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a b s t r a c t 

In this study, the problem of fuel-optimal lunar soft landing trajectory optimization using variable- 

thrust propulsion is considered. First, the lunar soft landing trajectory optimization problem with three- 

dimensional kinematics and dynamics model, boundary conditions, and path constraints strictly described

is formulated. Then, the formulated trajectory optimization problem is solved by the simultaneous dy- 

namic optimization approach. With bounds imposed on the magnitude of engine thrust, the optimal con- 

trol solutions typically have a “bang-bang” thrust profile. The general simultaneous dynamic optimization

approach has difficulty handling breakpoints in the control profiles. A novel adaptive mesh refinement

strategy based on a constant Hamiltonian profile is proposed to address the difficulty of locating break- 

points in the thrust profile. Two cases are simulated. The engine of the first case is throttleable between

zero and full thrust. The engine of the second case is throttleable between 10% and 60% of full thrust,

and at full thrust. Union property of R -function method is utilized to express the thrust profile of the

second case in the trajectory optimization problem. Simulation results show that the enhanced simul- 

taneous dynamic optimization approach with adaptive mesh refinement strategy can effectively capture

the breakpoints in the optimal thrust profile and obtain more refined lunar soft landing optimal solutions,

compared with the results obtained by the general simultaneous dynamic optimization approach.

© 2016 Published by Elsevier Ltd.
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1. Introduction

Recently, exploration of the moon, the nearest celestial body

to the earth, has become increasingly attractive for space scien-

tists for several reasons. For example, Helium-3, which is used in

nuclear fusion and could be a future energy source, is abundant

on the Moon. The existence of water has also been confirmed by

the National Aeronautics and Space Administration’s (NASA) Lunar

Crater Observation and Sensing Satellite. Furthermore, the Moon

can be an advance base for exploring other planets [1,2] . Given

the potential benefits of lunar exploration, Americans, Europeans,

Japanese, Chinese, and Indians are all planning to go back to the
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oon [3] . After conducting the Apollo Program from 1961 to 1972,

ASA officials have not started any new lunar programs. However,

his development does not mean that scientists and engineers at

ASA have lost interest in the moon. NASA has recently launched

unar CATALYST, a program designed to assist and encourage pri-

ate companies that are interested in lunar exploration [4] . 

In lunar exploration, lunar soft landing is a challenging prob-

em, in which the lunar module (LM) lands softly on the moon

urface using the reverse force of the propeller. This study aims to

btain the fuel-optimal trajectory of lunar soft landing with vari-

ble thrust. This lunar soft landing trajectory optimization problem

s formulated as a constrained optimal control problem incorpo-

ated with the main specific features of the problem. 

Current studies on the lunar soft landing optimal control prob-

em are mainly based on optimal control theory. Ref. [5] applied

ontryagin maximum principle to develop a fuel-optimal thrust

rogram for the terminal phase of a lunar soft-landing mission.

ef. [6] optimized the perilune altitude of the intermediate orbit

or lunar landing trajectory in addition to the optimal thrust

rogram. Ref. [7] applied a variable-time-domain neighboring op-

imal guidance algorithm, which is capable of driving a dynamical

ystem along the specified nominal and optimal paths, to lunar
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Fig. 1. Coordinates of lunar soft landing. 
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escent and soft landing. Ref. [8] constructed a fuel-optimal guid-

nce law to ensure the soft landing of the LM with the terminal

ttitude of the module within a small deviation from being vertical

ith respect to the lunar surface, which is solved by applying the

ontrol parameterization technique and a time scaling transform.

ef. [9] outlined a design for a targeting algorithm that quickly

nd reliably generates a two-dimensional reference trajectory and

 real-time three-dimensional guidance algorithm that can use

his or any reference trajectory as its basis. Ref. [10] developed

 computational method based on control parameterization in

onjunction with a time scaling transform and the constraint

ranscription method to design the optimal controller for the

onstrained lunar descent optimal control problem. Refs. [1] and

2] conducted the two-dimensional and three-dimensional multi-

hase trajectory optimization for soft lunar landing from a parking

rbit with the pseudospectral method, respectively. 

