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In this investigation, the equivalent linear elastic-viscous model of shape memory alloy (SMA) is estab- 

lished for seismic analysis of base-isolated structures using system identification method. The necessary

key parameters to express the hysteresis loop of SMA are austenite stiffness, transformation strength,

ductility ratio, and stiffness ratio. These parameters are considered in the modeling. This model is devel- 

oped based on the American Association of State Highway and Transportation Officials (AASHTO) isolation

guidelines. In order to validate the proposed model, the base-isolated benchmark building is analyzed by

using proposed equivalent linear SMA model as well as the different non-linear SMA models. The eval- 

uation criteria given in the benchmark problem and time variation of top-floor absolute accelerations

and base-displacements are considered for comparing the linear and nonlinear models of SMA. An ex- 

cellent agreement is achieved between proposed equivalent linear SMA model and its nonlinear models.

The seismic code recommends that the equivalent linear model of the nonlinear system can be used for

carry out the response spectrum analysis of base-isolated structures. Furthermore, the non-linear model

requires computationally more time and effort, especially for larger degrees of freedom system. The pro- 

posed model may be useful to design engineers in order to over come the disadvantage of non-linear

models.

© 2016 Elsevier Ltd. All rights reserved.
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. Introduction

Structures can be protected from the damaging effects of earth-

uakes by isolating them at ground level. A passive isolation sys-

em is one of the most effective and simplest representations to

mplement the above idea. By providing an isolation device be-

ween the superstructure and substructure, the time period of a

ase-isolated structure is elongated and shifted away from the en-

rgetic frequency content of an earthquake. Apart from the re-

uired flexibility, the isolation system also have an adequate en-

rgy dissipating mechanism and re-centering capacity. Further, it

hould be able to withstand under the action of vertical load com-

ng from the weight of superstructure, and should provide lateral

igidity against in-service load condition, such as wind or blast or

ow intensity earthquake. 

The isolation bearings can be broadly classified into two cate-

ories: elastomeric type and sliding type. Elastomeric bearings pro-

ide a flexible interface (rubber like material) between the struc-

ure and foundation. These bearings are also supplemented by lead
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ore to enhance hysteretic damping and to provide lateral stiffness.

lastomeric rubber bearings (ERB) and lead rubber bearings (LRB)

re the examples of this category. Sliding type isolation systems

rovide an interface to allow a structure to slide when the lateral

oad exceeds a threshold value. Friction pendulum systems (FPS)

nd resilient friction bearing isolators (RFBI) are the examples of

his category. 

Commercially available traditional isolation bearings such as

RB, LRB, FPS, RFBI etc. have some difficulty in replacing any device

omponent after a strong seismic event. Moreover, they undergo

arge as well as residual deformations. Isolator displacement is the

ecision making parameter for the design of an isolation system.

arge isolator displacement leads to failure of an isolation system,

specially when it is subjected to a near fault earthquake. In order

o over come these problems, American Association of State High-

ay and Transportation Officials (AASHTO) recommends that addi-

ional damping can be used to control the large isolator displace-

ent. In this context, many investigations were carried out by re-

earchers to control displacement of isolation bearings using semi-

ctive Magnetorheological (MR) dampers [1–4] . The MR damper

ay partially solve the above-mentioned problem, but may not be

ntirely eliminated. Recently, many researchers have used SMA in

he isolation systems to reduce its vulnerability against near fault
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motions [5–14] . SMA has many desirable properties such as super

elasticity, durability and fatigue resistance. In addition to this, SMA

has also an ability to reduce design displacement as well as re-

centering capacity. Ozbulut et al. [15] have presented an excellent

literature review on the super-elasticity of SMA and its applications

in structural vibration control particularly in the area of seismic

isolation. 

Many international codes are available for designing the iso-

lated structures by using traditional isolation bearings [16,17] . It is

very crucial to predict the maximum displacement of an isolated

structure for the design of an isolation system. It can be computed

by a nonlinear dynamic (ND) analysis for the nonlinear isolation

system. The ND analysis requires much effort and computational

time for the analysis of base-isolated structures. Therefore, codes

are recommended that the nonlinear model can be replaced by a

equivalent linear model to carry out the equivalent linear dynamic

(ELD) analysis or the response spectrum analysis. Thus, it is better

to have an equivalent linear parameters of the nonlinear system to

predict the approximate design displacement of the base-isolated

structure. 

