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a b s t r a c t 

The equivalent domain integral method is a reliable tool for J -integral computation in two- and three- 

dimensional elastic and elastic-plastic fracture mechanics problems. A variant of this method that is in- 

dependent of finite element mesh is presented. Finite element solution of a boundary value problem is

performed on a mesh composed of arbitrary elements. Nodal results are approximated by the moving

least squares method that does not require knowledge of mesh topology. Domain integrals are evaluated

on a background mesh of hexahedral elements. The mesh has the polar structure with the refinement

towards the crack front. Elements of the background mesh are generated in the coordinate system asso- 

ciated with the crack front and then transformed to the global system. Domain integration for each back- 

ground element is performed once during computations. Evaluation of J -integral for multiple domains is

achieved by multiplication of an element domain integral with multiple domain weight functions. Per- 

formance of the proposed algorithm is demonstrated by the examples of three-dimensional cracks using

meshes of both hexahedral and tetrahedral elements.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The J -integral [1,2] is a universal fracture mechanics parameter

that can be used both in elastic and elastic-plastic fracture me-

chanics. Basic definition of the J -integral assumes its calculation

along a small contour around the crack tip in a two-dimensional

case or around a point on the crack front in three-dimensional

problems. Using finite element results to calculate the J -integral

along a small contour can lead to considerable errors [3,4] . The

equivalent domain integral (EDI) method [5–8] allows obtaining

J -integral values with better accuracy. In this method an integral

along a small contour is transformed to area or volume domain

integral containing special weight function with zero value at the

external domain boundary. 

Usually domain integral methods are implemented with the

use of quadrilateral (2D) or hexahedral (3D) elements. The most

popular approach includes: polar mesh refinement around the

crack tip (front), use of quadrilateral (hexahedral) elements with

quadratic shape functions, and surrounding the crack tip with sin-

gular quarter-point elements [9] . The J -integral is computed by in-

tegration inside finite elements. Thus the boundaries of the inte-
∗ Corresponding author.
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ration domain are composed of finite element faces. For exam-

le, there is a special three-dimensional crack object in the ANSYS

eneral purpose finite element software [10] . The crack object is

 curvilinear cylinder around the crack front filled with the po-

ar mesh of quadratic hexahedral elements. The crack object is in-

erted into the generated finite element mesh by removing some

lements and connecting surface of the crack object with the rest

f the mesh. 

The EDI method that uses meshes consisting of quadratic hexa-

edral elements with polar refinement around the crack front, al-

ows obtaining fracture mechanics parameters with high precision.

owever, difficulties with generation of hexahedral polar meshes

otivate researchers to develop variants of EDI methods that work

n tetrahedral finite element meshes. 

Direct computation of the equivalent domain integral on a mesh

f quadratic tetrahedral elements was performed in [11] . Such

traightforward approach resulted in large oscillation of J -integral

alues along the crack front. Two modifications were proposed

o improve the results. First, the integration domain along the

rack front should have the size of four elements. Second, gra-

ients of the domain weight function should be calculated ana-

ytically, except for the elements at the boundaries of integration

omain where nodal support is used. Such modifications lead to

educing the oscillations of J -integral values, however, not to the

http://dx.doi.org/10.1016/j.advengsoft.2016.08.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
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Fig. 1. Global coordinate system x 1 x 2 x 3 and local coordinates ˜ x 1 ̃ x 2 ̃ x 3 for a point at 

the crack front. 
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J  
Nomenclature 

a crack size 

c k unit vectors along axes ˜ x 1 ̃  x 2 of the crack front co- 

ordinates 

d I distance between two points 

d mI size of a support domain 

E Young’s modulus 

f area under the domain weight function on the 

crack front 

f i body forces 

J III energy release rate of the third type 

H effective elasticity modulus 

J 1 , J 2 components of the J -integral 

K I , K II , K III stress intensity factors 

N 

I element shape functions 

n i components of a normal to the contour 

p basis for MLS approximation 

q domain weight function 

q k vector domain weight functions 

t i crack face tractions 

u i displacements 

W strain energy density 

w I (x ) weight functions for MLS approximation 

w 

( T ) weights for Gauss integration 

˜ x i local crack front coordinates 

x i global coordinates 

αij direction cosines for coordinate transform 

ε ij strain components 

ε e 
i j 

elastic strains 

ε p 
i j 

plastic strains 

ε t 
i j 

thermal strains 

μ shear modulus 

ν Poisson’s ratio 

ξ , η, ζ element local coordinates 

ρ dimensionless distance 

σ remote tension stress applied to the specimen 

σ ij stress components 


I (x ) shape functions for MLS approximation 

atisfactory level. The authors of [12] recommended specifying

eight function at the nodes of tetrahedral elements and to inter-

olate it linearly inside the elements. Their main recommendation

as related to the size of integration domain along the crack front.

his size should be from 6–14 h , where h is the element size along

he crack front. 