Numerical methods for the optimal control problem fall into

wo general categories, namely, indirect methods and direct meth-

ds [11] . Indirect methods have several disadvantages, including

 small region of convergence, the need to derive the Hamilto-

ian boundary value problem analytically, a non-intuitive initial

uess for the costate, and a priori knowledge of the constrained

nd unconstrained arcs if path constraints are present [12] . More-

ver, most optimal control problems do not have an analytical so-

ution. The key of optimal control strategies is the need to de-

ermine optimal trajectories for complex system models with ef-

cient and reliable nonlinear programming (NLP) methods [13] ,

hich illustrates that direct methods are preferable to solve com-

lex optimal control problems. Pseudospectral methods [12,14–20] ,

hich are a class of direct methods where the optimal control

roblem is transcribed into an NLP problem, have recently be-

ome increasingly popular and widely used to obtain the numer-

cal solution of optimal control problems. The state and control

ariables are parameterized using global polynomials at collocation

odes derived from a Gaussian quadrature. For problems whose

olutions are smooth, the application of global polynomials asso-

iated with Gaussian quadrature collocation points provides accu-

ate approximations and exponential convergence [20] . Collocation

oints are commonly divided into three sets, namely, Legendre-

auss, Legendre-Gauss-Radau, and Legendre-Gauss-Lobatto points. 

owever, for problems whose solutions are nonsmooth or not well

pproximated by global polynomials, a simultaneous dynamic op-

imization approach [18,21,22] is preferable. In the simultaneous

ynamic optimization approach, the time interval is partitioned

nto subintervals, and the differential-algebraic equations (DAEs)

re discretized to algebraic equations over each subinterval called

nite element. 

The thrust of the LM is throttleable and bounded in this study.

or the fuel-optimal lunar descent problem with bounded mag-

itude of thrust, the optimal thrust profile typically has a “bang-

ang” profile: the thrust magnitude “bangs” instantaneously be-

ween its maximum and minimum magnitudes [23] . Thus, break-

oints exist in the thrust profile. Direct methods are challenged by

he need to capture discontinuities (breakpoints) in control pro-

les accurately [13] . This study proposes a novel adaptive mesh

efinement strategy based on a constant Hamiltonian profile to en-

ance the general simultaneous dynamic optimization approach to

ddress the difficulty of locating breakpoints in the thrust profile

n this trajectory optimization problem. 

The remainder of this paper is organized as follows:

ection 2 establishes the lunar soft landing trajectory opti-

ization problem. Section 3 introduces the simultaneous dynamic

ptimization approach. Section 4 presents the proposed adaptive

esh refinement strategy. Section 5 presents the numerical results

nd discussions. Section 6 gives the conclusion. 
|

. Lunar soft landing trajectory optimization problem 

The kinematics and dynamics model of the lunar soft landing

rocess, where LM is modeled as a mass point, is described with

he assumption that the moon is a regular spherical body and the

nfluences of the moon’s rotation and other celestial bodies on LM

re neglected. 

.1. Kinematics and dynamics model 

The lunar soft landing process can be treated in a two-

ody system. The motion of lunar soft landing is described in

hree-dimensional coordinates in Fig. 1 . This study assumes that

 M 

X M 

Y M 

Z M 

and oxyz are the Lunar Central Inertial Coordinate and

he Lunar Descent Inertial Coordinate, respectively. The kinematics

nd dynamics equations of the lunar descent process in the Lunar

escent Inertial Coordinate are expressed as follows: 

dx 

dt 
= V x , 

dy 

dt 
= V y , 

dz 

d t 
= V z 

d V x 

dt 
= 

T 

m 

cos ϕ cos φ − μx 

( x 2 + y 2 + z 2 ) 
3 / 2 

d V y 

dt 
= 

T 

m 

sin ϕ cos φ − μy 

( x 2 + y 2 + z 2 ) 
3 / 2 

d V z 

dt 
= − T 

m 

sin φ − μz 

( x 2 + y 2 + z 2 ) 
3 / 2 

dm 

dt 
= − T 

I sp g 0 
(1) 

here ( x, y, z ) is the position vector of LM; ( V x , V y , V z ) is the veloc-

ty vector of LM; m is the mass of LM; ϕ and φ represent the pitch

nd yaw angles, respectively; T denotes the thrust magnitude; I sp 

s the specific impulse; and μ and g 0 denote the moon’s gravita-

ional constant and the Earth’s gravitational acceleration, respec-

ively. The positive directions of ox -axis, oy -axis, and oz -axis are

amed tangential direction, radial direction, and lateral direction,

espectively. 