Therefore, it is important to convert nonlinear system into lin-

ear one. The behavior of SMA wire is nonlinear. Linearization is a

method to convert a nonlinear hysteresis into two analogues lin-

ear parameters such as effective stiffness and equivalent viscous

damping. These two parameters can be computed from the area of

the hysteresis loop. The contrast of non-linear model and its equiv-

alent linear model were analyzed by many researchers for isolated

structures [18–20] . The equivalent linear model of LRB for bridge

structure was proposed by Hwang and Chiou [18] . This model was

proposed based on AASHTO specifications. The results obtained

from the equivalent linear model are comparable with the non-

linear one. The comparison of bi-linear model and its equivalent

linear model of LRB system for a building were studied by Mat-

sagar and Jangid [19] . The modeling of the linear system was based

on the International Building Code (IBC) and the Uniform Building

Code (UBC) specifications. The study shown that equivalent linear

model can predict comparable response as that of bi-linear one.

The above-mentioned studies were limited to the friction, and lead

based bearings. The equivalent linear model of SMA was proposed

by Ghodke and Jangid [20] . In their work, the comparison of non-

linear SMA model and its equivalent linear model were carried out

for five storeys framed structure. The results shown that the equiv-

alent linear model of the SMA gives the comparable seismic re-

sponse. 

In the present study, SMA supplemented ERB isolation device

is used for the base-isolated benchmark building developed by

Narasimhan et al. [21–23] . The aim of this study is to compare the

seismic response of base-isolated benchmark building for different

non-linear SMA models with the equivalent linear model through

the mentioned evaluation criteria. 

2. Outline of base isolated benchmark building 

Fig. 1 (a) and (b) show plan and elevation of an eight-storied

steel-braced frame of the base-isolated benchmark building. The

floor plan of the building is L-shape up to the sixth floor and rect-

angular shape for remaining floors. The overall plan of the building

is 82.4 m long and 54.3 m wide. The superstructure steel frame is

mounted on a concrete base slab. The concrete base slab is mono-

lithic with concrete beams. Drop panels are provided below each

column. The SMA supplemented bearings are installed in between

each drop panel and the sub-structure. The building is idealized as

a three-dimensional linear elastic structure. In this study, the iso-

lation system consists of 92 isolation devices as shown in Fig. 1 (a).

In the benchmark problem, these bearing locations are adopted to

get equal contribution of all the isolation bearings in the response
f the base-isolated building. Therefore, it is considered that the

MA does not deform beyond its maximum strain limit due to the

dopted distribution. Although, SMA can sustain the larger forces

eyond its maximum strain limit (hardening effect), but it is not

ecessary to use maximum strength of the SMA. Several assump-

ions are made for the structural system under consideration (i)

he superstructure remains linear during seismic loading, (ii) the

oors are assumed to be rigid and the masses are lumped at the

enter of mass of the floors, (iii) three degrees of freedom (DOF)

re assumed at each floor at lumped mass location, (iv) fixed base

tructure consists of 24 DOF, and all modes are considered in the

nalysis, (v) the surrounding temperature is greater than the tem-

erature at the manufacturing of SMA, and (vi) the inherent vis-

ous damping of SMA is ignored. 

The equations of motion are developed with the fixed-base

roperties used for the linear superstructure. With linear behav-

or of the superstructure, the equations of motion can be written

s 

 M s ] { ̈U s } + [ K s ] { U s } + [ C s ] { ˙ U s } = −[ M s ][ r]({ ̈U g } + { ̈U b } ) (1)

here [ M s ], [ C s ] and [ K s ] are the lumped mass, damping, and stiff-

ess matrices of size 24 × 24 for the fixed base structure, respec-

ively; { U s } = { U 1 , U 2 , .... U 8 } 
T , { ̇ U s } and { ̈U s } are the unknown rel-

tive floor displacement, velocity, and acceleration vectors, respec-

ively of size 24 × 1; the subscript numbers 1–8 represents the

oor numbers; U 1 represent the vector of size 3 × 1 for consid-

red three DOF at first floor level; { ̈U g } and { ̈U b } are the accelera-

ion vectors of ground and base mass, respectively of size 3 × 1;

nd [ r ] is the influence coefficients matrix of size 24 × 3. 