Another approach that avoids meshing with hexahedral ele-

ents assumes full independence of the finite element mesh. Cher-

enka and Saouma [13] proposed to calculate the domain integral

n cylindrical domains around the crack front independent of the

nite element mesh. The cylinder height was selected equal to

he element size along the crack front. Integration was performed

n polar coordinates using the special Gauss rule. It was men-

ioned that displacement derivatives were smoothed but smooth-

ng methodology was not described. 

Nagai et al., [14] demonstrated the J -integral computations

n tetrahedral meshes using both contour and domain integra-

ion independent of the finite element mesh. The moving least

quares (MLS) method with weights was employed for approxima-

ion of displacements and their derivatives. Neighbor nodes inside

 sphere were selected for approximation at the current point. The

phere size was related to the element size where the point was

ocated. Stress intensity factors for mixed-mode problems were ob-

ained by the interaction integral method [15,16] . 
Recent works on the domain integral algorithms in three-

imensional mixed-mode crack problems are mostly based on the

nteraction integral method where stress intensity factors are cal-

ulated directly by combining finite element solution with elastic

symptotic fields for mode I, II and III cracks. While this method

rovides some convenience, it restricts the use of such domain in-

egral algorithms to elastic problems. The J -integral is applicable to

oth elastic and elastic-plastic structural integrity assessments [17] .

 fracture criterion can be formulated in terms of the J -integral for

ode I and mixed-mode problems. 

This paper presents further development of the mesh-

ndependent equivalent domain integral method with moving least

quares approximation of integrands. In our algorithm of the equiv-

lent domain integral method, the J -integral components J 1 and J 2 
re computed in the form suitable for elastic and elastic-plastic

racks. Domain integrals are estimated in the global coordinate

ystem. The J -integral components in the crack front coordinate

ystem are obtained using vector weight function. Calculation of

he J 2 requires integration of the strain energy density over the

rack surfaces. The special integration rule with double coordinate

hange removes singularity from the integrand and provides higher

ccuracy for the J 2 component. If elastic stress intensity factors are

ecessary, they are determined using components of the J integral

nd mode III energy release rate. The latter is also estimated by

he domain integral method. 

In Section 2 the equations of the equivalent domain integral

or an arbitrary crack are derived in the global coordinate system.

lgorithms of finding the axes of the crack front coordinate sys-

em and computing the domain integrals are presented. The mov-

ng least squares method and its implementation are discussed in

ection 3 . Section 4 contains numerical results for an edge cracked

late, penny shaped crack, semi-elliptical surface crack, and in-

lined penny shaped crack under tensile loading. Comparisons of

esults obtained on meshes of hexahedral and tetrahedral elements

re presented. 

. Algorithm of the equivalent domain integral method 

.1. Equivalent domain integral 

Consider a crack in a three-dimensional body with global co-

rdinate system x 1 x 2 x 3 shown in Fig. 1 . Local coordinate system

˜  1 ̃  x 2 ̃  x 3 is introduced at arbitrary point of the crack front. Coordi- 

ate axes ˜ x 1 and ˜ x 2 lie in a plane normal to the crack front, ˜ x 2 is

erpendicular to the crack surface, and ˜ x 3 is tangent to the crack

ront. 

According to the basic definition of J -integral [1] , it should be

omputed along a small contour �ε around the crack front in ˜ x 1 ̃  x 2 
lane 

 k = 

∫ 
�ε 

(
W ̃

 n k − ˜ σi j 

∂ ̃  u i 

∂ ̃  x k 
˜ n j 

)
d� , k = 1 , 2 . (1)
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Fig. 2. Equivalent domain integration around a segment of the crack front. Radial 

section of the weight function q is shown. 

Fig. 3. Global coordinate system xyz and local coordinate system ˜ x ̃ y ̃ z at nodes at 

the crack front. 
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Here W is the density of work of stresses on mechanical strains,

˜ σi j are stresses, ˜ u i are displacements, and ˜ n j are components of

the external normal to the contour �ε . All magnitudes are related

to the crack front coordinate system ˜ x 1 ̃  x 2 ̃  x 3 . 

Two components J 1 and J 2 are sufficient to formulate fracture

criteria for general cracks in elastic and elastic-plastic solids. If it is

necessary to determine the stress intensity factors K I , K II and K III ,

it is possible to define the energy release rate J III 

J I I I = 

∫ 
�ε 

(
W I I I ̃  n 1 − ˜ σ3 j 

∂ ̃  u 3 

∂ ̃  x 1 
˜ n j 

)
d�, W I I I = 

1 

2 

( ̃  σ3 i ̃  ε e 3 i ) . (2)

Then the stress intensity factors are calculated as follows: 

K I /I I = 

1 

2 

√ 

H 

(√ 

J 1 − J 2 − J I I I ±
√ 

J 1 + J 2 − J I I I 

)
, 

K I I I = 

√ 

2 μJ I I I 

(3)

where μ = E/ (2(1 + ν)) is the shear modulus, H is the effective

elasticity modulus, which is equal to Young’s modulus E for plane

stress and E/ (1 − ν2 ) for plane strain conditions. 

