Advances in Engineering Software 99 (2016) 73-80

Contents lists available at ScienceDirect Wiova mici 8. ik
ENGINEERING
SOFTWARE

0 0 o \
Advances in Engineering Software 4
journal homepage: www.elsevier.com/locate/advengsoft »

Efficient GPU out-of-core visualization of large-scale CAD models
with voxel representations

@ CrossMark

Junjie Xue®<, Gang Zhao*"<*, Wenlei Xiao®"

aSchool of Mechanical Engineering and Automation, Beihang University, Beijing, China
bKey Laboratory of Aeronautics Smart Manufacturing, Ministry of Industry and Information Technology, Beijing, China
¢State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China

ARTICLE INFO

ABSTRACT

Article history:

Received 23 December 2015
Revised 4 May 2016
Accepted 13 May 2016
Available online 24 May 2016

Keywords:

Voxel representation
Massive model rendering
GPU out-of-core
Visibility query
Geometry compression

Visualizing large-scale CAD models has been recognized as one of the most challenging tasks in engineer-
ing software development. Due to the constraints of limited GPU memory size and computation capacity,
the CAD model of a complex product with hundreds of millions triangles cannot be loaded and ren-
dered in real-time using most of modern GPUs. In this paper, an efficient voxel assisted GPU out-of-core
framework is proposed for visualizing massive CAD models interactively. In order to reduce memory cost
and improve efficiency of data streaming, a parallel off-line geometry attributes compression scheme is
introduced to minimize the storage cost of each primitive by quantifying the LOD (levels of detail) ge-
ometries into a highly compact format. At the rendering stage, voxel representation is utilized to query
visible objects by efficient ray casting algorithms, which is distinguishable from primitive or bounding
box based visibility culling methods. The voxel representation is also utilized for shadow ray intersec-
tion test to generate soft shadow effect which results in enhancement of rendering realism. A prototype
software system is developed to preprocess and render massive models with the proposed framework.
Experimental results show that users can interactively visualize CAD models with hundreds of millions
of triangles at high frame rates using our framework.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of digital design and manufacturing
technology, modern engineering modeling and simulation applica-
tions have created numerous highly complex 3D models, includ-
ing industrial CAD models of aircrafts, ships and production plants,
etc. These models consume large amounts of storage space and are
geometrically complex, which requires superior visual computing
capabilities for real-time rendering. Although the hardware per-
formance of commodity PCs has increased constantly according to
Moore’s law, it is still not sufficient to render these datasets at in-
teractive frame rates using brute-force approaches.

There have been several studies conducted in the field of real-
time massive model rendering. OpenRT system was able to ren-
der large models at several frames per second using a single com-
modity desktop PC by combining real-time ray tracing with out-
of-core caching [1]. Some other research focus on utilizing paral-
lel architecture to accelerate rendering process [2,3], such as Gi-

* Corresponding author.
E-mail addresses: bitxue@foxmail.com (J. Xue), zhaog@buaa.edu.cn (G. Zhao),
xiaowenlei@buaa.edu.cn (W. Xiao).

http://dx.doi.org/10.1016/j.advengsoft.2016.05.006
0965-9978/© 2016 Elsevier Ltd. All rights reserved.

gaWalk and Manta system. The GigaWalk system uses two graph-
ics pipelines with multiple processors, it was able to render CAD
environments composed of tens of millions of polygons at inter-
active rates on an a SGI workstation [4]. Manta system employs
a multi-threaded scalable parallel pipeline which takes advantage
of a Itanium2 SGI supercomputer [5]. Therefore, the system was
able to achieve a good rendering quality and interactive functions
like transparency and clipping. More recently, voxel representa-
tions offered significant potential for massive model visualization
[6-10]. The voxel based rendering method uses hierarchical voxel
data to view-dependently represent the primitives in an approx-
imate manner. Among them, Far-Voxels utilize cubical voxels to
represent inner node of BSP tree [11], while R-LODs consists of a
plane with material attributes [12]. More recently, VoxLOD uses a
voxel with six shading attributes (colors and normals of six planes)
to represent an inner Kd-tree node [13]. The voxels serve as a sim-
plification of triangle primitives contained in a Kd-tree node. Al-
though these studies have greatly improved rendering efficiency
from many aspects, however, the rendering efficiency of large-scale
CAD models on commodity PCs is still low, the refresh rates in in-
vestigated literatures are still low.