.2. Path constraints 

The thrust is throttleable in full range from the lower value to

he upper value in this study, thus the constraint for thrust is ex-

ressed as follows: 

 ≤ T ≤ T max (2) 

here T max is the maximum thrust value. To avoid sudden angle

hanges during flight, the following constraints are applied to sat-

sfy the angular rate of the pitch and yaw angles: 

 

dϕ / dt | ≤ ω α max , | dφ/ dt | ≤ ω β max (3) 
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where ω α max and ω β max are the maximum angular rates of the

pitch and yaw angles, respectively. Given that the flight is over the

surface of the moon, the following expression can be derived: √ 

x 2 + y 2 + z 2 ≥ R M 

(4)

where R M 

is the radius of the moon. 

2.3. Boundary constraints 

The initial constraints are expressed as follows: 

x (0) = x 0 , y (0) = y 0 , z(0) = z 0 , m (0) = m 0 

 x (0) = V x 0 , V y (0) = V y 0 , V z (0) = V z0 (5)

The LM lands at a specified point, thus the terminal position

and velocity constraints are expressed as follows: 

x ( t f ) = x f , y ( t f ) = y f , z( t f ) = z f 

 x ( t f ) = 0 , V y ( t f ) = 0 , V z ( t f ) = 0 (6)

In this study, the initial position and landing position of the LM

are given as ( A 0 , B 0 , H 0 ) and ( A f , B f , H f ), where ( A 0 , B 0 , H 0 ) refers to

the longitude, latitude, and height of the LM’s initial position, and

( A f , B f , H f ) denotes the longitude, latitude, and height of the LM’s

landing. In Fig. 1 , γ is the angle between the ox -axis and the north

direction. The initial position and landing position of the LM in the

Lunar Central Inertial Coordinate are expressed as follows: { 

x M0 = H 0 cos B 0 cos A 0 

y M0 = H 0 cos B 0 sin A 0 

z M0 = H 0 sin B 0 

{ 

x M f = H f cos B f cos A f 

y M f = H f cos B f sin A f 

z M f = H f sin B f 

(7)

The coordinate oxyz is deduced from the coordinate O M 

X M 

Y M 

Z M 

by a rotation −(π/ 2 − A 0 ) around the Z M 

-axis, then followed a ro-

tation B 0 around the X M 

-axis, finally followed a rotation −(π/ 2 +
γ ) around the Y M 

-axis. Therefore, the transformation matrix equa-

tion is written as follows: 

T 1 = L Y M 

(−(π/ 2 + γ )) L XM 

( B 0 ) L ZM 

(−(π/ 2 − A 0 )) (8)

where L XM 

, L YM 

, and L ZM 

are defined as the elementary matrices to

describe rotation around the X M 

-axis, Y M 

-axis, and Z M 

-axis, respec-

tively. Thus, the following expression can be derived: 

( x 0 , y 0 , z 0 ) 
T = T 1 ( x M0 , y M0 , z M0 ) 

T 

( x f , y f , z f ) 
T = T 1 ( x M f , y M f , z M f ) 

T (9)

2.4. Objective function 

The objective of this lunar soft landing trajectory optimization

problem is to minimize the fuel consumption when LM lands at

the specified point, i.e., 

J = −m ( t f ) (10)

Then, the lunar soft landing trajectory optimization problem is

described as follows: 

The objective function given in Eq. (10) is minimized subject to

the dynamics constraints of Eq. (1) , the path constraints given in

Eqs. (2)–(4) , and the boundary constraints given in Eqs. (5) and

( 6 ). 

3. Simultaneous dynamic optimization approach 

Without loss of generality, the following general dynamic opti-

mization problem is considered [21,22] : 

min 	(z( t f )) 

s.t. 
dz = f (z(t) , y (t) , u (t)) , z( t 0 ) = z 0 

dt 
g(z(t) , y (t) , u (t)) = 0 

u L ≤ u (t) ≤ u U 

ψ(z( t f )) ≤ 0 (11)

here z ( t ) and y ( t ) are the differential and algebraic state profiles,

espectively, and u ( t ) denotes the control profiles. The DAEs model

s assumed to be index-1 and given in semi-explicit form. First, K +
 Gauss or Radau interpolation points are selected in finite element