For an arbitrary three-dimensional crack it is natural to perform

computations in the global coordinate system x 1 x 2 x 3 . The J -integral

can be expressed in the global coordinate system [16] 

J k = c kl 

∫ 
�ε 

(
W δl j − σi j 

∂ u i 

∂ x l 

)
n j d� , k = 1 , 2 (4)

where c kl are components of the unit vectors c k that are oriented

along axes ˜ x 1 and ˜ x 2 of the coordinate system associated with the

crack front. 

Computation of the integral along a small contour using the fi-

nite element solution can lead to considerable errors. The equiva-

lent domain integral method [5–8] replaces a small contour inte-

gral by a domain integral over the large area or volume. In addi-

tion, the domain (area or volume) integration is better suited for

implementation using the finite element method. 

Let us assume that the crack surface is loaded by tractions t i ,

and the solid is subjected to body forces f i and a temperature field.

In case of elastic-plastic deformation, total strains can be decom-

posed into the following sum 

ε i j = ε e i j + ε p 
i j 

+ ε t i j (5)

where superscripts e, p and t denote elastic, plastic, and thermal

fractions. Density of stress work on mechanical strains W is 

 = 

∫ 
σi j dε ep 

i j 
. (6)

Here ε ep 
i j 

is a sum of elastic ε e 
i j 

and plastic ε p 
i j 

strains. If constitutive

material equations are described by the deformation or flow the-

ory under the proportional loading then stresses can be expressed

through the energy density W 

σi j = 

∂W 

∂ε ep 
i j 

. (7)

Using the divergence theorem and taking into account equilibrium

equations, it is possible to transform the contour integral (4) into

its equivalent domain representation 

J k = J k (q ) + J k (V ) + J k ( A c ) , 

J k (q ) = − 1 

f 

∫ 
V −V ε 

(
W δl j − σi j 

∂ u i 

∂ x l 

)
∂q kl 

∂ x j 
dV , 

J k (V ) = 

1 

f 

∫ 
V −V ε 

(
σi j 

∂ε t 
i j 

∂ x l 
− f i 

∂ u i 

∂ x l 

)
q kl dV , 

J k ( A c ) = 

1 

f 

∫ 
A c 

(
δk 2 W n l − t i 

∂ u i 

∂ x l 

)
q kl dA . (8)

Here δlj is the Kronecker delta. Integration domain V − V ε around

the front segment and crack surfaces A c are shown in Fig. 2 . The

f

eight function q is selected such that it is equal to zero on ex-

ernal and side surfaces of the integration domain. Area f under

 -function on the inner surface of the integration domain is calcu-

ated as 

f = 

∫ 
q ds (9)

here s is a coordinate along the crack front. Components q kl of

he vector functions q k are equal to 

 kl = c kl q. (10)

Second term of (8) is necessary when thermal strains ε t 
i j 

or vol-

me forces f i are present. Additional area integration over the crack

urface A c is required for the second component of the J -integral

nd when surface tractions t i act on the crack faces. 

.2. Crack front coordinate system at nodes 

The crack front is defined by the vertices numbered accord-

ng to the distance from an arbitrary starting point 0 as shown in

ig. 3 . Origin of the local coordinate system ˜ x ̃  y ̃ z ( = ˜ x 1 ̃  x 2 ̃  x 3 ) can be

ttached to any vertex of the crack front. Axes ˜ x and ˜ y lie in the

lane that is normal to the crack front. Axis ˜ y is perpendicular to

he crack surface. Axis ˜ z is tangent to the crack front. 

Let us consider how to determine the orientation of the crack

ront coordinate system when the crack front is defined by straight

egments and the crack surface is defined by flat element faces. We

tart with the determination of z that is unit vector along the local

oordinate ˜ z at vertex v m 

. 

Fig. 4 shows the top view of the crack front. First, vectors

 m −1 ,m 

and z m,m +1 along two neighboring segments of the crack

ront are determined 
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Fig. 4. Finding orientation of z -axis. 

