
Advances in Engineering Software 100 (2016) 32–42

Contents lists available at ScienceDirect 

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft 

A new boundary meshfree method for potential problems

Fang-Ling Sun 

a , Yao-Ming Zhang 

a , ∗, Der-Liang Young 

b , Wen Chen 

c

a Institute of Applied Mathematics, Shandong University of Technology, Zibo 255049, Shandong, China
b Department of Civil Engineering and Hydrotech Research Institute, National Taiwan University, Taipei 10617, Taiwan
c Department of Engineering Mechanics, Hohai University, Nanjing 210098, China

a r t i c l e i n f o 

Article history:

Received 31 March 2016

Revised 18 June 2016

Accepted 19 June 2016

Keywords:

Average source method (ASM)

‘Completely’ regularized boundary integral

equation (CRBIE)

Average source technique (AST)

Potential problem

a b s t r a c t 

This work presents a new boundary meshfree method, named the average source method (ASM), for

solving two-dimensional potential problems. The method is based on combining a ‘completely’ regular- 

ized boundary integral equation (CRBIE) with indirect unknowns developed in this paper, removing the

singularity computation, and an average source technique (AST). In this approach there are two critical

developments. One is the presentation of a new removal singularity technique that results in the CR- 

BIE, and therefore all diagonal coefficients of influence matrices can be evaluated analytically by the off- 

diagonal ones, unlike some existing meshless boundary approaches that determine diagonal coefficients

from the fundamental solution by using a known solution, thereby doubling the solution procedure. The

other is to introduce an AST, by which the distributed source on a segment/cell can be reduced to the

concentrated point source and therefore the boundary integrals in the CRBIE are not necessary. Hence, in

the ASM only boundary nodes are required for computation without involving any integration and ele- 

ment notion. Several benchmark test examples are presented to demonstrate the accuracy, convergence,

efficiency and robustness of this new meshfree boundary-node methodology.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

As is known to all, the finite element method (FEM) and bound-

ary element method (BEM) have been the dominant numerical en-

gines for science and engineering applications [1–8,36] . However,

they require resorting to an element frame for interpolants of pri-

mary variables and the ‘energy’ integration and thus, depend on

the generation of meshes, which can be arduous, time-consuming

and even subjected to pitfalls, especially for complex geometry

domains. These difficulties can be sidestepped via the so-called

meshless/meshfree techniques, which have drawn growing atten-

tion during the past decades and achieved outstanding progress in

solving a wide class of boundary value problems [8–35] . 

Among the aforementioned studies, the meshless boundary

methods have achieved remarkable progress and can be roughly

sorted into two categories: the MFS-based type and the BIE-based

type. The former is based on the concept of the method of funda-

mental solution (MFS), including, but are not limited to, the MFS

[12–14] , the boundary knot method (BKM) [15–16] , the boundary

collocation method (BCM) [17] , the modified MFS (MMFS) [18] , the

boundary distributed source method (BDSM) [19–20] , the regular-

ized meshless method (RMM) [21–22] , and the singular boundary
∗ Corresponding author.
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ethod (SBM) [23–25] . The MFS, BKM and BCM generally lead to

he ill-conditioned system. The MMFS and the BDSM need to com-

ute some particular integrals to determine the diagonal terms.

he RMM uses double layer kernel to express the potential to eas-

ly remove the singularity, but the bewildering hyper singularity is-

ue has to be faced when the boundary flux solutions are required.

he SBM uses the null-field integral identity firstly to obtain the

iagonal terms from the derivative of the fundamental solution,

nd then it applies a known solution to determine the diagonal

erms from the fundamental solution [23–25] . Therefore, as stated

n Ref. [19] , this approach amounts to solving the problem twice. In

ddition, the theoretical analysis of this approach is not rigorous,

since it uses a false integral identity [23–25] : 
∫ 
�

∂ u ∗c ( x , y ) 
∂ n ( y ) 

d�( y ) =
 , x ∈ � with u ∗c ( x , y ) beings the fundamental solution of the ex-

erior problems. The latter category [8–11,26–31] is based on com-

ining BIEs with meshless shape functions constructed usually by

sing the moving least-square (MLS) approximation. It is mainly

epresented by the boundary node method (BNM) [26] and its vari-

nts [27–31] . These methods exploit the merits of both the BIE in

imensionality reduction and the MLS in element removal. The es-

ential difference between these methods consists in the construc-

ion of meshless shape functions. Anyhow, they still require the

alculation of boundary integrals. 