 . The differential, control, and algebraic profiles in a specified finite

lement i is approximated by Lagrange polynomial as follows: 

z K (t) = 

K ∑ 

j=0 

L j (τ ) z i j 

u 

K (t) = 

K ∑ 

j=1 

L̄ j (τ ) u i j , y K (t) = 

K ∑ 

j=1 

L̄ j (τ ) y i j 

 j (τ ) = 

K ∏ 

k =0 , � = j 

(τ − τk ) 

( τ j − τk ) 
, L̄ j (τ ) = 

K ∏ 

k =1 , � = j 

(τ − τk ) 

( τ j − τk ) 

t ∈ [ t i −1 , t i ] , t = t i −1 + h i τ, τ ∈ [0 , 1] (12)

here h i refers to the length of the finite element i , and 0 < τ j ≤
 , j = 1 , . . . , K are the shifted Gauss or Radau points. This polyno-

ial representation has the following property: 

 

K ( t i j ) = z i j , t i j = t i −1 + τ j h i (13)

The continuity of the differential state profile at the finite ele-

ent boundaries is enforced by the following expression: 

 i +1 , 0 = 

K ∑ 

j=0 

L j (1) z i j , i = 1 , . . . , N − 1 

z f = 

K ∑ 

j=0 

L j (1) z N j 

z 1 , 0 = z 0 (14)

Substituting Eqs. (12)–(14) into Problem (11) , collocation equa-

ion can be derived as follows: 

K 
 

j=0 

d L j ( τk ) 

dτ
z i j − h i f ( z ik , y ik , u ik ) = 0 

 i +1 , 0 −
K ∑ 

j=0 

L j (1) z i j = 0 

( z ik , y ik , u ik ) = 0 , i = 1 , . . . , N, k = 1 , . . . , K (15)

Eventually, the dynamic optimization problem is discretized

nto an NLP formulation with fixed finite element h i , as follows: 

min 	( z f ) 

.t. 

K ∑ 

j=0 

d L j ( τk ) 

dτ
z i j − h i f ( z ik , y ik , u ik ) = 0 

g( z ik , y ik , u ik ) = 0 

u L ≤ u ik ≤ u U , k = 1 , . . . , K, i = 1 , . . . , N 

z i +1 , 0 = 

K ∑ 

j=0 

L j (1) z i j , i = 1 , . . . , N − 1 

z f = 

K ∑ 

j=0 

L j (1) z N j , z 1 , 0 = z 0 

ψ( z f ) ≤ 0 (16)

The resulting NLP problem can be solved by a highly-efficient

olver such as SNOPT [24] and IPOPT [25] . 
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. Adaptive mesh refinement strategy 

For the fuel-optimal lunar descent problem with bounded mag-

itude of thrust, the optimal thrust profile typically has a “bang-

ang” profile [23] , thus breakpoints exist in the optimal thrust pro-

le. In this section, the simplified lunar soft landing problem is de-

ned. It is desired to transfer the system Eq. (1) from a specified

nitial state to a specified terminal state with admissible controls

atisfying: 

 ≤ T ≤ T max (17) 

The performance measure to be minimized is expressed as fol-

ows: 

 = −m ( t f ) (18) 

here t f is free. Using the state equation and the performance

easure, the Hamiltonian profile is derived as follows: 

(t) = λx V x + λy V y + λz V z 

+ λV x 

(
T 

m 

cos ϕ cos φ − μx 

( x 2 + y 2 + z 2 ) 
3 / 2 

)

+ λV y 

(
T 

m 

sin ϕ cos φ − μy 

( x 2 + y 2 + z 2 ) 
3 / 2 

)

+ λV z 

(
− T 

m 

sin φ − μz 

( x 2 + y 2 + z 2 ) 
3 / 2 

)
+ λm 

(
− T 

I sp g 0 

)
(19) 

Then, the Hamiltonian profile can be simplified as follows: 

H(t) = λx V x + λy V y + λz V z −
(

μ( λV x x + λV y y + λV z z) 

( x 2 + y 2 + z 2 ) 
3 / 2 

)
+ T G 

here G = 

(
1 

m 

( λV x cos ϕ cos φ + λV y sin ϕ cos φ − λV z sin φ) 

− λm 

I sp g 0 

)
(20) 

here λx , λy , λz , λVx , λVy , λVz , and λm 

are costate variables. 