Fig. 5. Finding orientation of y -axis. 
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Fig. 6. Background mesh of hexahedral linear elements in the global coordinate 

system. 
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 m −1 ,m 

= 

v m 

− v m −1 

‖ 

v m 

− v m −1 ‖ 

, 

 m,m +1 = 

v m +1 − v m 

‖ 

v m +1 − v m 

‖ 

(11) 

here v m +1 , v m 

and v m −1 are crack front vertex coordinates, and

·‖ denotes vector length. Orientation of the axis z at the crack

ront node m is obtained by averaging the two vectors above 

 m 

= { a m 

b m 

c m 

} = 

1 

2 

( z m −1 ,m 

+ z m,m +1 ) . (12)

quation for a plane normal to the crack front at vertex m can be

ritten in the standard form using the components of its normal

 m 

, b m 

and c m 

a m 

x + b m 

y + c m 

z + d m 

= 0 , 

d m 

= −( a m 

x m 

+ b m 

y m 

+ c m 

z m 

) . (13) 

Estimation of y m 

and x m 

orientations at the crack front nodes

s based on the orientation of element faces at the crack surface.

e find element faces at the crack surface that include vertex m .

or each face e a normal y e is determined as a normalized vector

roduct of the two edges as demonstrated in Fig. 5 . Approximation

 

(1) 
m 

is found by averaging the normals y e 

y e = 

( v p − v m 

) × ( v q − v m 

) 

‖ ( v p − v m 

) × ( v q − v m 

) ‖ 

, 

 

(1) 
m 

= 

1 

n 

∑ 

y e . (14) 

ince y (1) 
m 

is not necessarily located in the normal plane at the

rack front node, we project it on the normal plane and normal-

ze 

 

(2 ) 
m 

= y (1) 
m 

−
(
y (1) 

m 

· z m 

)
z m 

, 

y m 

= 

y (2) 
m ∥∥y (2) 
m 

∥∥ . (15) 

inally x m 

is found as a vector product of axes y m 

and z m 

 m 

= y m 

× z m 

. (16) 

.3. Domain integration 

Our integration algorithm is independent of a finite element

esh used for solution of elastic or elastic-plastic problem. For do-

ain integration, we introduce a background polar mesh of lin-

ar hexahedral 8-node elements around the crack front as shown

n Fig. 6 . Integration domains are composed of cylinders located
etween two planes that are normal to the crack front and pass

hrough nodes. Integration elements are generated in the local co-

rdinate system where coordinate ˜ z is always zero. Then nodal co-

rdinates are transformed to the global coordinate system using

irection cosines αi j = cos ( ̃  x i , x j ) 

 i = α ji ̃  x j + x C j (17) 

here x C 
j 

are global coordinates of the node at the crack front. Dif-

erent direction cosines are used for element nodes that belong to

ifferent planes in the global coordinate system. 

A global to local transformation matrix at node m is defined by

nit vectors x m 

, y m 

and z m 

of the local coordinate axes ˜ x ̃  y ̃ z 

m 

= 

[ 

x m 

y m 

z m 

] 

. (18) 

n Eq. (17) the transposed matrix of direction cosines αji is used

ecause of the transformation from local to global coordinates. 

Calculation of domain integrals (8) is performed for all ele-

ents using the shape functions for interpolation of the domain

eight function q . For the linear hexahedral element, the shape

unctions N 

I are 

 

I = 

1 

8 

(1 + ξξI )(1 + ηηI )(1 + ζ ζI ) (19)

here ξ , η, ζ are local element coordinates in the range [ −1 , 1]

nd ξ I , ηI , ζ I are their values at nodes. 

Interpolation of the weight function q is done as follows 

 = N 

M q M . (20) 

rom the above relation it is possible to find derivatives of the

eight function 

∂q 

∂x j 
= 

∂N 

M 

∂x j 
q M , (21) 

nd components of the vector functions q k 

∂q kl 

∂x j 
= 

∂N 

M 

∂x j 
q M 

kl . (22) 

Integration of components J k ( q ) in (8) for one finite element in

he local element coordinates ξ , η, ζ becomes 

 k (q ) = − 1 

f 

∫ 1 

−1 

∫ 1 

−1 

∫ 1 

−1 

(
W δl j − σi j 

∂ u i 

∂ x l 

)
∂ N 

M 

∂ x j 
q M 

kl det Jd ξd ηd ζ

(23) 

here det J is a determinant of the Jacobi matrix. Nodal vector q M 

kl 
an be moved outside of the integral, which allows performing ef-

cient computation of J k ( q ) for multiple weight functions q using

he Gauss integration rule 

 k (q ) = R 

M 

l q M 

kl , 

R 

M 

l = − 1 

f 

[(
W δl j − σi j 

∂ u i 

∂ x l 

)
∂ N 

M 

∂ x j 
det J 

](T ) 

w 

(T ) . (24) 
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Here ( T ) denotes expressions at integration points, and w 

( T ) are

integration weights. In the linear elastic case, only the nodal

displacements are necessary for the integral (24) . Displacement

derivatives ∂ u i / ∂ x l are approximated using the moving least

squares method; stresses σ ij and elastic energy density W are de-

termined by Hook’s law. Elastic-plastic case requires moving least

squares approximation of stresses and work density from the fi-

nite element solution. Since all quantities can be determined at

any point, it is possible to use any number of integration points

in an element. 

