GPU

memory, (2) the objects that are newly added to current frame

or which LOD level is changed are requested to fetch from host

memory.

4.1. Voxel based visibility query

Typically visibility culling contains frustum culling and occlu-

sion culling. The objects outside of the view-frustum volume are

excluded from the scene by frustum culling, and then occluded ob-

jects are removed through occlusion culling. GPU occlusion query

uses the objects’ bounding boxes as query objects. The bounding

box is often too coarse to describe actual shape of an object. The

bounding boxes of the objects may overlap or occlude with each

other. This may bring about incorrect query results and the dis-

play distortion since objects which should be displayed are culled

and not shown. Therefore, it is unsuitable for complex CAD model

which may have perplexing occlusion relationship between parts.

In this paper, we simplify frustum culling and occlusion culling as

one procedure, to directly calculate visibility of current viewpoint

with the sparse voxel representation. Unlike the method of culling

invisible objects from the scene gradually, we tend to directly find

the visible objects in the scene, as shown in Fig. 5.
Sparse voxels are built with uniform 3D grid, which means sim-

ler rule can be used to storage voxels data. Therefore ray casting

f sparse voxels can be implemented in parallel. According to our

est result, the efficiency of ray casting is very high, about 200 mil-

ion rays per second.

J. Xue et al. / Advances in Engineering Software 99 (2016) 73–80 77

Fig. 6. The visibility query result on a gas turbine model. (a) The rendered frame. (b) A third person view from the side shows the objects rendered without visibility query.

The pink lines indicate the view frustum. (c) The view shows the visible objects with visibility query.

e

a

g

e

r

i

t

b

c

c

t

q

s

v

o

t

o

o

H

t

4

t

t

c

t

f

t

l

s

l

s

a

b

b

i

t

i

c

t

b

d

w

c

d

r

e

p

w

a

i

v

m

m

q

s

t

i

a

p

T

o

m

w

s

i

4

o

a

i

f

7

s

c

T

a

t

b

a

5

The voxel based visibility query has taken advantage of the high

fficiency of sparse voxels ray casting. As shown in Fig. 5 , the im-

ge plane is divided into a uniform 2D grid, the primary rays is

enerated based on viewpoint and position of each sub grid. For

ach primary ray, we perform intersection test with the voxel rep-

esentation, if the ray hit a voxel, we find the object correspond-

ng to the voxel and add it to the visible object list, and update

he count of the object been shot by rays. The accuracy of visi-

ility query depends on the density of primary rays. To increase

hance of small visible objects been shot by rays, we should in-

rease the value of ray density. The visibility query result of a gas

urbine model is shown in Fig. 6.

According to the experimental result, one ray per pixel is ade-

uate to achieve better visibility test quality than traditional occlu-

ion culling while costing almost equivalent time. We tested our

oxel based visibility query algorithm vs. bounding boxes based

cclusion culling algorithm and found that visible objects (which

ypically have 200 vertices or less) would be found to be occluded

nly 7% of the time with voxel based visibility query, vs. 38% with

cclusion culling. 31% incorrect visibility test results were avoided.

owever, the high resolution voxels needs more memory space

han coarse bounding boxes.

.2. Integrating LOD with visibility query

After LODs are created, the main problem encountered is how

o select an appropriate LOD level for each visible geometry at run-

ime. LOD level determines the number of triangles (or geometry

omplexity) to be rendered of a specific object. It not only controls

he display quality of the object, but also the rendering time per

rame by adjusting the total number of triangles to be rendered.

Most LOD adjustment methods use the viewpoint-object dis-

ance in object space or the projection area in image space as LOD

evel selection metrics. These metrics are effective for regular usage

cenarios, such as terrain and urban scene rendering, etc. Nonethe-

ess, for CAD models with extremely complex topologies and

hapes, these methods may lead to improper LOD adjustment and

ffect the quality of display as well as the efficiency of rendering.

This paper presents a novel LOD selection metric based on voxel

ased visibility query. The sampling count (the count of an object

een shot by rays) of each object can be gathered through the vis-

bility query process (Fig. 4 d). Unlike the classic occlusion queries,

his algorithm uses sampling count other than the object’s bound-

ng volume to query the sampling result, thus exact sampling

ount can be obtained for each object. Triangle density is used as

he selection metric of LOD levels, which is the ratio of the num-

er of triangles to the sampling count of specific LOD geometry:

ensity =

n tri

n pix

(3)

i

here n tri and n pix denote the number of triangle and sampling

ount of each object in current LOD resolution respectively.