The optimal control must satisfy the following expression: 

( x ∗, y ∗, z ∗, V x 
∗
, V y 

∗
, V z 

∗
, m 

∗, ϕ 

∗, φ∗, T (t) ∗) 

≤ H( x ∗, y ∗, z ∗, V x 
∗
, V y 

∗
, V z 

∗
, m 

∗, ϕ 

∗, φ∗, T (t)) (21) 

or all admissible T ( t ), and for all t ∈ [ t 0 , t f ]; therefore, 

 

∗(t) = 

{ 

0 , for G > 0 

T max , for G < 0 

Unknown, for G = 0 

(22) 

The previously presented theoretical analysis reveals that the

ptimal thrust solution can easily have a “bang-bang” profile. 

A novel adaptive mesh refinement strategy based on a con-

tant Hamiltonian profile is proposed in this section to address the

reakpoints in the optimal thrust profile. For Problem (11) , Hamil-

onian function is defined as follows: 

(t) = λ(t) T f (z(t) , y (t) , u (t)) + η(t) T g(z(t) , y (t) , u (t)) 

+ αL (t) T (u (t) − u L ) + αU (t) T ( u U − u (t)) (23) 

here λ, η, αL , and αU are the adjoint profiles. Therefore, the nec-

ssary condition of optimality for Problem (11) can be written as

ollows: 

dλ

dt 
= −∂H 

∂z 
, λ( t f ) = 

∂	( t f ) 

∂z 
+ 

∂ψ( t f ) 

∂z 
η f 

∂H 

∂y 
= 0 , 

∂H 

∂u 

= 0 

 ≤ η f ⊥ ψ( t f ) ≤ 0 
 ≤ αL 
l (t) ⊥ (u (t) − u L ) ≥ 0 

 ≤ αU 
l (t) ⊥ ( u U − u (t)) ≥ 0 (24) 

here x ⊥ y indicates that the elements have either x = 0 or y = 0 ,

r both. 

Problem (11) is an autonomous problem because it is not an

xplicit function of t . For an autonomous problem, the Hamiltonian

s continuous and constant over time [26] , such that: 

dH 

dt 
= 

∂H 

∂z 

dz 

d t 
+ 

∂H 

∂λ

dλ

dt 
+ 

∂H 

∂y 

dy 

dt 
+ 

∂H 

∂η

dη

dt 

+ 

∂H 

∂ αL 

d αL 

dt 
+ 

∂H 

∂ αU 

d αU 

dt 
+ 

∂H 

∂u 

du 

dt 
= 0 

(t) = H̄ (25) 

here H̄ is a constant. This condition is particularly useful for the

etection of breakpoint locations. If the mesh does not capture the

reakpoints, then the solution will not be optimal and the Hamil-

onian profile near the breakpoints will not be constant, which il-

ustrate that the mesh should be refined by adding new finite el-

ments. As such, the finite element can be inserted into the posi-

ion where the Hamiltonian is not constant. Furthermore, a stop-

ing criterion can be established based on the constant Hamilto-

ian profile. 

Ref. [27] showed that the Hamiltonian can be approximated at

he collocation points as follows: 

 ik = H (i −1) K+ k = λT 
ik f ( z ik , y ik , u ik ) + ηT 

ik g( z ik , y ik , u ik ) 

= 

λ̄T 
ik 

ω k h i 

K ∑ 

j=0 

d L j ( τk ) 

dτ
z i j 

λik = λ̄ik / ω k (26) 

here λ̄ik is the corresponding Karush-Kuhn-Tucker multiplier

rom Problem (16) and ω k is the quadrature weight. When the

amiltonian profile, represented by Eq. (26) , is constant over time,

he solution is sufficiently optimal. 

The proposed adaptive mesh refinement strategy is given as fol-

ows: 

tep 1: Divide the time domain equally with a small number of

finite elements N , and solve Eq. (16) to provide an initial

guess. 

tep 2: First, calculate H ik from Eq. (26) , then find ( i ∗, k ∗) from 

( i ∗, k ∗) = max 
ik 

∣∣H ik − ˜ H 

∣∣
i = 1 , . . . , N, k = 1 , . . . , K 

where ˜ H = 

( 

N ∑ 

i =1 

K ∑ 

k =1 

H ik 

) 

/ (N × K) (27) 

We define the criterion in Eq. (27) to locate the index ( i ∗,

k ∗) where H i ∗k ∗ deviates from the average value ˜ H most.