The non-linear behavior of SMA is modeled using the Graesser–

ozzarelli model, and the forces in the bearings are transformed to

he center of mass of the base using a rigid base-slab assumption.

ll the SMA supplemented isolation bearings can be modeled in-

ividually or globally by equivalent lumped elements at the center

f mass of the base. The governing equation of motion for the base

ass is written as 

 r] T [ M s ][ { ̈U s } + [ r]({ ̈U g } + { ̈U b } )] + [ m b ]({ ̈U g } + { ̈U b } ) 
+ { F rs } + { F rb } = 0 (2)

here [ m b ] is the diagonal mass matrix of the base mass of size

 × 3; { F rs } is the vector of size 3 × 1, representing the resultant

estoring forces of SMA wires, it can be linear or non-linear; { F rb } is

he vector of size 3 × 1, representing the resultant restoring forces

f ERBs; and [ r ] T represents the transpose of the influence coeffi-

ients matrix [ r ]. 

. Isolation system 

The philosophy behind an SMA supplemented ERB isolation de-

ice is to control the large isolator displacement with nearly zero

esidual deformation, in which, the ERB provides horizontal flexi-

ility and vertical stiffness. ERB consists of steel and rubber layers

lternatively. The rubber layer provides relatively low shear stiff-

ess in the horizontal plane. The steel shims provide high vertical

tiffness which helps to control the rocking effects of the struc-

ure due to vertical vibrations caused by the earthquake. SMA is

sed along with the ERB due to its super-elasticity and damping

apabilities which minimize the peak and residual isolator defor-

ation. The SMA is wound along the corners of the ERB to pro-

ide hysteretic damping and also to add lateral stiffness along the

irection of the seismic force (refer Fig. 1 (c)). If f rsi is the restoring

orce of SMA wire in i th isolator, then 

f rs = 

92 ∑ 

i =1 

f rsi (3)
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Fig. 1. (a) Plan of Base-Isolated Benchmark Building with SMA supplemented Isolation bearings. (b) Elevation of Base-Isolated Benchmark Building frame (c) SMA supplement 

ERB bearing (SMARB). 
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s the resultant restoring force of SMA wires. The resultant restor-

ng force vector of SMA wires ({ F rs }) is obtained by linear or

onlinear model of SMA wire, the modeling is illustrated in

ections 3.1 and 3.2 , respectively. The resultant restoring force vec-

or of ERBs ({ F rb }) can be mathematically modeled as, 

 F rb } = [ K rb ] { U b } + [ C rb ] { ˙ U b } (4)

here [ K rb ] and [ C rb ] are resultant stiffness, and damping matrix

f the ERBs, respectively; { U b } and { ̇ U b } are the base displacement

nd velocity vectors, respectively. 

If k bi and k ti represent the lateral stiffness of the i th ERB and

MA, respectively. Then, 

 b = 

92 ∑ 

i =1 

k bi and K t = 

92 ∑ 

i =1 

k ti (5)

re the resultant stiffness of the ERB and SMA devices, respectively.

The isolation period, T b is defined as follows 

 b = 2 π

√ 

M 

K b + K t 
(6) 

here M is the total lumped mass of superstructure and base

ass. 

The damping coefficient of the i th bearing is expressed as 

 bi = 2 m i ω b ξb (7)

n which, m i is the mass of superstructure and base mass on the

 th isolation device; ξ is damping ratio of the ERB; and ω is the
b b 
solation frequency defined as 

 b = 

2 π

T b 
(8) 

t is to be noted that the ω b and T b represents the fundamental

requency and time period of base-isolated structure if superstruc-

ure behaves rigidly. However, due to flexibility of superstructure

he actual fundamental frequency and time period may slightly de-

iate from the above values. 