With respect to a single object, triangle density is related to the

istance and orientation between viewpoint and the object. With

espect to multiple objects, it is related to the shape and size of

ach object. So it is a synthetical and accurate quantification of dis-

lay quality for each visible object, and therefore it is able to cope

ith complex topologies and shapes in the massive CAD model.

The triangle density value is used to sort the objects in order to

daptively adjust LOD levels for the visible objects. For example,

f we want to refine the scene objects, the object with lowest TPP

alue are firstly to be processed, and vice versa. The density metric

ethod makes the rendering system select as fine as possible LOD

odels for rendering the visible objects, while ensuring the display

uality of each object are basically the same. This avoids the LOD

election of some objects to be too fine or coarse.

The size of occlusion query list may be very large and querying

he full list of LOD objects is time-consuming. We set up the max-

mum threshold of query count in a single frame. Objects which

re close to the viewpoint or have large bounding volume take the

recedence to be queried and added into the LOD adjustment list.

he visible objects are sorted in accordance with the viewpoint-

bject distance and the projection area in image space. A weight

etric is used, as shown in the following equation:

eight =

π

180

arctan

(
R

d

)
(4)

where R is the radius of the object’s bounding sphere in object

pace, d is the distance from viewpoint to the center of the bound-

ng sphere.

.3. Voxel based shadow rendering

Shadows are essential for depth perception in physical world. In

rder to improve shading realism of CAD models, we implemented

n efficient voxel based shadow rendering algorithm. The render-

ng process is shown in Fig. 7.

The primary shading is from triangle rasterization. For each

rame of shading, a depth map can be generated, as shown in Fig.

 , for each pixel of which (e.g. D) we can reconstruct the corre-

ponding world space position W . Then the shadow ray S can be

alculated with the world space position W and light position L .

hen whether the pixel D is in the shadow or not is determined by

n intersection test between shadow ray S and the voxel represen-

ation. Similar as visibility query, the shadow test is implemented

y voxel ray casting algorithm on GPU. The final shading result is

 combination of primary shading and shadow rendering.

. Implementation and results

In this section, we describe our implementation and highlight

ts performance on massive CAD models.

78 J. Xue et al. / Advances in Engineering Software 99 (2016) 73–80

Fig. 7. Illustration of voxel based shadow rendering.

Fig. 8. Interactive rendering results of large-scale CAD models. (a) The Power Plants model (72,0 0 0,0 0 0 triangles). (b) The Boeing 777 model (337,0 0 0,0 0 0 triangles, 41.4 GB

storage, one of the largest CAD datasets in manufacturing industry).

s

p

n

5

5

v

t

s

c

1

r

T

r

m

s

W

p

s

5.1. Implementation

The prototype software system is implemented on a desktop PC

with an Intel Xeon E5-2620 (6 cores, 12 threads, 2.0 GHz) proces-

sor, 32 GB memory and a NVIDIA GeForce GTX 970 display card,

running Windows 7 64-bit OS. The software system is developed

with C ++ , OpenGL and GLSL, and built with x64 configuration to

enable large memory address accessing. We tested the system with

two massive CAD models that have different geometry and storage

hierarchy complexity (Fig. 8). The two models include a combined

power plants model which consists of 6 power plants (72 million

triangles) and the Boeing 777 model (337 million triangles).

The system consists of two sub systems, the model preprocess-

ing system and the real-time visualization system. Multithreading

(8 threads) is utilized to accelerate processing speed during vox-

elization and voxel ray casting. The real-time visualization system

is able to overlay a model list window on the rendering scene, as

shown in Fig. 9 (a). The window displays an assembly tree hierar-

chy which supports quick location of a specific part with its part

number from millions of parts. Interaction functions like hiding or

displaying, translation and rotation, displaying geometry informa-

tion of a part/component, and navigation along a specific route are

also integrated. The system also supports users to quickly save or
witch to a viewport using its bookmark function. Users also can

ick parts in the scene with mouse clicking, and display their part

umbers on the scene, as shown in Fig. 9 (b).

.2. Results

.2.1. Preprocessing performance

In order to test the efficiency of our LOD preprocessing and

oxelization algorithms, we built the LODs and voxel representa-

ions of considered models with our system respectively. The con-

truction statistics is shown in Table 1 . The Power Plants model

an be processed in 32 minutes, while the Boeing 777 model needs

01 minutes to generate its multi-resolution model as well as voxel

epresentation (including the time of LOD geometry compression).

he voxelization uses a preset resolution of 32K

3 (327,68 3), which

esults in a uniform grid of 2 millimeter spacing on Boeing 777

odel. The sparse voxel DAG structures cost only about 1/6 storage

ize of the LOD geometries, which are able to fit into GPU memory.

ith our geometry compression algorithm, the average LOD com-

ression ratio is greater than 5, which has greatly reduced the disk

torage size and runtime memory footprint.