Inspired by the pioneering work, this study presents a new

eshfree boundary method for 2D potential problems. The method

http://dx.doi.org/10.1016/j.advengsoft.2016.06.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.06.009&domain=pdf
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strongly singular integrals. 
s based on combing a CRBIE with direct unknowns developed in

his paper, which excludes the computation of both the weakly and

trongly singular integrals, with the AST. By using the CRBIE to

void the singularity of the kernel functions, the major challenge

f the coincidence of the source and collocation points vanishes.

y introducing the AST into the CRBIE, the distributed source on a

egment/cell can be reduced to the concentrated point source and

herefore the boundary integrals are no longer required. Since no

nown solution in the MMFS, RMM and SBM is applied for com-

uting indirectly the diagonal coefficients of influence matrices,

he problem can be solved only once with the present approach.

gain, unlike the foregoing MLS-based methods [26–31] which is

ased on introducing MLS-based meshless shape functions con-

tructed elaborately into BIEs and is ‘truly meshless’ but still in-

olves the calculation of boundary integrals, the present ASM only

equires boundary nodes for computation without involving any el-

ment or integration notion. Consequently, the ASM is easier-to-

mplement, much more computationally efficient, and theoretically

impler. Furthermore, in the implementation of the ASM, the real

eometry of the domain boundary without approximation can be

mployed for computation as long as the parametric representa-

ion of the domain boundary is given. 

As usual, the ASM also requires the discretization of the do-

ain boundary into cells, but as stated in Ref. [28] , the using of the

ells should not be viewed as a shortcoming of meshless/meshfree

chemes if these cells can be generated with ease. Actually, the

ells in the ASM are essentially distinguished from the boundary

lements in BEM and are employed neither for the purpose of in-

erpolation of the primary variables nor for numerical integration

ust for computing the Jacobian value at nodes, and also there is

o limitation on their shape and size, implying that when some

f them are partitioned into smaller cells, their adjacent ones are

ot affected. In this sense, the ASM should be regarded as a “truly

eshless or meshfree” method. 

The accuracy, stability, efficiency and widely practical applica-

ility are verified in numerical experiments of the Dirichlet and

ixed-type continue or discontinue boundary conditions (BCs) of

oth interior and exterior problems with simple and complicated

oundaries. 

. Regularized BIEs and the ASM 

In this paper, we always assume that � is a bounded domain

n R 2 , �c its open complement, and � their common boundary. 

.1. Boundary value problem 

Consider a two-dimensional potential problem in the domain 

ˆ �

 ̂

 � = � or �c ) governed by the Laplace equation 

 

2 u ( x ) = 0 , x = ( x 1 , x 2 ) ∈ 

ˆ � (1)

ith boundary conditions (BCs) [1–2,5–7] 

 ( x ) = ū ( x ) , x ∈ �1 (2)

 ( x ) = 

∂u ( x ) 

∂ n ( x ) 
= q̄ ( x ) , x ∈ �2 (3)

hen 

ˆ � = �c , in order to guarantee the uniqueness of solution

f the exterior problems, the following infinity condition must be

upplemented [7,33] 

 

u ( x ) | = O (1) , as ρ = 

√ 

x 2 
1 

+ x 2 
2 

→ ∞ (4)

here � = �1 ∪ �2 is the boundary of ˆ � with �1 ∩ �2 = ∅ ; ū ( x )

nd q̄ ( x ) are the prescribed boundary functions and n ( x ) is the unit

utward normal vector at point x = ( x , x ) ∈ �. 
1 2 
.2. Regularized indirect boundary integral equations (IBIEs) 

For potential problems in the domain 

ˆ � ( = � or �c ) bounded

y boundary �, in the absence of body source, the equivalent reg-

larized IBIEs for the problems ( 1 )–( 4 ) can be expressed as [7,33] 
 

�
φ( x ) d� = 0 (5) 

 ( y ) = 

∫ 
�
φ( x ) u 

∗( x , y ) d� + C , y ∈ � (6)

∂u ( y ) 

∂ n y 
= 

ˆ k φ( y ) + 

∫ 
�

[ φ( x ) − φ( y )] 
∂ u 

∗( x , y ) 
∂ n y 

d�

+ φ( y ) 