If | H i ∗k ∗ − ˜ H | ≥ ε (a specified small value), then proceed to

Step 3; otherwise skip to Step 5. 

tep 3: If k ∗ ∈ [1 , K − 1] , then divide the finite element i ∗ at the

position of the k ∗th collocation point, as follows: 

N = N + 1 

h i +1 = h i , i = (N − 1) . . . ( i ∗ + 1) 

h i ∗+1 = h i ∗ × (1 − τk ∗ ) , h i ∗ = h i ∗ × τk ∗

N ∑ 

i =1 

h i = t f (28) 

where τk ∗ is the k ∗th Gauss or Radau point. Otherwise, di-

vide the finite element i ∗ at the position of the ( K −1)th
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Fig. 2. Flowchart of the proposed adaptive mesh refinement strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Specifications for lunar soft landing. 

Symbol Value Symbol Value 

H 0 R M + 15.7 km V z 0 0 m/s 

A 0 −1.43 ° T max 43,148.0 N 

B 0 −8.43 ° I sp 302.39 s 

γ 285.30 ° m 0 15,234.0 kg 

H f R M ω α max , ω β max 5.0 °/s 
A f −23.45 ° μ 4.9028e12 m 

3 /s 2 

B f −2.94 ° R M 1738 km 

V x 0 1694 m/s g 0 9.80 m/s 2 

V y 0 −7.0 m/s ε 1.0e −3 
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collocation point, as follows: 

N = N + 1 

h i +1 = h i , i = (N − 1) . . . ( i ∗ + 1) 

h i ∗+1 = h i ∗ × (1 − τ(K−1) ) , h i ∗ = h i ∗ × τ(K−1) 

N ∑ 

i =1 

h i = t f (29)

where τ(K−1) is the ( K −1)th Gauss or Radau point. Then,

proceed to Step 4. 

Step 4: Interpolate the last results at the new collocation points

for the initial guess of the new calculation mission to en-

hance the convergence of the solution. Calculate with the

new collocation mesh. Subsequently, return to Step 2. 

Step 5: Output the optimal results. 

The flowchart of the proposed adaptive mesh refinement strat-

egy is presented in Fig. 2 . 

5. Results and discussions 

This section presents the results of simulations performed in

AMPL environment [28] , on a Lenovo Y430p running Windows 7

with an Intel® Core ۛi7-4710MQ 2.50 GHz processor and 4 GB RAM.

The version of the adopted NLP solver IPOPT is 3.8.0. The colloca-

tion points are three-order Radau points (i.e., K = 3). The lunar soft

landing data are mainly from Apollo12 [29] . The critical parameters

are listed in Table 1 . Two cases are simulated. The engine of the

first case is throttleable between zero and full thrust. The Engine of

the second case is throttleable between 10% and 60% of full thrust,

and at full thrust. The number of finite elements for the general

simultaneous dynamic optimization approach is 10 (i.e., N = 10). 
.1. Case 1 

.1.1. Results obtained by the general simultaneous approach 

The duration of the overall lunar descent process is approxi-

ately 632.0 s. Figs. 3 a, b, and c show the position of the LM vs.

ime, which is transformed from the position vector ( x, y, z ). As

hown in Fig. 3 a, b, and c, the LM finally lands at the specified

anding point ( −23.45 °, −2.94 °, 0 m). Fig. 3 d, e, and f show the ve-

ocity vector of the LM vs. time. Fig. 3 d, e, and f show that the

elocity vector eventually equals zero when the LM lands on the

unar surface. The tangential velocity gradually decreases to zero,

nd the radial and lateral velocities change with curves similar to

arabolas. 

Fig. 3 g and h show the pitch and yaw angles of the LM vs. time.

ig. 3 i and j reflect the angular rate of the pitch and yaw angles

s. time, satisfying the requirements of the specified range of the

ngular rate. The pitch and yaw angles change slightly in the lunar

oft landing process, which is almost linear. 

Fig. 3 k and l show the thrust and mass profiles. The thrust

f the LM is throttleable. Fuel consumption rate depends on the

hrust magnitude. When the thrust is full, the mass of the LM

harply decreases. The magnitude of the thrust changes at the
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Fig. 3. Results obtained by the general simultaneous approach (Case 1). 
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maximum and zero. Though the magnitude of the thrust satisfies

the specified requirement, the thrust profile with intensive jumps

shown in Fig. 3 k does not satisfy the engineering practice. Obvi-

ously, the collocation point mesh does not capture the breakpoints

in the thrust profile. 