Estimation of J k ( V ) is performed in a similar way 

J k (V ) = S M 

l q M 

kl , 

S M 

l = 

1 

f 

[(
σi j 

∂ε t 
i j 

∂ x l 
− f i 

∂ u i 

∂ x l 

)
N 

M det J 

](T ) 

w 

(T ) . (25)

Components J k ( A c ) are integrated over element faces that are lo-

cated on the crack surfaces A c : 

J k (A c ) = T M 

l q M 

kl , 

T M 

l = 

1 

f 

[(
δk 2 W n l − t i 

∂ u i 

∂ x l 

)
N 

M det J 

](t) 

w 

(t) . (26)

Superscript ( t ) is used to denote the integration points on element

faces. 

Computing the J -integral in the form (24,25,26) allows using

multiple weight functions for the current element of the integra-

tion domain. The following weight function q was selected in this

study 

q (r, ̃  x 3 ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

(
1 − | ̃  x 3 | 

h 

)
, r 0 < r ≤ r 1 , (

1 − | ̃  x 3 | 
h 

)(
r 2 − r 

r 2 − r 1 

)
, r 1 < r ≤ r 2 . 

(27)

Here r and ˜ x 3 are radial distance and local coordinate along the

crack front, respectively, and, h is half size of the integration do-

main along the crack front ( −h ≤ ˜ x 3 ≤ h ). The q -function is linear

in the ˜ x 3 direction on each side from the central point. It is con-

stant in the radial direction from r 0 to r 1 and linear from r 1 to r 2 .

According to the definition of the J -integral (1) , r 0 should be small

compared to the crack size. 

2.4. Integration of the strain energy density over the crack surface 

Calculation of the integral (26) over the crack surface presents

considerable difficulties because the integration domain starts at

the crack front, and the integrand contains a singular function

W ( r ). Consider the integration of the strain energy density W ,

which is necessary for determining the value of J 2 

I = 

∫ 
A C 

W dA . (28)

The function of the elastic energy density W has singularity 1/ r ,

where r is the distance from the crack front. Therefore, the in-

tegrals along each of the crack surfaces are divergent. However,

the energy difference between the upper and lower crack surfaces

�W = W + − W − is characterized by the singularity of 1 / 
√ 

r [18] ,

and the integral along the crack area has a finite value. Thus, we

need to obtain the value of the integral 

I = 

∫ 
C 

�W dA . (29)

where C is one (upper or lower) of the crack surfaces. 

Eischen [18] proposed a method for computing such integral in

the two-dimensional case. His method uses analytical expression
or the strain energy difference near the crack tip and requires two

ntegrations over the crack line for determining two unknown con-

tants. 

Here we propose to determine the integral (29) using a special

ntegration rule, which removes singularity in the integrand. Sim-

lar approach was employed by Walters et al., [19] for integration

f the crack surface traction term in Eq. (26) . 

A direct calculation of the integral over finite elements using

auss integration rule gives acceptable results with the exception

f the elements directly adjacent to the crack front. For a two-

imensional element next to the crack front, singularity can be

emoved by the coordinate change. The integral over the two-

imensional element has the form 

 = 

∫ 1 

−1 

∫ 1 

−1 

F (ξ , η) dξdη. (30)

here F (ξ , η) = �W (ξ , η) det J(ξ , η) . Suppose that the local coor-

inate ξ is oriented along the radial direction. After a change of

he coordinate ξ = ω 

2 − 1 , the integral becomes nonsingular 

 = 

∫ √ 

2 

0 

∫ 1 

−1 

2 ω F ( ω 

2 − 1 , η) dω dη. (31)

o have the standard limits of integration, we make another

hange of variable ω = (1 + ζ ) / 
√ 

2 . Then the integral becomes 

 = 

∫ 1 

−1 

∫ 1 

−1 

(1 + ζ ) F 
(

1 

2 

(
ζ 2 + 2 ζ − 1 

)
, η

)
dζdη. (32)

Efficiency of the integration rule with double coordinate change

an be demonstrated by estimating the integral I = 

∫ 1 
0 r −1 / 2 dr .

sual Gauss rule with 2, 3 and 4 integration points gives integral

alues 1.651, 1.751, and 1.806, respectively. Special integration rule

rovides correct result I = 2 even for one integration point. 

Special integration (32) requires the values of �W at small dis-

ances from the crack front. Direct calculation of the energy den-

ity near the crack front by the moving least squares can lead to

ignificant errors. 

To estimate the energy density difference near the crack front,

t is possible to use the value of �W at some point r 2 farther away.

his point should not be too far from the crack front since the

train energy density difference should still follow its asymptotic

ehavior. Suppose that we need the value of �W 1 at a point, lo-

ated at distance r 1 from the crack front. Since the radial depen-

ence of �W is given by 

W = 

k √ 

r 
(33)

hen the following relation 

W 1 = 

�W 2 
√ 

r 2 √ 

r 1 
(34)

an be used for estimation of the strain energy density in the

icinity of the crack front. Numerical experiments show that the

ptimal distance r 2 is 1.25 times the size of the integration el-

ment adjacent to the crack front. The above procedure can be

lso applied to estimation of the second term in Eq. (26) since it

equires surface integration of displacement derivatives with the

quare root singularity. 