J. Xue et al. / Advances in Engineering Software 99 (2016) 73–80 79

Fig. 9. Real-time visualization system for large-scale CAD models. (a) A model list window overlays on the rendering scene, which supports various interaction functions.

(b) Picking a part on the engine, the picked part is highlighted in blue color and its part name is printed on the screen.

Table 2

Numerical results of real-time rendering. We show the average visibility query time, the average LOD processing

time, data streaming time, rendering time (include shadow rendering), and the average frames per second statistics.

Models Visibility query time LOD Processing time Streaming time Rendering time Avg . FPS

Power Plants 4 .5 ms 1 .8 ms 3 .1 ms 6 .0 ms 81

Boeing 777 5 .3 ms 2 .9 ms 8 .4 ms 13 .7 ms 33

Fig. 10. The runtime performance of Boeing 777 model rendering. The number of visible objects, working set size (total rendered triangles).

5

e

t

m

f

a

5

d

1

t

f

M

i

m

t

t

i

s

m

s

i

t

T

o

P

5

(
.2.2. GPU out-of-core rendering performance

The GPU out-of-core rendering algorithm is verified by differ-

nt benchmarks as shown in Table 2 . We computed different walk-

hrough paths through these models and measured the perfor-

ance of our system. A resolution of 1024 × 1024 pixels is used

or the interactive rendering. The results show that we can render

t the interactive rates of 30 ∼45 fps for the Boeing 777 model and

0 ∼100 fps for the Power Plants model.

A special navigation route is designed to test the real-time ren-

ering performance on the Boeing 777 model, as shown in Fig.

0 (a): (1) the route starts from a position outside the cabin (S) , and

hen the camera intermittently moves to a position close to the

ront fuselage (M 1) ; (2) the camera position shifts abruptly from

 1 to a position at the interior of front fuselage (M 2) by trigger-

ng a viewport bookmark; (3) and then the camera intermittently

oves to a position (D) at the rear fuselage. As the camera posi-
 s
ion moves along the route, fewer objects are inside the view frus-

um, the number of visible objects has been progressively dimin-

shed, as shown in Fig. 10 (b). Through LOD adjustment, the total

cale of the rendered triangles has fluctuated slightly between the

in/max thresholds, which guarantees a fast rendering speed. The

ystem reduces triangle number to about 8 million by removing

nvisible objects through visibility query and LOD processing, then

he frame rate has fluctuated around 35 FPS, as shown in Fig. 11 .

o the best knowledge of us, this is by far the highest frame rate

n the real-time rendering of Boeing 777 model on a commodity

C.

.2.3. Comparisions

Xue. etc. employed an automatic LOD generation algorithm

without multithreading) and a coarse LOD model based occlu-

ion culling strategy [18] . The test system was deployed on a HP

80 J. Xue et al. / Advances in Engineering Software 99 (2016) 73–80

Fig. 11. Frames per second statistics of Boeing 777 model rendering (averaged each 10 frames).

R

[

Z800 workstation with two Intel Xeon X5550 processor (2.67 GHz,

8 cores, 16 threads), 16GB memory, and NVIDIA Quadro FX3800

graphics card. Their GPU out-of-core system was able to render

the Boeing 777 model about 20 FPS (Fig. 11). While this paper fo-

cusses on accurate visibility test with a novel sparse voxel repre-

sentation and efficient geometry compressions scheme. The com-

pression of LOD geometry together with the integration of visibil-

ity query and LOD processing guaranteed a fast streaming speed

of geometry data from main memory to GPU. The statistics in Fig.

11 show that GPU out-of-core framework in this paper has higher

rendering efficiency than Xue’s.

6. Conclusion and future work

An efficient voxel assisted GPU out-of-core framework has been

presented for interactive rendering of large-scale CAD models. The

framework has employed an aggressive geometry compression al-

gorithm to produce compact LOD models efficiently while with

only slight losses in object quality. The LOD processing has been

integrated with voxel based visibility query to achieve better visi-

bility test results and efficient LOD refinement. The framework has

been tested by CAD models with tens to hundreds of millions of

triangles. Users were able to explorer those models at interactive

frame rates on desktop PCs with the prototype software system.

The current implementation of the rendering system includes

a primary rendering and shadow rendering. Future versions will

include many-light and ambient occlusion effect implementations.

We are also interested in more efficient voxel data structure com-

pression methods which help to lessen voxel storage size further.