.1. Proposed equivalent linear elastic-viscous damping model of SMA 

In this section an equivalent linear elastic-viscous damping

odel of SMA is proposed. As per the AASHTO guidelines, the non-

inear force-deformation behavior of the isolator can be replaced

y an equivalent linear model [24] . This model has two parame-

ers i.e. effective elastic stiffness and effective viscous damping. So,

he linear force developed in the SMA wire can be expressed as 

 SH = K e f f x b + C e f f ˙ x b (9)

here K eff and C eff are the equivalent linear effective stiffness, and

iscous damping, respectively. 

The equivalent linear effective stiffness, and viscous damping

an be obtained from area and shape of SMA hysteresis. Since,

hape of the hysteresis loop has a similar pattern as that of the

i-linear hysteresis as shown in Fig. 2 . Therefore, the AASHTO iso-

ation guide specification for the bi-linear hysteretic model can be

sed for SMA hysteretic model to compute the equivalent effective

inear stiffness of SMA. 
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Fig. 2. SMA and its equivalent linear behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Schematic load-deformation behavior of super-elastic SMA. 
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o  
• The effective stiffness can be computed from the nonlinear hys-

teretic loop through the expression as per AASHTO isolation

guide specification 

K e f f = 

(F max − F min ) 

(x max − x min ) 
(10)

where F max and F min are the forces attained for the maximum

cyclic displacement x max and x min . Therefore, the effective stiff-

ness of SMA is expressed as 

K e f f = 

1 + αs (μ − 1) 

μ
k a (11)

where μ is ductility ratio of SMA defined as the design dis-

placement under consideration ( x max ) to yield displacement ( x y )

of the SMA; and k a is a initial austenite stiffness of SMA. 

• The equivalent viscous damping expresses the effectiveness of

material in the vibration damping. it is given as: 

C e f f = 2 ξe f f Mω e f f (12)

where ω e f f = 

√ 

K e f f /M is the effective isolation frequency; and

ξ eff is the effective viscous damping ratio given as 

ξe f f = 

W D (
2 πK e f f x 

2 
max 

) (13)

where W D is the energy loss per cycle from the hysteresis. The

energy loss per cycle within the hysteresis is evaluated from

area of hysteresis loop. The energy loss per cycle for the flag

shaped hysteresis of SMA is formulated as 

W D = 2 λF ys (x max − x y ) (14)

where λ F ys is the shear force difference between the two

transformation (during loading-unloading) of SMA as λ = (1 −
αs ) ; αs is the ratio of transformation stiffness to austenite stiff-

ness of SMA. 

After simplifying Eq. (12) , the equivalent linear viscous damping

constant is given as 

C e f f = 

2 λF ys (x max − x y ) 

πω e f f x 
2 
max 

(15)
.2. Nonlinear force-deformation modeling of SMA 

In this section modeling of actual nonlinear force-deformation

ehavior of SMA wire is presented. Super-elasticity is one of the

ost important properties of SMA. Super-elasticity , is a recover-

ble response to an applied stress, caused by a phase transfor-

ation between austenite to martensite phases (refer Fig. 3 ). The

hase transformation of SMA can be formed by applying load on it

25] . The beneficial aspect of super-elasticity can only be attained

t elevated temperature, at which the austenite phase is stable.

hese are important consideration for designer because the oper-

ting temperature needs to be reasonably high to retain such ef-

ect. However, SMA manufacturer can provide required materials

hat can be used in the usually availed temperature ranges [15] .

he present study assumes that the ambient temperature is good

nough to avail such effect. In order to model super-elasticity of

MA, many phenomenological models have been developed by re-

earchers ( [26–30] etc.). 

In this study, the classical Graesser–Cozzarelli (G-C) model and

ts variant are considered to model the nonlinear behavior of SMA

ire. The classical G-C model is an extension of the Ozdemir’s

odel [31] . This model is capable of providing both shape memory

ffect as well as the super-elastic effect. But, this model over esti-

ates the hysteretic area (dissipated energy) within the hysteresis

oop as that of an actual material [30] . Further, the hardening ef-

ect after austenite transition phase is not considered [28] . There-

ore, nowadays researchers are using the G-C’s extended model for

heir research [32–35] . However, the hardening effect is included

y Wilde et al. into the classical G-C model after the austenite

ransition phase. This effect does not alter the effective damping

nd stiffness of SMA, which is of interest in the present study.

ince increasing the negligible forces without increasing deforma-

ion does not affect on the dissipated energy because area within

he hysteresis loop does not change. Therefore, hardening effect is

eglected in this study. As the G-C model over estimates the dis-

ipated energy of the actual material, the hysteretic area within

he hysteresis loop may affect the damping of the SMA. This er-

or can be eliminated by using improved G-C’s model by Ren et al.