. MLS approximation 

.1. Moving least squares method 

Approximation of displacement derivatives and other quantities

ecessary for J -integral estimation is done according to the moving

east squares (MLS) method, which is widely used in the meshless

nite element method [20] . 
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Let a scalar function u be specified as u I at nodes x I . Function

pproximation u h ( x ) with error minimization in the least square

ense can be represented in the form 

 

h (x ) = 

m ∑ 

j 

p j ( x ) a j (x ) = p 

T (x ) a (x ) (35)

here p is a basis, which contains approximating functions. If a

eight function is introduced for nodal points w (x − x I ) = w I (x )

hen the unknown vector a ( x ) becomes equal to 

 (x ) = A 

−1 (x ) B (x ) U (36)

fter minimizing the sum of squares of deviations. Here the fol-

owing notations were used 

 (x ) = 

n ∑ 

I 

w I (x ) p ( x I ) p 

T ( x I ) , 

B (x ) = [ w 1 (x ) p ( x 1 ) w 2 (x ) p ( x 2 ) . . . w n ( x ) p ( x n ) ] , 

U = { u 1 u 2 . . . u n } . (37) 

unction approximation 

 

h (x ) = 

n ∑ 

I 

m ∑ 

j 

p j (x ) 
(
A 

−1 (x ) B (x ) 
)

jI 
u I (38)

an be represented in the form of shape function interpolation 

 

h (x ) = 

n ∑ 

I 

φI (x ) u I . (39) 

hape functions are given by the following expression 

I (x ) = 

m ∑ 

j 

p j (x ) 
(
A 

−1 (x ) B (x ) 
)

jI 
. (40)

n vector notation, this can be rewritten as 

(x ) = g 

T (x ) B (x ) , 

g (x ) = A 

−1 (x ) p (x ) . (41) 

hape function derivatives are obtained by differentiation of the

bove expression 

∂
(x ) 

∂ x i 
= 

(
∂g 

∂ x i 

)T 

B + g 

T ∂B 

∂ x i 
, 

∂g 

∂ x i 
= A 

−1 

(
∂p 

∂ x i 
− ∂A 

∂ x i 
g 

)
. (42) 

erivatives in the above equations are defined by direct differenti-

tion. 

.2. Implementation of the MLS method 

In the implementation of the MLS method it is necessary to se-

ect the basis p , weight function w I ( x ), and to develop algorithm

f finding support nodes. 

.2.1. Basis 

Linear polynomial basis was selected 

 (x ) = { 1 x y z } . (43)

ur experiments showed that increasing the polynomial order has

ittle effect on the results of approximation of the displacement

eld. 
.2.2. Weight function 

Various weight functions are used in MLS approximations;

mong them: Gauss function, spline functions, radial based func-

ions etc. Usually weight functions use dimensionless radius ρ as

n argument 

ρ = d I / d mI , 

d I = ‖ 

x − x I ‖ 

(44) 

here d I is the distance between points x and x I , and d mI is a

adius of a support domain. In our implementation, we selected

auss weight function that reads 

 I (x ) = w (x − x I ) = 

exp 

(
−( βρ) 

2 
)

− exp 

(
−β2 

)
1 − exp 

(
−β2 

) . (45)

ere β is a parameter defining the sharpness of the weight func-

ion (typical value is β = 3 ). 

In the three-dimensional case we use a weight function defined

s a product of one-dimensional weight functions [21] 

 (x − x I ) = w ( ρx ) w ( ρy ) w ( ρz ) (46)

here ρx , ρy and ρz are 

ρx = | x − x I | / d mI , 

y = | y − y I | / d mI , 

ρz = | z − z I | / d mI . (47) 

.2.3. Searching support nodes 

Results of problem solution are known at the nodes of the fi-

ite element mesh. For MLS approximation it is necessary to find

he specified number of the nodes closest to the point of approxi-

ation. Such nodes are called support nodes, and a region of their

ocation is a support domain. 

In our implementation of the MLS method, we use simple bas-

et algorithm for the efficient search of the support nodes. Before

erforming the computation of the J -integral by the equivalent do-

ain integral method, we create a list of lists which contains node

umbers located inside the integration elements. Integration ele-

ents are considered as baskets with nodes inside. When support

odes are sought, a basket of the current integration element is

sed for the support nodes search. If the required support domain

ecomes larger than the current basket then the neighboring bas-

ets are used. 

. Numerical results 

This section contains three-dimensional examples of calculation

f stress intensity factors using the developed algorithm of the

esh-independent equivalent domain integral method. 