At rendering stage, GPU out-of-core algorithm can continu-
ously stream coherent geometry data in host memory into GPU to

http://dx.doi.org/10.1016/j.advengsoft.2016.05.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.05.006&domain=pdf
mailto:bitxue@foxmail.com
mailto:zhaog@buaa.edu.cn
mailto:xiaowenlei@buaa.edu.cn
http://dx.doi.org/10.1016/j.advengsoft.2016.05.006

74

J. Xue et al./Advances in Engineering Software 99 (2016) 73-80

Parallel
Mace: b simpalirf?uziion Reduction & | Compressed | Loading
Model . Input 3D partition Submodels & — Quantization LODs with voxel
preprocessing Model Folder Hierarchy > ’ representation
A
o X Tree-Graph
Voxelization s | conversion Sparse voxel Binary output
parse voxe DAGs
octrees
~
LOD selection metric Fetching /]
Geometry decoding & normal e |nteraionioperations: /’/’/”
estimation v
Runtime T N
! model rendering | <:|
rocessin,
P 9 GPU Voxel based visibility
Voxel based shadow rendering Out-of-core query
GPU Device CPU Core J

Fig. 1. The overview of our approach. The pipelines of model preprocessing and runtime processing are demonstrated.

provide necessary data for rendering each frame. This algorithm
solves the issue that the massive CAD dataset cannot load into the
GPU memory at once. However, due to the widening gap between
data access speed and data computation speed [14], the efficiency
of GPU out-of-core becomes the key factor affecting the render-
ing speed. Current rendering architectures using out-of-core algo-
rithms rely on suitable data layout algorithms to reduce the mem-
ory latency and data fetch time from the disk-based secondary
storage devices to the main memory. However, many factors can
affect the efficiency of the out-of-core algorithms, such as the rate
of memory, the storage size of individual primitives, and the prim-
itive selection time for each rendering frame. Therefore, the out-of-
core algorithms need to be optimized throughout the preprocess-
ing and rendering pipelines.

This paper presents an efficient voxel assisted GPU out-of-core
framework for real-time rendering of large-scale CAD dataset. The
framework generates a sparse voxel representation of the CAD
model and storages the voxel data into a compact graph structure.
The LODs is bound to a bounding volume hierarchy (BVH) struc-
ture and the geometry data is compressed into a highly compact
encoding format. In addition, LOD processing is integrated with
voxel based visibility query using a GPU based approach to im-
prove the runtime rendering performance. A prototype software
system is implemented and tested on desktop PCs with two large
CAD datasets (with 72~337 million triangles).

2. Overview of GPU out-of-core framework

The overview of our voxel assisted GPU out-of-core framework
is shown in Fig. 1. In order to accelerate the model preprocessing,
we propose a parallel LOD generation algorithm utilizing file hier-
archy of the model dataset. This algorithm treats each leaf node
of the file hierarchy as an initial LOD geometry, and it uses multi-
ple threads to simplify geometry in parallel and produce separate
multi-resolution model files for each LOD geometry. Each LOD ge-
ometry is finally generated by combining each LOD level model file
in order.

We also design an aggressive GPU-based geometry attributes
compression scheme, which can encode the LOD geometry data
with compression ratio higher than 5. In this compression scheme,
the geometry vertex data is quantized from absolute coordinates
to relative coordinates (relative to its AABB box), which are then
encoded into 16-bit width GLushort data type. Moreover, all the
geometry normal data is deleted to minimize the storage size. In
order to fully utilize powerful computing capability of GPU, the en-
coded vertex data and normal data are decoded and reconstructed
in the GPU graphics pipeline. The model preprocessing pipelines

also generate a sparse voxel representation of the original model
for efficient visibility query and shadow rendering in runtime pro-
cessing. In order to reduce the storage size of high resolution voxel
data, the voxel data is organized with an octree structure first and
is then converted into a directed acyclic graph (DAG) structure.

The runtime processing takes advantage of both CPU and GPU
computation capacity. The visibility query employs multithreaded
sparse voxel ray casting algorithm with the voxel representation
generated in the model preprocessing stage. A list of visible objects
at current frame can be achieved after this query process. The LOD
level of each object can be determined by LOD selection metric al-
gorithm. And the model data which is needed to be transferred
to or to be released from the GPU memory can be filtered by com-
paring the visible object list with that of last frame. The transferred
LOD geometry data is then decoded in the GPU graphics pipeline. A
deferred shading technique is utilized to get the final image where
soft shadow effect is calculated with the voxel representation.