Fig. 3 m shows the Hamiltonian profile of the lunar soft landing

trajectory optimization problem. It can be seen from Fig. 3 m that

the Hamiltonian is not flat, which illustrates that the obtained so-

lution is not optimal. Fig. 3 n shows the collocation point profile in

the entire time domain. The collocation points are located at each

finite element with the same number. 

5.1.2. Results obtained by the enhanced simultaneous approach 

The Subfigures in Fig. 4 show that state and control variables all

satisfy the specified flight constraints. The results of the state vari-

ables are similar to that obtained using the general simultaneous

approach without adaptive mesh refinement strategy. 

Fig. 4 k and l show the thrust and mass profiles. It can be seen

from Fig. 4 k that the optimal thrust control consists of full thrust

during initiation of the mission, then a period of zero thrust (free-

fall), followed by full thrust until touchdown. The optimal thrust

profile has a “bang-bang” profile. When the thrust is full, the mass

of the LM decreases linearly with the fastest rate. When the engine

turns off from 32.8 s to 194.5 s, the mass of the LM remains un-

changed. The overall lunar soft landing process is burn-coast-burn.

The two switching times are 32.8 s and 194.5 s, respectively. 

Fig. 4 m shows that the Hamiltonian profile is almost constant

over time, which illustrates that the results are optimal. More re-

fined results for the state and control variables shown in Fig. 4 are

derived via the enhanced simultaneous approach with adaptive

mesh refinement strategy. 

Fig. 4 n shows the collocation point profile in the entire time

domain. The dense parts of the collocation points locate at the

breakpoints in the thrust profile. The enhanced simultaneous ap-

proach with the adaptive mesh refinement strategy captures the

breakpoints in the optimal thrust profile. The final number of the

finite elements is 38. 

5.2. Case 2 

The real lunar descent engine is throttleable between 10% and

60% of full thrust, and at full thrust [30,31] , which is formulated as

follows: 

T = (10% ∗ T max ≤ T ≤ 60% ∗ T max ) or T max (30)

Union property of R -function method [32,33] is utilized to ex-

press the thrust constraints in the lunar soft landing trajectory op-

timization problem for solving. Originally, the R -function method

proposed by Rvachev is applied to obtain solutions of boundary-

value problems in mathematical physics. The R -function method

can transform Boolean operations of sets into algebraic operations

of functions as follows: 

Union : f 1 ∪ f 2 = f 1 + f 2 + 

√ 

f 2 
1 

+ f 2 
2 

Intersection : f 1 ∩ f 2 = f 1 + f 2 −
√ 

f 2 
1 

+ f 2 
2 

(31)

where f 1 and f 2 are functions. Here, we define 

F 1 = 10% ∗ T max ≤ T ≤ 60% ∗ T max 

F 2 = T max 
(32)

Then we express Eq. (32) as follows: 

F 1 = (T − 10% ∗ T max ) ∗ (60% ∗ T max − T ) 

F 2 = (T − T max ) ∗ ( T max − T ) 

T = [ (T − 10% ∗ T max ) ∗ (60% ∗ T max − T ) ≥ 0 ] 

∪ [ (T − T max ) ∗ ( T max − T ) ≥ 0 ] (33)

m

Therefore, based on the union property of the R -function

ethod, the thrust constraint Eq. (30) is written as follows: 

 1 ∪ F 2 = F 1 + F 2 + 

√ 

F 2 
1 

+ F 2 
2 

(34)

Remark: if F 1 + F 2 + 

√ 

F 2 
1 

+ F 2 
2 

is equal or larger than zero, then

 1 ≥ 0 or F 2 ≥ 0, which satisfies the requirement of the thrust

onstraint. 

Thus, the initial Boolean operation in the thrust constraint

q. (30) is transcribed into an algebraic constraint which can be

sed as the path constraint in the lunar soft landing trajectory op-

imization problem. The obtained algebraic thrust constraint is ex-

ressed as follows: 

F 1 ∪ F 2 = F 1 + F 2 + 

√ 

F 2 
1 

+ F 2 
2 

≥ 0 

here F 1 = (T − 10% ∗ T max ) ∗ (60% ∗ T max − T ) , 

F 2 = (T − T max ) ∗ ( T max − T ) (35)

In Case 2, the path constraint Eq. (2) is replaced by Eq. (35) . 