30] . Based on the above considered model, a MATLAB program has

een coded using higher-order Runge-Kutta method to simulate

he hysteretic behavior of SMA under external loading. Numerical

alues used for the parameters characterizing the hysteresis behav-

or of the SMA are provided in Table 1 . The one dimensional force-

eformation relationship developed by Graesser-Cozzarelli and Ren

t al. are illustrated in following sections. 

.2.1. Classical Graesser–Cozzarelli model 

As an extension to the Ozdemir’s model, Graesser proposed

ne dimensional force-deformation relationship that simulates the
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Table 1 

Hysteresis constants for SMA and its equivalent linear model [30] . 

Hysteretic Parameters Hysteretic Parameters Parameters 

for G-C model for Ren et al. model for Equivalent linear model 

T b = 3 sec, n = 5, k a = 8283 kN/m k m = 3049 kN/m x max = 0.2 m, μ = 20, αs = 0.0205 

f T = 0.08, c ′ = 0.001, a ′ = 158 n ′ = 3, f ′ T = 1.18 K eff = 162 kN/m , βeff = 0 .073 
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uper-elasticity of SMA. The equations are given as: 

˙ f rs = k a 

[
˙ x b − | ̇ x b | 

(
f rs − β

F ys 

)n ]
(16) 

= k t 

{
x b −

f rs 

k a 
+ f T | x b | c ′ er f 

(
a 

′ 
x b 

)
[ u (−x b ̇ x b ] 

}
(17) 

here F ys is transformation force; n is a constant controlling the

harpness of transition of hysteresis during loading changes its na-

ure; β is the back stress; c ′ a constant controlling the slope of

he unloading path; f T a constant controlling the type and size of

ysteresis; a 
′ 

a constant controlling the amount of elastic recovery 

uring unloading; ( ̇ ) the ordinary time derivative; | x b | the absolute

alue of x b ; k a is a initial austenite stiffness; and erf ( x b ) the error

unction of the argument x b , 

r f ( x b ) = 

2 √ 

π

∫ x b 

0 

e −t 2 dt (18) 

() is the unit step function defined as 

 (x ) = 

{+1 x ≥ 0 

0 x < 0 

.2.2. Extended Graesser–Cozzarelli model 

As an extension to the Graesser–Cozzarelli model, Ren et al.

30] proposed one dimensional force-deformation relationship that

imulates the super-elasticity of SMA. In order to simulate the

orce-deformation behavior of SMA more accurately, the researcher

ivided the full hysteresis loop in three parts: the loading path

OAB), the unloading path (BCD) up to the back transformation

omplete, and the elastic unloading path (DO) after completion of

ack transformation as shown in the Fig. 3 . The equations are now

ewritten as follows: 

• If x b ˙ x b > 0 (OAB path) 

˙ f rs = k a 

[
˙ x b − | ̇ x b | 

(
f rs − β

F ys 

)n ]
(19) 

β = k t 

{
x b −

f rs 

k a 

}
(20) 

• If x b ˙ x b < 0 and x b > x af (BCD path) 

˙ f rs = k m 

[ 

˙ x b − | ̇ x b | 
(

f rs − β

F ym 

)n ′ 
] 

(21) 

β = k m 

αs 

{
x b −

f rs 

k a 
+ f ′ T | x b | c ′ er f 

(
a 

′ 
x b 

)
[ u (−x b ̇ x b ] 

}
(22) 

where x af is the displacement when the back transformation

completed; k m 

is the martensite stiffness; and the yield force

F ym 

is evaluated as 

F ym 

= F ys 
k m 

k a 
(23) 
• If x b ˙ x b < 0 and x b < x af (DO path) 

˙ f rs = k a 

[
˙ x b − | ̇ x b | 

(
f rs − β

F ys 

)n ]
(24) 

β = k t 

{
x b −

f rs 

k a 
+ f T | x b | c ′ er f 

(
a 

′ 
x b 

)
[ u (−x b ̇ x b ] 

}
(25) 

Other unnoted parameters have already been defined. The val-

es of k a , k m 

, k t and hysteresis constants are taken same as used

n Ren et al. [30] . 