3. Model preprocessing

In this section, we present an algorithm to compute multi-
resolution hierarchy for massive models (LODs). The algorithm pro-
ceeds in two steps: (1) the geometry attributes are compressed
into a highly compact storage, (2) we build a sparse voxel repre-
sentation of the original model and associate each object with it.

3.1. Geometry attributes compression

In order to reduce bandwidth cost and memory footprint for
GPU out-of-core rendering, it is necessary to compress LOD geom-
etry data into a compact size. For a comprehensive view of geome-
try compression, we refer the reader to [15,16]. Previous works re-
garding to geometry compression mainly focus on efficient encod-
ing and decoding algorithms that compresses geometry data into a
compact size with/without loss of precision. This paper introduces
an aggressive geometry compression and GPU based decompression
scheme which possesses higher compression ratio (Fig. 2). In this
scheme, geometry normal attributes are deleted directly to mini-
mize geometry storage size and is reconstructed in the GPU graph-
ics pipeline, while others are quantized into a shorter bit width.

In this algorithm, an AABB box is calculated for each object,
then each vertex coordinate is mapped into a relative coordinate.
And each relative coordinate component is encoded from GLdou-
ble or GLfloat data type into GLushort type. According to the size
of vertex number, the index data is encoded into GLubyte, GLushort
and GLuint type respectively. Typically normal data takes up the
same amount of storage as the vertex data. While in this paper,

J. Xue et al./Advances in Engineering Software 99 (2016) 73-80 75

1 Byte

0
Original model

Graphics
pipeline

VBO & IBO

Encoded model
Quantization | Vertex
»

Vertex shader Vertex decoding

Normal

Index lo Iy I;

Normal ><

7| Index lo[1i]| or

reconstruction

Geometry shader

Fragment shader

Encoding
on CPU

Decoding

»

>|

on GPU

Fig. 2. Geometry attributes compression pipeline. The original absolute coordinate components of each vertex are encoded into relative coordinate components using
GLushort data type; Index components are encoded from GLuint to GLubyte or GLushort type; The normal data is deleted. At the rendering stage, the vertex data is de-
coded in a vertex shader, then the normal data can be reconstructed using a geometry shader.

all the normal data is deleted in the preprocessing pipeline and
intended to be recalculated on-the-fly in the GPU at the rendering
phase. For homogeneous CAD models, generally each geometry has
only one material attribute (textures are not considered when re-
garding to massive model). Therefore, one color information which
will be used to compute the diffuse lighting results is stored for
each geometry.

Geometry quantization is conducted at the end of our prepro-
cessing pipeline. All the data is written into a binary format file to
further reduce the storage size and accelerate the speed of loading
LODs from extern storage to local memory at a subsequent render-
ing phase.

We use a vertex shader to decode the absolute coordinate of
each vertex. Then normal reconstruction is implemented in a ge-
ometry shader to compute a normal vector for each vertex. There-
fore, the decompression algorithm has taken advantage of the
powerful GPU computing capacity. Assuming that V represents a
vertex of the geometry, My and M; are the min and max point
of the axis-aligned bounding box of the geometry, then the algo-
rithms of vertex data compression and decompression can be ex-
pressed as Eqs. 1 and 2 respectively:

Ve=(2"-1)(V — Mp)./(M; — Mo) (1)

Va=M + ﬁve o (M — M))
where V. and V4 denote the encoded relative coordinate compo-
nent and the corresponding decoded absolute coordinate compo-
nent respectively. n is the bit width of the data type to store the
relative coordinate components (since we use GLushort data type,
n equals 16).

Rounding error is produced in the conversion process from ab-
solute coordinate to relative coordinate, as shown in Eq. 1, which
bring about the final compression error of vertex data. The error
value is calculated by the distance between the decompressed ver-
tex with the original vertex. The value of the compression error
depends on the bounding box size of the compressed geometry as
well as the data type used to store the relative coordinate com-
ponents. Based on this, the compression error can be well con-
trolled if a compatible combination of data type and geometry size
is used. In order to have a small error value, large-sized geometry
can be split into small ones by utilizing SAH (Surface Area Heuris-
tic) model partition algorithm [17] while using the same bit width
data type. The experimental result of the compression and decom-
pression shows minor compression error with 16-bit vertex quan-
tization compared with the original geometry (shown in Fig. 3).