.2.1. Results obtained by the general simultaneous approach 

For Case 2, the duration of the overall lunar descent process is

pproximately 634.4 s. Fig. 5 a, b, and c show that the LM finally

ands at the specified landing point ( −23.45 °, −2.94 °, 0 m). Fig. 5 d,

, and f show that the velocity vector eventually equals zero when

he LM lands on the lunar surface. As shown in Fig. 5 i and j, the

ngular rate of the pitch and yaw angles satisfy the requirements

f the specified range of the angular rate. The pitch and yaw angles

lmost change linearly in the lunar soft landing process, as shown

n Fig. 5 g and h. 

As shown in Fig. 5 k, the magnitude of the thrust changes at

he maximum and minimum. Though the magnitude of the thrust

atisfies the specified requirement, the thrust profile with intensive

umps shown in Fig. 5 k does not satisfy the engineering practice.

t can be seen from Fig. 5 m that the Hamiltonian is not flat, which

llustrates that the obtained solutions are not optimal. Obviously,

he collocation point mesh does not capture the breakpoints in the

hrust profile. The collocation point mesh needs to be refined. 

.2.2. Results obtained by the enhanced simultaneous approach 

As shown in Fig. 6 m, the Hamiltonian profile is almost constant

ver time, which illustrates that the results are optimal. More-

ver, more refined results for state and control variables shown in

ig. 6 are derived via enhanced simultaneous approach with adap-

ive mesh refinement strategy. 

Fig. 6 k shows that the thrust profile satisfies the specified

hrust constraints. The magnitude of the optimal thrust profile is

etween 10% and 60% of full thrust, and at full thrust. It can be

een from Fig. 6 k that the optimal thrust control consists of full

hrust during initiation of the mission, then a period of minimum

hrust, followed by full thrust until touchdown. The optimal thrust

rofile also has a “bang-bang” profile. The two switching times are

4.3 s and 199.4 s, respectively. 

As shown in Fig. 6 n, the dense parts of the collocation points

ocate at the breakpoints in the thrust profile. The enhanced simul-

aneous approach with the adaptive mesh refinement strategy cap-

ures the breakpoints in the optimal thrust profile. The final num-

er of the finite elements is 27. 

. Conclusion 

In this study, an enhanced simultaneous dynamic optimization

ramework to determine the fuel-optimal trajectory of lunar soft

anding with variable-thrust propulsion is presented. The thrust

rofile with piecewise property is formulated in the trajectory op-

imization problem by utilizing the Union property of R -function

ethod. The optimal thrust profile in this study has a “bang-bang”
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Fig. 4. Results obtained by the enhanced simultaneous approach (Case 1). 
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Fig. 5. Results obtained by the general simultaneous approach (Case 2). 
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Fig. 6. Results obtained by the enhanced simultaneous approach (Case 2). 
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profile, which results in the existence of breakpoints in the opti-

mal thrust profile. A novel adaptive mesh refinement strategy is

proposed to capture the breakpoints in the thrust profile. The pro-

posed mesh refinement strategy can add finite elements to the

collocation point mesh based on a constant Hamiltonian profile,

which is adaptive and efficient rather than add a large number of

finite elements equally to the mesh. Compared with the general

simultaneous dynamic optimization approach, the proposed en-

hanced simultaneous dynamic optimization approach with adap-

tive mesh refinement strategy can effectively capture the break-

points of optimal thrust profile, and obtain more refined lunar soft

landing optimal trajectory. The adaptive mesh refinement strategy

is quite time-consuming. Thus, several additional heuristics could

be considered to accelerate the adaptive mesh refinement strategy

in the future. 

A clear trend in the field of aerospace guidance and control,

called “computational guidance and control” (CG&C), has recently

emerged. The traits of CG&C are critical for system autonomy and

support of autonomous operations. Optimized solutions based on

model or data are desired or even necessary in CG&C. Conse-

quently, the success of CG&C likely demands more up-front invest-

ment in formulating, modeling, and analyzing the problem. The

enhanced simultaneous dynamic optimization framework for lu-

nar soft landing is beneficial to the up-front investment of CG&C,

which may eventually benefit the future autonomous lunar descent

missions. 
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