. Dynamic analysis 

The earthquake excitation demands the ductility ratio more

han 20 or higher by the isolator [36] . Since the SMA is well known

or ductility, the ductility ratio of SMA can be more than 20. Thus,

n the present work, the ductility ratio considered for isolator is 20.

he seismic response of benchmark base-isolated building is ob-

ained under seven real earthquake ground motions. These earth-

uake ground motions are given in the benchmark problem as tab-

lated in Table 2 . The mentioned pulse type earthquakes are well

nown near fault earthquakes. The pulse-type behavior of these

arthquake ground motions is conspicuously clear from their dis-

lacement, velocity and acceleration spectra presented by Sharma

nd Jangid [37] . These earthquake ground motions are scaled by

he iterating procedure in order to get design displacement of

.2 m. The scale factors are considered satisfactory when the rel-

tive error between computed peak displacement and design dis-

lacement is within 1%. The corresponding scale factors are used

or analysis with equivalent linear model of SMA. The equivalent

inear resultant forces in the SMA wires are computed for 0.2 m

esign displacement by using proposed equivalent linear elastic-

iscous model as illustrated in Section 3.1 . The nonlinear and its

quivalent linear resultant forces of SMA wires are computed in

uch a way that, it represents the force-deformation behavior as

entioned in Section 3.2 . 

The evaluation criteria (EV) given in the benchmark problem

s selected for study. These evaluation criteria are reported in

he Table 3 . The corresponding fixed base structural responses

re tabulated in the Table 4 . The response quantities are normal-

zed by corresponding fixed base values. The equations of motion

f base-isolated building are solved numerically using Newmark’s

ethod of step-by-step integration for nonlinear SMA models and

ts equivalent linear model. The linear variation of acceleration

ver a small time interval, δt = 0.001 s is adopted. 

. Comparative study of nonlinear SMA models and its 

quivalent linear model 

A comparative study of nonlinear SMA models with its equiva-

ent linear model for base-isolated benchmark building has been

arried out in this section. The normalized response values ob-

ained by dynamic analysis of the base-isolated benchmark build-

ng with nonlinear SMA models or its equivalent linear model are

abulated in Table 5 . 
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Table 2 

Details of earthquake ground acceleration records. 

Serials Earthquake Year Station Direction Scale factor 

GM1 Northridge 17/01/1994 Newhall 360 as FN 0 .65 

GM2 Imperial Valley 19/05/1940 El Centro Array 180 as FN 0 .99 

GM3 Northridge 17/01/1994 Rinaldi 228 as FN 0 .46 

GM4 Kobe 16/01/1995 JMA 0 0 0 as FN 0 .69 

GM5 Taiwan 10/15/1999 Jiji TCU 068 N as FN 0 .21 

GM6 Turkey 1/10/1995 Erzincan NS as FN 0 .30 

GM7 Northridge 17/01/1994 Sylmar 360 as FN 0 .30 

Table 3 

Evaluation Criteria (EV). 

Peak base shear Peak story shear Peak base displacement Peak story drift 

J 1 = 

max ‖ (V b (t)) ‖ 
max 

∥∥( ̂  V b (t)) 
∥∥ J 2 = 

max ‖ (V s (t)) ‖ 
max 

∥∥( ̂  V s (t)) 
∥∥ J 3 = 

max ‖ (x max (t)) ‖ 
max ‖ ( ̂  x max (t)) ‖ J 4 = 

max 
∥∥(d f (t)) 

∥∥
max 

∥∥( ̂  d f (t)) 
∥∥

Peak absolute acceleration Peak cumulative isolation force RMS base displacement RMS absolute acceleration 

J 5 = 

max 
∥∥(a f (t)) 