3.2. Fast voxelization of large-scale mesh

Voxels can be generated from triangle meshes through voxeliza-
tion algorithm. The algorithm firstly calculate a cubical bounding
volume of the mesh, and then divide the volume into a uniform
grid with a preset resolution along 3 axes. Each small cubical grid
is called a voxel. With respect to each voxel, whether the voxel
is empty or is occupied by the model is determined by a triangle-
box intersection test. All the non-empty voxels form an approxima-
tion of the original triangle surface model, which are called sparse
voxels. Typically each non-empty voxel contains position, material,
and normal information, wherein the position can be given by grid
resolution and index coordinates, the material and normal can be
estimated by sampling the triangle mesh. In this paper, since vox-
els are only used for ray-voxel intersection test in visibility query
and shadow rendering, these attributes do not need to be calcu-
lated.

Sparse voxel data management is mainly based on octree data
structure. For sparse voxels without shading attributes, using DAG
can reduce the storage size by an order of magnitude. We use a
bottom-up approach to convert the sparse voxel octree into a di-
rected acyclic graph. In order to lessen memory consumption, we
employ block processing method: (1) first generates a low level of
the octree; (2) each node generates a sub-tree of preset resolu-
tion, and convert the octree into a DAG; (3) after all subtrees have
completed conversion, continue to convert the subgraphs upwards
until we come to the root node, and finally a complete sparse
voxel DAGs is generated. In order to improve the efficiency of voxel
generation, the block processing phase is accelerated with multi-
threading, the total voxelization time is shown in Table 1.

4. Voxel assisted GPU out-of-core rendering

In the previous section, an algorithm to generate compressed
LODs is described. In this section, we present a voxel based GPU
out-of-core rendering algorithm that combines the voxel based vis-
ibility query with view-dependent LOD refinement.

The core concept of the rendering algorithm is to determine a
minimal scale of primitives to be transferred for each frame within
the shortest time (Fig. 4). For current frame, a visible object set
is determined by voxel based visibility query method, which casts
rays from viewpoint towards voxels and test intersections using
efficient sparse voxel DAGs ray casting algorithm; the LOD level
for each object to be rendered is determined by a LOD selection
metric. The resulted objects list is compared with the one in last
frame: (1) the objects that were displayed in last frame but will

76 J. Xue et al./Advances in Engineering Software 99 (2016) 73-80

Max error = 0.0007434
Nin error = 0.0000374

(b) 16-bit vertexes

(a) Full precision
vertexes

(d) Difference x10 (e) Difference x10

(f) Error distribution

Fig. 3. Vertex quantization. Top row shows shaded result for quantized vertexes, with the difference to the ground truth below, multiplied by 10. The right figure shows
compression error distribution of the tested CAD model. The model has a bounding box of [66,66,33] in size. The error value is estimated by the distance from the new
vertex position to the original vertex position.

Table 1
Construction statistics for the test models. The number of triangles in the model, the size of the compressed LODs data structure and voxel data, the
compression ratio, and the build time.

Models Triangles (million) Storage Size (GB) LOD Build time (minute)
Original Compressed LOD Voxels compression ratio ~ Avg. Num. of LODs LOD Voxelization
Power Plants 72 94 1.8 0.3 5.24 3.7 20 12
Boeing 777 337 414 7.8 13 5.31 4.8 63 38
View-frustum View-frustum Missed x Intersected
=12
Voxel based (n,ix=8) : S)
visibilityquery 4 4 4 v ¢ v 7" gl S
B XX R
et a8
LOD selection increase pgx x X XXX
metric LOD level Ei: Ppex :==
X
Pg (n,i,=18)
(i=13)
Release %f_J X
GPU memory Streaming Voxel ray casting
(b) (c) (d)

Fig. 4. The concept of primitive selection with integration of visibility query and LOD processing. (a) Camera position of last frame. (b) Camera position of current frame. (c)
Primitive selection procedure. (d) Voxel based visibility query.

not display in current frame are deleted from GPU to release GPU
memory, (2) the objects that are newly added to current frame
or which LOD level is changed are requested to fetch from host
memory.

4.1. Voxel based visibility query

Typically visibility culling contains frustum culling and occlu-
sion culling. The objects outside of the view-frustum volume are
excluded from the scene by frustum culling, and then occluded ob-
jects are removed through occlusion culling. GPU occlusion query
uses the objects’ bounding boxes as query objects. The bounding
box is often too coarse to describe actual shape of an object. The
bounding boxes of the objects may overlap or occlude with each
other. This may bring about incorrect query results and the dis-
play distortion since objects which should be displayed are culled
and not shown. Therefore, it is unsuitable for complex CAD model
which may have perplexing occlusion relationship between parts.