The following problems are considered: 

1. Tensile plate with an edge crack 

2. Cylinder with a circular crack under tension 

3. Semi-elliptical surface crack 

4. Inclined circular crack under tension 

Each problem is solved twice using hexahedral 20-node ele-

ents and tetrahedral 10-node elements. 

Hexahedral meshes were created using our specialized mesh

enerator. They are characterized by a regular mesh structure, po-

ar refinement towards the crack front, and singular quarter-point

lements around the crack front. 

Tetrahedral meshes were generated using the preprocessor of

he general purpose finite element software FIDESYS [22,23] . The

heoretical background of CAE FIDESYS, including mechanical and

athematical problem statements, is described in [4,24,25] . Gener-

ted tetrahedral meshes are almost completely irregular with the

xception of specified size of elements at the crack front. 
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Fig. 7. Plate with an edge crack under tension, a/W = 0 . 5 . 

(a)(a) (b)

Fig. 8. Meshes for calculation of stress intensity factor for an edge cracked plate: 

a) 740 quadratic hexahedral elements b) 15,418 quadratic tetrahedral elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Stress intensity factor along the front of an edge crack a/W = 0 . 5 in a tensile 

plate. 

Fig. 10. Dependence of the stress intensity factor on the integration domain radius 

for an edged crack plate. 
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Calculation of domain integrals (24–26) with bilinear weigh

function q (27) does not use topology of the meshes. Only the dis-

placements at nodes are involved in the approximation of displace-

ments, their derivatives, and other quantities at integration points

of a background mesh. Integration domains have the size of two

elements along the crack front and a multiple of specified size in

the radial direction. Radius r 1 in (27) is selected equal to double of

the radial size of crack front elements. 

4.1. Plate with an edge crack 

A plate of width W and thickness t containing a crack of length

a under remote tensile stress σ is shown in Fig. 7 . 

The three-dimensional problem for a/W = 0 . 5 , t/W = 0 . 1 ,

H/W = 1 . 5 is solved with zero displacement boundary conditions

in the thickness direction on both plate surfaces such that the

stress intensity factor K I is constant along the crack front. Such

problem statement allows estimating the influence of tetrahedral

mesh irregularity on the scatter of K I . 

A finite element mesh consisting of 740 hexahedral elements

and 3789 nodes is presented in Fig. 8 a. Polar refinement around

the crack front has seven elements in the angular direction. Radial

size of singular quarter-point elements is e = 0 . 05 t . 
min 
Fig. 8 b shows the mesh of 15,418 tetrahedral elements and

3,693 nodes. The size of the elements at the crack front is e min =
 . 05 t . 

Results for the normalized stress intensity factor K̄ I 

¯
 I = 

K I (1 − a/W ) 
3 / 2 

σ
√ 

πa 

btained with hexahedral and tetrahedral meshes are compared

ith the reference solution K̄ I = 0 . 9985 [26] in Fig. 9 . Relative dif-

erence of K I determined on the hexahedral mesh from the refer-

nce solution is 0.4%. Scatter of results obtained on the tetrahedral

esh is within ± 1%. Fig. 10 shows dependence of the stress in-

ensity factor K̄ I on the radial size of an integration domain r / a .

he results are almost independent of integration domain. Higher

scillations of K̄ I values for the hexahedral mesh are explained by

arge element sizes for r / a > 0.07. 

.2. Cylinder with a circular crack 

Problem schematic for a cylinder of radius R with a circular

rack of radius a under tensile loading σ is presented in Fig. 11 .

he problem is suitable for testing the algorithm of the equivalent

omain integration method since the solution is a constant value

f K I along the curved crack front. Reference value of the normal-

zed stress intensity factor K̄ I for a/R = 0 . 2 is given in [27] 

¯
 I = 

K I 

2 σ
√ 

a/π
= 1 . 005 . 
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Fig. 11. Circular crack in a tensile cylinder, a/R = 0 . 2 . 

Fig. 12. Meshes for calculation of stress intensity factor for a circular crack in a 

tensile cylinder: a) 837 quadratic hexahedral elements b) 7111 quadratic tetrahedral 

elements. 

 

h  

m  

f  

a  

m  

t  

a

4

 

e  

i  

a  

s  

a

 

w  

n  

p  

i

 

a  

Fig. 13. Stress intensity factor along the front of the circular crack. 

Fig. 14. Semi-elliptical surface crack a/c = 0 . 5 in a tensile block, a/t = 0 . 25 , a/b = 

0 . 125 . 
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Fig. 12 shows hexahedral (837 elements, 3874 nodes) and tetra-

edral (7111 element, 11,062 nodes) meshes. Both meshes have

inimal element size e min = 0 . 05 a . Results for the stress intensity

actor are presented in Fig. 13 . The hexahedral mesh gives K I with

n error less than 0.3%. The tetrahedral mesh produces results with

aximum error within 2%. Results at the selected crack front ver-

ex for the integration domains with different radial sizes are char-

cterized by high stability. 