∥∥
max 

∥∥( ̂  a f (t)) 
∥∥ J 6 = 

max ‖ (F b (t)) ‖ 
max 

∥∥( ̂  F b (t)) 
∥∥ J 7 = 

max ‖ (RMSx max (t)) ‖ 
max 

∥∥∥( ̂ RMSx max (t)) 

∥∥∥ J 8 = 

max 
∥∥(RMSa f (t)) 

∥∥
max 

∥∥∥( ̂ RMSa f (t)) 

∥∥∥
V b and V s = Base and Structural shear; F b = Isolation force; RMS = Root mean square; ̂  = Corresponding fixed base response quantity a f = 

top-floor acceleration; d f = Inter story drift; t = Time; ‖ . ‖ = Modulus of Vector magnitude. 

Table 4 

Fixed-base response values. 

Serials Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum 

Base Story Base Story Absolute Force (kN) RMS RMS 

Shear (kN) Shear (kN) Disp. (m) Drift (m) Accln. (m/ s 2 ) Base Disp. (m) Absolute Accln. (m/ s 2 ) 

GM1 198147 171903 1 0 .06 24 .12 1 1 3 .34 

GM2 71313 62546 1 0 .02 7 .14 1 1 2 .11 

GM3 244642 231206 1 0 .08 27 .10 1 1 5 .14 

GM4 199662 190084 1 0 .09 26 .24 1 1 5 .01 

GM5 121324 113733 1 0 .04 11 .18 1 1 2 .22 

GM6 112623 105099 1 0 .04 11 .04 1 1 2 .01 

GM7 183959 154157 1 0 .05 17 .27 1 1 2 .17 

The responses like displacement and isolation force for fixed-base structure are irrelevant, hence the value is considered as unity. 

Table 5 

Comparison of obtained EV criterion values for base-isolated benchmark building by non-linear models and its proposed 

equivalent linear model. 

EV Model Newhall Elcentro Rinaldi Kobe Jiji Erzican Sylmar 

J 1 G-C 0 .89 0 .13 0 .32 0 .19 0 .69 0 .65 0 .59 

Ren et al. 0 .92 0 .12 0 .33 0 .20 0 .70 0 .66 0 .60 

Equivalent Linear 0 .93 0 .10 0 .35 0 .22 0 .68 0 .63 0 .63 

J 2 G-C 0 .79 0 .11 0 .28 0 .15 0 .61 0 .56 0 .58 

Ren et al. 0 .82 0 .10 0 .29 0 .16 0 .62 0 .57 0 .59 

Equivalent Linear 0 .79 0 .08 0 .31 0 .19 0 .61 0 .55 0 .61 

J 3 G-C 0 .20 0 .20 0 .20 0 .20 0 .20 0 .20 0 .20 

Ren et al. 0 .20 0 .20 0 .20 0 .20 0 .20 0 .20 0 .20 

Equivalent Linear 0 .18 0 .16 0 .18 0 .16 0 .16 0 .18 0 .15 

J 4 G-C 0 .31 0 .12 0 .08 0 .09 0 .17 0 .17 0 .16 

Ren et al. 0 .31 0 .12 0 .09 0 .10 0 .17 0 .18 0 .16 

Equivalent Linear 0 .40 0 .09 0 .11 0 .13 0 .15 0 .15 0 .14 

J 5 G-C 0 .37 0 .12 0 .15 0 .13 0 .38 0 .34 0 .32 

Ren et al. 0 .38 0 .13 0 .15 0 .13 0 .39 0 .34 0 .33 

Equivalent Linear 0 .42 0 .11 0 .20 0 .15 0 .35 0 .30 0 .34 

J 6 G-C 0 .13 0 .13 0 .13 0 .13 0 .12 0 .12 0 .13 

Ren et al. 0 .13 0 .13 0 .13 0 .12 0 .13 0 .13 0 .13 

Equivalent Linear 0 .17 0 .10 0 .16 0 .17 0 .09 0 .08 0 .09 

J 7 G-C 0 .05 0 .04 0 .05 0 .04 0 .07 0 .05 0 .06 

Ren et al. 0 .05 0 .04 0 .05 0 .04 0 .08 0 .05 0 .06 

Equivalent Linear 0 .02 0 .02 0 .02 0 .02 0 .05 0 .02 0 .02 

J 8 G-C 0 .29 0 .21 0 .15 0 .13 0 .41 0 .34 0 .42 

Ren et al. 0 .30 0 .21 0 .15 0 .14 0 .43 0 .36 0 .44 

Equivalent Linear 0 .29 0 .16 0 .13 0 .13 0 .32 0 .30 0 .40 
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Fig. 4. Force deformation behavior of nonlinear SMA models and its proposed equivalent linear model for Newhall (1994) earthquake. 