Frustum

Fig. 5. Principle of voxel based visibility query.

In this paper, we simplify frustum culling and occlusion culling as
one procedure, to directly calculate visibility of current viewpoint
with the sparse voxel representation. Unlike the method of culling
invisible objects from the scene gradually, we tend to directly find
the visible objects in the scene, as shown in Fig. 5.

Sparse voxels are built with uniform 3D grid, which means sim-
pler rule can be used to storage voxels data. Therefore ray casting
of sparse voxels can be implemented in parallel. According to our
test result, the efficiency of ray casting is very high, about 200 mil-
lion rays per second.

J. Xue et al./Advances in Engineering Software 99 (2016) 73-80 77

©

Fig. 6. The visibility query result on a gas turbine model. (a) The rendered frame. (b) A third person view from the side shows the objects rendered without visibility query.
The pink lines indicate the view frustum. (c) The view shows the visible objects with visibility query.

The voxel based visibility query has taken advantage of the high
efficiency of sparse voxels ray casting. As shown in Fig. 5, the im-
age plane is divided into a uniform 2D grid, the primary rays is
generated based on viewpoint and position of each sub grid. For
each primary ray, we perform intersection test with the voxel rep-
resentation, if the ray hit a voxel, we find the object correspond-
ing to the voxel and add it to the visible object list, and update
the count of the object been shot by rays. The accuracy of visi-
bility query depends on the density of primary rays. To increase
chance of small visible objects been shot by rays, we should in-
crease the value of ray density. The visibility query result of a gas
turbine model is shown in Fig. 6.

According to the experimental result, one ray per pixel is ade-
quate to achieve better visibility test quality than traditional occlu-
sion culling while costing almost equivalent time. We tested our
voxel based visibility query algorithm vs. bounding boxes based
occlusion culling algorithm and found that visible objects (which
typically have 200 vertices or less) would be found to be occluded
only 7% of the time with voxel based visibility query, vs. 38% with
occlusion culling. 31% incorrect visibility test results were avoided.
However, the high resolution voxels needs more memory space
than coarse bounding boxes.

4.2. Integrating LOD with visibility query

After LODs are created, the main problem encountered is how
to select an appropriate LOD level for each visible geometry at run-
time. LOD level determines the number of triangles (or geometry
complexity) to be rendered of a specific object. It not only controls
the display quality of the object, but also the rendering time per
frame by adjusting the total number of triangles to be rendered.

Most LOD adjustment methods use the viewpoint-object dis-
tance in object space or the projection area in image space as LOD
level selection metrics. These metrics are effective for regular usage
scenarios, such as terrain and urban scene rendering, etc. Nonethe-
less, for CAD models with extremely complex topologies and
shapes, these methods may lead to improper LOD adjustment and
affect the quality of display as well as the efficiency of rendering.

This paper presents a novel LOD selection metric based on voxel
based visibility query. The sampling count (the count of an object
been shot by rays) of each object can be gathered through the vis-
ibility query process (Fig. 4d). Unlike the classic occlusion queries,
this algorithm uses sampling count other than the object’s bound-
ing volume to query the sampling result, thus exact sampling
count can be obtained for each object. Triangle density is used as
the selection metric of LOD levels, which is the ratio of the num-
ber of triangles to the sampling count of specific LOD geometry:

Ny

density = (3)

pix

where ng; and np; denote the number of triangle and sampling
count of each object in current LOD resolution respectively.

With respect to a single object, triangle density is related to the
distance and orientation between viewpoint and the object. With
respect to multiple objects, it is related to the shape and size of
each object. So it is a synthetical and accurate quantification of dis-
play quality for each visible object, and therefore it is able to cope
with complex topologies and shapes in the massive CAD model.

The triangle density value is used to sort the objects in order to
adaptively adjust LOD levels for the visible objects. For example,
if we want to refine the scene objects, the object with lowest TPP
value are firstly to be processed, and vice versa. The density metric
method makes the rendering system select as fine as possible LOD
models for rendering the visible objects, while ensuring the display
quality of each object are basically the same. This avoids the LOD
selection of some objects to be too fine or coarse.