Acknowledgements

This work was supported by the National Natural Science Foun-

dation of China (61170198) and the Innovation Fund of the State

Key Laboratory of Virtual Reality Technology and Systems (VR-

2013-ZZ-05). The Boeing 777 dataset was provided by and used

with permission of The Boeing Company. The power plant model

is courtesy of the University of North Carolina at Chapel Hill.
eferences

[1] Wald I , Dietrich A , Slusallek P . An interactive out-of-core rendering frame-

work for visualizing massively complex models. In: Proceedings of the fifteenth

eurographics conference on Rendering techniques: Eurographics association;
2004. p. 81–92 .

[2] Peng C , Cao Y . A GPU-based approach for massive model rendering with
frame-to-frame coherence. Wiley Online Library; 2012. p. 393–402 .

[3] Peng C , Mi P , Cao Y . Load balanced parallel GPU out-of-core for continuous
LOD model visualization. In: High performance computing, networking, storage

and analysis (SCC), 2012 SC companion. IEEE; 2012. p. 215–23 .

[4] Baxter WV III , Sud A , Govindaraju NK , Manocha D . Gigawalk: interactive walk-
through of complex environments. Rendering Techniques; 2002. p. 203–14 .

[5] Stephens A , Boulos S , Bigler J , Wald I , Parker S . An application of scalable mas-
sive model interaction using shared-memory systems. In: Proceedings of the

6th eurographics conference on parallel graphics and visualization: Eurograph-
ics association; 2006. p. 19–27 .

[6] Crassin C , Neyret F , Lefebvre S , Eisemann E . Gigavoxels: ray-guided streaming

for efficient and detailed voxel rendering. In: Proceedings of the 2009 sympo-
sium on interactive 3D graphics and games. ACM; 2009. p. 15–22 .

[7] Laine S , Karras T . Efficient sparse voxel octrees. IEEE Trans Vis Comput Graph
2011;17:1048–59 .

[8] Rusinkiewicz S , Levoy M . QSplat: a multiresolution point rendering system
for large meshes. In: Proceedings of the 27th annual conference on computer

graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.;
20 0 0. p. 343–52 .

[9] Rusinkiewicz S , Levoy M . Streaming QSplat: a viewer for networked visualiza-

tion of large, dense models. In: Proceedings of the 2001 symposium on inter-
active 3D graphics. ACM; 2001. p. 63–8 .

[10] Tian F , Hua W , Dong Z , Bao H . Adaptive voxels: interactive rendering of mas-
sive 3D models. Vis Comput 2010;26:409–19 .

[11] Gobbetti E , Marton F . Far voxels: a multiresolution framework for interactive
rendering of huge complex 3d models on commodity graphics platforms. ACM

Trans Graph (TOG) 2005;24:878–85 .

12] Yoon S-E , Lauterbach C , Manocha D . R-LODs: fast LOD-based ray tracing of
massive models. Vis Comput 2006;22:772–84 .

[13] Áfra AT . Interactive ray tracing of large models using voxel hierarchies. Comput
Graph Forum 2012;31:75–88 .

[14] Yoon S-E , Gobbetti E , Kasik D , Manocha D . Real-time massive model rendering.
Morgan & Claypool Publishers; 2008 .

[15] Cigolle ZH , Donow S , Evangelakos D . A survey of efficient representations for

independent unit vectors. J Comput Graph Tech 2014;3(2):1–30 .
[16] Deering M . Geometry compression. In: Proceedings of the 22nd annual confer-

ence on computer graphics and interactive techniques. ACM; 1995. p. 13–20 .
[17] MacDonald JD , Booth KS . Heuristics for ray tracing using space subdivision. Vis

Comput 1990;6:153–66 .
[18] Xue J , Zhao G . Interactive rendering and modification of massive air-

craft CAD models in immersive environment. Comput Aided Des Appl

2015;12(4):393–402 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0018

	Efficient GPU out-of-core visualization of large-scale CAD models with voxel representations
	1 Introduction
	2 Overview of GPU out-of-core framework
	3 Model preprocessing
	3.1 Geometry attributes compression
	3.2 Fast voxelization of large-scale mesh

	4 Voxel assisted GPU out-of-core rendering
	4.1 Voxel based visibility query
	4.2 Integrating LOD with visibility query
	4.3 Voxel based shadow rendering

	5 Implementation and results
	5.1 Implementation
	5.2 Results
	5.2.1 Preprocessing performance
	5.2.2 GPU out-of-core rendering performance
	5.2.3 Comparisions

	6 Conclusion and future work
	 Acknowledgements
	 References