Fig. 5. Time variation of base displacement for base-isolated benchmark building. 
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In this attempt, J 3 = 0.20 and J 7 = 0.05 response values are

btained from nonlinear SMA models under Newhall (1994) earth-

uake. Whereas in the case of proposed equivalent linear model

hese are 0.18 and 0.02. It implies that equivalent linear model of

MA moderately under estimates the base-displacement response.

he same comparison is observed by most of the earthquake

round motions for the base-displacement response. All other re-

ponses are moderately over estimated by the equivalent linear

odel of SMA. The difference between the responses by nonlin-

ar models and its proposed equivalent linear model of SMA is less

han 2–5% for all earthquakes excitations. 

Fig. 4 depicts the force-deformation behavior of nonlinear clas-

ical G-C model, and its extended model by Ren et al. as well as its

quivalent linear model. Figures show that the classical G-C model

oderately over estimates the hysteretic area within the hysteresis

oop than its extended model estimates. It is observed that there

s no significant variation in the area of hysteresis loop. However,

light decrease in the slope of unloading path is observed during

artensite to austenite transformation. The area of the hysteresis

oop (dissipated energy) is marginally reduced by extended G-C

odel. Hence, reasonably increase in normalized acceleration and

ase shear responses are obtained by extended G-C model. The

orce-deformation behavior of proposed equivalent linear model

hows the stiffness linearity due to the displacement of base mass

nd the hysteresis loop shows the viscous damping due to the ve-

ocity component of base mass. It can be concluded that both G-C

odel and G-C’s extended model give the same response for larger

isplacement by neglecting reduction in hysteresis area within the

ysteresis loop. 
The floor accelerations developed in the superstructure are pro-

ortional to the forces exerted in the structure. On the other hand,

he bearing displacement is important to limit the isolation de-

ice displacement [19] . Thus, the time history variations of top-

oor absolute acceleration and base-displacement are considered

or the present study. The time variation of base-displacement and

op-floor acceleration are depicted in Figs. 5 and 6 , respectively.

t shows that the peak acceleration responses of nonlinear mod-

ls and proposed equivalent linear model of SMA are compara-

le, but more acceleration frequency is induced by the nonlinear

odel of SMA. Therefore, it can be concluded that the nonlin-

ar SMA models and its proposed equivalent linear model show

omparable peak response of the base-isolated benchmark build-

ng. The proposed equivalent linear model of SMA is modified form

f AASHTO guidelines specifications. Therefore the practicing engi-

eers can freely use it in their design. 

. Conclusions 

The response of the base-isolated benchmark building with

MA supplemented ERB isolation systems is carried out by time

istory analysis. An equivalent elastic-viscous model of SMA is pro-

osed to simulate the nonlinear behavior of SMA. From the present

tudy, following conclusions can be drawn. 

1. The effective stiffness of nonlinear SMA model shows similar

pattern as that of bilinear model. Therefore, the AASHTO iso-

lation guidelines for bi-linear system can be used for effective

stiffness of nonlinear SMA model. 
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Fig. 6. Time variation of top floor acceleration for base-isolated benchmark building. 
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2. Nonlinear SMA models and the proposed equivalent linear

model shows the comparable peak response of the base iso-

lated benchmark building. 

3. As the proposed equivalent linear model is established by using

system identification method, this model is valid for any type of

isolated structures (i.e. Bridges, Buildings, Water tanks etc.). 

4. Both nonlinear G-C and G-C’s extended model show almost

similar response at larger displacement. This may be attributed

to the insignificant difference between the estimated hysteresis

area by these two models. 

5. The proposed equivalent linear model of SMA is a modified

form of AASHTO guidelines specifications, and therefore prac-

ticing engineers can freely use it in the design. 
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