The size of occlusion query list may be very large and querying
the full list of LOD objects is time-consuming. We set up the max-
imum threshold of query count in a single frame. Objects which
are close to the viewpoint or have large bounding volume take the
precedence to be queried and added into the LOD adjustment list.
The visible objects are sorted in accordance with the viewpoint-
object distance and the projection area in image space. A weight
metric is used, as shown in the following equation:

weight:lg—o arctan (g) (4)

where R is the radius of the object’s bounding sphere in object
space, d is the distance from viewpoint to the center of the bound-
ing sphere.

4.3. Voxel based shadow rendering

Shadows are essential for depth perception in physical world. In
order to improve shading realism of CAD models, we implemented
an efficient voxel based shadow rendering algorithm. The render-
ing process is shown in Fig. 7.

The primary shading is from triangle rasterization. For each
frame of shading, a depth map can be generated, as shown in Fig.
7, for each pixel of which (e.g. D) we can reconstruct the corre-
sponding world space position W. Then the shadow ray S can be
calculated with the world space position W and light position L.
Then whether the pixel D is in the shadow or not is determined by
an intersection test between shadow ray S and the voxel represen-
tation. Similar as visibility query, the shadow test is implemented
by voxel ray casting algorithm on GPU. The final shading result is
a combination of primary shading and shadow rendering.

5. Implementation and results

In this section, we describe our implementation and highlight
its performance on massive CAD models.

78 J. Xue et al./Advances in Engineering Software 99 (2016) 73-80

Light source
r O\ @ > ¢
4 F ,/ S

Frustum

(a) Primary shading

(b) World position estimation

Voxel
representation

(c) Intersection test

Fig. 7. lllustration of voxel based shadow rendering.

Fig. 8. Interactive rendering results of large-scale CAD models. (a) The Power Plants model (72,000,000 triangles). (b) The Boeing 777 model (337,000,000 triangles, 41.4 GB

storage, one of the largest CAD datasets in manufacturing industry).

5.1. Implementation

The prototype software system is implemented on a desktop PC
with an Intel Xeon E5-2620 (6 cores, 12 threads, 2.0 GHz) proces-
sor, 32 GB memory and a NVIDIA GeForce GTX 970 display card,
running Windows 7 64-bit OS. The software system is developed
with C++, OpenGL and GLSL, and built with x64 configuration to
enable large memory address accessing. We tested the system with
two massive CAD models that have different geometry and storage
hierarchy complexity (Fig. 8). The two models include a combined
power plants model which consists of 6 power plants (72 million
triangles) and the Boeing 777 model (337 million triangles).

The system consists of two sub systems, the model preprocess-
ing system and the real-time visualization system. Multithreading
(8 threads) is utilized to accelerate processing speed during vox-
elization and voxel ray casting. The real-time visualization system
is able to overlay a model list window on the rendering scene, as
shown in Fig. 9(a). The window displays an assembly tree hierar-
chy which supports quick location of a specific part with its part
number from millions of parts. Interaction functions like hiding or
displaying, translation and rotation, displaying geometry informa-
tion of a part/component, and navigation along a specific route are
also integrated. The system also supports users to quickly save or

switch to a viewport using its bookmark function. Users also can
pick parts in the scene with mouse clicking, and display their part
numbers on the scene, as shown in Fig. 9(b).

5.2. Results

5.2.1. Preprocessing performance

In order to test the efficiency of our LOD preprocessing and
voxelization algorithms, we built the LODs and voxel representa-
tions of considered models with our system respectively. The con-
struction statistics is shown in Table 1. The Power Plants model
can be processed in 32 minutes, while the Boeing 777 model needs
101 minutes to generate its multi-resolution model as well as voxel
representation (including the time of LOD geometry compression).
The voxelization uses a preset resolution of 32K3 (327,683), which
results in a uniform grid of 2 millimeter spacing on Boeing 777
model. The sparse voxel DAG structures cost only about 1/6 storage
size of the LOD geometries, which are able to fit into GPU memory.
With our geometry compression algorithm, the average LOD com-
pression ratio is greater than 5, which has greatly reduced the disk
storage size and runtime memory footprint.

J. Xue et al./Advances in Engineering Software 99 (2016) 73-80 79

(a)

Fig. 9. Real-time visualization system for large-scale CAD models. (a) A model list window overlays on the rendering scene, which supports various interaction functions.
(b) Picking a part on the engine, the picked part is highlighted in blue color and its part name is printed on the screen.