.3. Semi-elliptical surface crack 

Computation of the stress intensity factor at the front of a semi-

lliptical surface crack ( Fig. 14 ) is a typical task in the structural

ntegrity analysis. We consider a semi-elliptical crack with semi-

xes a and c in a block of width 2 b and thickness t under tensile

tress σ . The following geometric details are selected: a/c = 0 . 5 ,

/t = 0 . 25 , a/b = 0 . 125 . 

Finite element meshes consisting of 738 hexahedral elements

ith 3597 nodes and 10,633 tetrahedral elements with 16,290

odes are presented in Fig. 15 . Radial element size of the quarter-

oint elements at the crack front in the hexahedral mesh and min-

mal element size in the tetrahedral mesh are e min = 0 . 05 a . 

Fig. 16 shows the stress intensity factor K I on the crack front

s a function of elliptical angle φ. Values of K are normalized as
I 
ollows: 

¯
 I = 

K I Q 

σ
√ 

πa 
, 

Q = 

(
1 + 1 . 464 

(
a 

c 

)1 . 65 
)1 / 2 

. 

esults obtained on the hexahedral and tetrahedral meshes

emonstrate satisfactory agreement with reference solution [28] . 

.4. Inclined circular crack 

Schematic of the problem for an inclined circular crack under

ension is shown in Fig. 17 . This problem is used for demonstration

f the proposed algorithm to calculate stress intensity factors K I ,

 II and K III , which are given by the following formulas [29] for the

ase of infinite medium 

K I = 2 σ

√ 

a 

π
cos 2 α, 

K II = 

2 

2 − ν
σ

√ 

a 

π
sin 2 α cos θ, 

 I I I = 

2(1 − ν) 

2 − ν
σ

√ 

a 

π
sin 2 α sin θ

here a is a crack radius, σ is a remote tensile stress, ν is Poisson’s

atio, α is an angle between the plane normal to the cylinder axis

nd the crack plane, and θ is an angle along the crack front. 
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Fig. 15. Meshes for calculation of stress intensity factor for a semi-elliptical surface crack: a) 738 hexahedral elements b) 10,633 tetrahedral elements. 

Fig. 16. Stress intensity factor K I as a function of elliptical angle φ for the semi- 

elliptical surface crack. 

Fig. 17. Inclined circular crack in a tensile cylinder. 
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Finite element meshes composed of hexahedral and tetrahedral

elements are presented in Fig. 18 for a/R = 0 . 1 and α = 30 ◦. The

hexahedral mesh is composed of 2988 elements and 12,659 nodes.

The tetrahedral mesh includes 32,316 elements and 48,015 nodes.
ince we generated finite element models with a/R = 0 . 1 , it is pos-

ible to employ formulas for an infinite medium for the reference

urpose. 

The components of the J -integral J 1 , J 2 , and the energy release

ate J III are normalized as 

 ̄i = 

J i 
4 σ 2 a/ (πE) 

. 

omparison of computed values and theoretical solution for an in-

lined circular crack in an infinite medium [29] is shown in Fig. 19 .

Results for stress intensity factors K I , K II and K III normalized as 

¯
 i = 

K i 

2 σ
√ 

a/π

re given in Fig. 20 . Errors for all stress intensity factors are in the

cceptable range. 

. Conclusion 

A mesh-independent variant of the equivalent domain integral

ethod for estimating components of the J -integral and stress in-

ensity factors K I , K II and K III is presented. Calculations of domain

ntegrals are performed in the global coordinate system based on

he displacements and other data at nodes of the finite element

esh or any other points in space. Regular background mesh of

exahedral elements is introduced around the crack front for do-

ain integration. Vector weight function q is used to obtain com-

onents of the J -integral in the local crack front coordinate system.

ntegration of the strain energy density over the crack surface in

he J 2 component is performed with a special algorithm that re-

oves singularity using the double coordinate change. The energy

elease rate of the third type J III can be computed if it is necessary

o separate the stress intensity factors. 

Performance of the mesh-independent domain integral method

s demonstrated on several numerical examples for three-

imensional cracks. Two types of meshes were generated for each

f the crack problems. The first mesh is composed of hexahedral

0-node elements and regular polar mesh around the crack front.

ingular quarter-point elements were placed at the crack front.

etrahedral 10-node elements were used in the second mesh that

as irregular except for the specified element size at the crack

ront. Calculated J -integral values and values of the stress intensity

actors are in agreement with reference solutions. 
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Fig. 18. Meshes for calculation of stress intensity factors for an inclined circular crack: a) 2988 hexahedral elements b) 32,316 tetrahedral elements. 

Fig. 19. J -integral components at the front of an inclined circular crack under ten- 

sion. 

Fig. 20. Stress intensity factors at the front of an inclined circular crack under ten- 

sion. 
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