Table 2

Numerical results of real-time rendering. We show the average visibility query time, the average LOD processing
time, data streaming time, rendering time (include shadow rendering), and the average frames per second statistics.

Models Visibility query time LOD Processing time Streaming time Rendering time Avg. FPS
Power Plants 4.5 ms 1.8 ms 3.1 ms 6.0 ms 81
Boeing 777 5.3 ms 2.9 ms 8.4 ms 13.7 ms 33
) %108
25
[0}
0 20
j)}
=
215
B
3
6 10
©
g s
(14
0
0 500 1000 1500 2000
Rendered frames
5000
8
3]
.0 4000
Q
(o]
@ 3000
Q
)
S 2000
8 1000
£
3
Z 0
0 500 1000 1500 2000

(a) Navigation route

Rendered frames

(b) Statistics

Fig. 10. The runtime performance of Boeing 777 model rendering. The number of visible objects, working set size (total rendered triangles).

5.2.2. GPU out-of-core rendering performance

The GPU out-of-core rendering algorithm is verified by differ-
ent benchmarks as shown in Table 2. We computed different walk-
through paths through these models and measured the perfor-
mance of our system. A resolution of 1024 x 1024 pixels is used
for the interactive rendering. The results show that we can render
at the interactive rates of 30~45 fps for the Boeing 777 model and
50~100 fps for the Power Plants model.

A special navigation route is designed to test the real-time ren-
dering performance on the Boeing 777 model, as shown in Fig.
10(a): (1) the route starts from a position outside the cabin (S), and
then the camera intermittently moves to a position close to the
front fuselage (M;); (2) the camera position shifts abruptly from
M; to a position at the interior of front fuselage (M) by trigger-
ing a viewport bookmark; (3) and then the camera intermittently
moves to a position (D) at the rear fuselage. As the camera posi-

tion moves along the route, fewer objects are inside the view frus-
tum, the number of visible objects has been progressively dimin-
ished, as shown in Fig. 10(b). Through LOD adjustment, the total
scale of the rendered triangles has fluctuated slightly between the
min/max thresholds, which guarantees a fast rendering speed. The
system reduces triangle number to about 8 million by removing
invisible objects through visibility query and LOD processing, then
the frame rate has fluctuated around 35 FPS, as shown in Fig. 11.
To the best knowledge of us, this is by far the highest frame rate
on the real-time rendering of Boeing 777 model on a commodity
PC.

5.2.3. Comparisions

Xue. etc. employed an automatic LOD generation algorithm
(without multithreading) and a coarse LOD model based occlu-
sion culling strategy [18]. The test system was deployed on a HP

80 J. Xue et al./Advances in Engineering Software 99 (2016) 73-80

Frames per second

. | ; | ;

Xue, 2015
— GPLU out-of-core

0 200 400 600 800

1000 1200 1400 1800 1800 2000

Frame Number

Fig. 11. Frames per second statistics of Boeing 777 model rendering (averaged each 10 frames).

7800 workstation with two Intel Xeon X5550 processor (2.67 GHz,
8 cores, 16 threads), 16GB memory, and NVIDIA Quadro FX3800
graphics card. Their GPU out-of-core system was able to render
the Boeing 777 model about 20 FPS (Fig. 11). While this paper fo-
cusses on accurate visibility test with a novel sparse voxel repre-
sentation and efficient geometry compressions scheme. The com-
pression of LOD geometry together with the integration of visibil-
ity query and LOD processing guaranteed a fast streaming speed
of geometry data from main memory to GPU. The statistics in Fig.
11 show that GPU out-of-core framework in this paper has higher
rendering efficiency than Xue’s.

6. Conclusion and future work

An efficient voxel assisted GPU out-of-core framework has been
presented for interactive rendering of large-scale CAD models. The
framework has employed an aggressive geometry compression al-
gorithm to produce compact LOD models efficiently while with
only slight losses in object quality. The LOD processing has been
integrated with voxel based visibility query to achieve better visi-
bility test results and efficient LOD refinement. The framework has
been tested by CAD models with tens to hundreds of millions of
triangles. Users were able to explorer those models at interactive
frame rates on desktop PCs with the prototype software system.

The current implementation of the rendering system includes
a primary rendering and shadow rendering. Future versions will
include many-light and ambient occlusion effect implementations.
We are also interested in more efficient voxel data structure com-
pression methods which help to lessen voxel storage size further.

Acknowledgements

This work was supported by the National Natural Science Foun-
dation of China (61170198) and the Innovation Fund of the State
Key Laboratory of Virtual Reality Technology and Systems (VR-
2013-ZZ-05). The Boeing 777 dataset was provided by and used
with permission of The Boeing Company. The power plant model
is courtesy of the University of North Carolina at Chapel Hill.

References

[1] Wald 1, Dietrich A, Slusallek P. An interactive out-of-core rendering frame-
work for visualizing massively complex models. In: Proceedings of the fifteenth
eurographics conference on Rendering techniques: Eurographics association;
2004. p. 81-92.

[2] Peng C, Cao Y. A GPU-based approach for massive model rendering with
frame-to-frame coherence. Wiley Online Library; 2012. p. 393-402.

[3] Peng C, Mi P, Cao Y. Load balanced parallel GPU out-of-core for continuous
LOD model visualization. In: High performance computing, networking, storage
and analysis (SCC), 2012 SC companion. IEEE; 2012. p. 215-23.

[4] Baxter WV III, Sud A, Govindaraju NK, Manocha D. Gigawalk: interactive walk-
through of complex environments. Rendering Techniques; 2002. p. 203-14.

[5] Stephens A, Boulos S, Bigler J, Wald I, Parker S. An application of scalable mas-
sive model interaction using shared-memory systems. In: Proceedings of the
6th eurographics conference on parallel graphics and visualization: Eurograph-
ics association; 2006. p. 19-27.

[6] Crassin C, Neyret F, Lefebvre S, Eisemann E. Gigavoxels: ray-guided streaming
for efficient and detailed voxel rendering. In: Proceedings of the 2009 sympo-
sium on interactive 3D graphics and games. ACM; 2009. p. 15-22.

[7] Laine S, Karras T. Efficient sparse voxel octrees. IEEE Trans Vis Comput Graph
2011;17:1048-59.

[8] Rusinkiewicz S, Levoy M. QSplat: a multiresolution point rendering system
for large meshes. In: Proceedings of the 27th annual conference on computer
graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.;
2000. p. 343-52.

[9] Rusinkiewicz S, Levoy M. Streaming QSplat: a viewer for networked visualiza-
tion of large, dense models. In: Proceedings of the 2001 symposium on inter-
active 3D graphics. ACM; 2001. p. 63-8.

[10] Tian F, Hua W, Dong Z, Bao H. Adaptive voxels: interactive rendering of mas-
sive 3D models. Vis Comput 2010;26:409-19.

[11] Gobbetti E, Marton F. Far voxels: a multiresolution framework for interactive
rendering of huge complex 3d models on commodity graphics platforms. ACM
Trans Graph (TOG) 2005;24:878-85.

[12] Yoon S-E, Lauterbach C, Manocha D. R-LODs: fast LOD-based ray tracing of
massive models. Vis Comput 2006;22:772-84.

[13] Afra AT. Interactive ray tracing of large models using voxel hierarchies. Comput
Graph Forum 2012;31:75-88.

[14] Yoon S-E, Gobbetti E, Kasik D, Manocha D. Real-time massive model rendering.
Morgan & Claypool Publishers; 2008.

[15] Cigolle ZH, Donow S, Evangelakos D. A survey of efficient representations for
independent unit vectors.] Comput Graph Tech 2014;3(2):1-30.

[16] Deering M. Geometry compression. In: Proceedings of the 22nd annual confer-
ence on computer graphics and interactive techniques. ACM; 1995. p. 13-20.

[17] MacDonald JD, Booth KS. Heuristics for ray tracing using space subdivision. Vis
Comput 1990;6:153-66.

[18] Xue], Zhao G. Interactive rendering and modification of massive air-
craft CAD models in immersive environment. Comput Aided Des Appl
2015;12(4):393-402.

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30102-8/sbref0018

	Efficient GPU out-of-core visualization of large-scale CAD models with voxel representations
	1 Introduction
	2 Overview of GPU out-of-core framework
	3 Model preprocessing
	3.1 Geometry attributes compression
	3.2 Fast voxelization of large-scale mesh

	4 Voxel assisted GPU out-of-core rendering
	4.1 Voxel based visibility query
	4.2 Integrating LOD with visibility query
	4.3 Voxel based shadow rendering

	5 Implementation and results
	5.1 Implementation
	5.2 Results
	5.2.1 Preprocessing performance
	5.2.2 GPU out-of-core rendering performance
	5.2.3 Comparisions

	6 Conclusion and future work
	 Acknowledgements
	 References