∫ 
�

[
∂ u 

∗( x , y ) 
∂ n y 

+ 

∂ u 

∗( x , y ) 
∂ n x 

]
d�, y ∈ � (7) 

∂u ( y ) 

∂ t y 
= 

∫ 
�

[ φ( x ) − φ( y )] 
∂ u 

∗( x , y ) 
∂ t y 

d�

+ φ( y ) 

∫ 
�

[
∂ u 

∗( x , y ) 
∂ t y 

+ 

∂ u 

∗( x , y ) 
∂ t x 

]
d�, y ∈ � (8) 

For the internal point y ∈ 

ˆ �, the integral equations can be writ-

en as 

 ( y ) = 

∫ 
�
φ( x ) u 

∗( x , y ) d� + C, y ∈ 

ˆ � (9)

∂u ( y ) 

∂ y k 
= 

∫ 
�
φ( x ) 

∂ u 

∗( x , y ) 
∂ y k 

d�, y ∈ 

ˆ �, k = 1 , 2 (10)

In Eqs. (5) –( 10 ), x = ( x 1 , x 2 ) and y = ( y 1 , y 2 ) are the source

nd the field points, respectively; t y = ( t 1 ( y ) , t 2 ( y )) and n y =
( n 1 ( y ) , n 2 ( y )) are the unit tangent and outward normal vectors at

 ∈ � = ∂ ˆ �; ˆ k is 1 or 0, respectively, for the interior domain � and

he exterior domain �c ; u ∗( x , y ) denotes the fundamental solution

or potential problems expressed as 

 

∗( x , y ) = − 1 

2 π
ln | x − y | (11) 

In order to sidestep the direct computation of the weak singular

ntegral in Eq.(6), based on the following integral identities 

 

�
n i ( x ) u 

∗( x , y ) d� = 

∫ 
�

( x i − y i ) 
∂ u 

∗( x , y ) 
∂ n 

d�, y ∈ 

ˆ �, i = 1 , · · · , d 

(12) 

hich is readily derived by the Green’ second identity, and a limit

rocedure, i.e. 

emma [33–35] . Let � be a piecewise smooth curve (open or closed),

nd ˆ x a point on � (perhaps a corner). Suppose h = | y − ˆ x | and d =
inf 
 ∈ �

| y − x | . If ψ( x ) ∈ C 0, α( �) and h / d ≤ K 1 (with constant K 1 ), then

here holds 

lim 

y → ̂ x 

∫ 
�

x k − y k 

| x − y | 2 [ ψ( x ) − ψ( ̂  x )] d �x 

= 

∫ 
�

x k − ˆ x k ∣∣x − ˆ x 
∣∣2 

[ ψ( x ) − ψ( ̂  x )] d �x (k = 1 , 2) 

e develop a new boundary element formulation as follows 

 ( y ) = 

∫ 
�

[ φ( x ) − φ( y ) n ( y ) · n ( x ) ] u 

∗( x , y ) d�

+ φ( y ) 

∫ 
�

n ( y ) · ( x − y ) 
∂ u 

∗( x , y ) 
∂ n x 

d� + C, y ∈ � (13) 

hich is named the ‘completely’ regularized boundary integral equa-

ion, because it excludes the computation of both the weakly and
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2.3. Formulations of the ASM 

In this section, an average source technique is proposed, by

which the distributed source on a segment/ cell can be reduced to

the concentrated point source and therefore the boundary integrals

are not necessary. Assume that f ( x , y ) represents the integrand of

the integrals in the above Eqs. (5) , ( 7 )–( 10 ) and ( 13 ). Then, when

y �∈ �j , f ( x , y ) is a smooth function with respect to x on the �j , and

thus by utilizing the mean value theorem, we have ∫ 
� j 

f ( x , y ) d �x = f ( x A , y ) l j (14)

where f ( x A , y ) is be referred to as an average source of distributed

source on segment �j . In practical application, boundary point x A 
can be replaced by boundary nodes x j on �j (usually the mid-point

of the segment �j ) since the dimension (e.g., length or area) of

each segment is generally very small after boundary discretization.

Therefore, Eq. (14) can be rewritten as ∫ 
� j 

f ( x , y ) d �x = 

∫ 1 

−1 

f ( x (ξ ) , y ) J(ξ ) dξ ≈ ω j f ( x j , y ) (15)

where x j is the mid-point of the segment �j , and ω j = 2 J( x j ) ,

where J ( x j ) is the Jacobian value at the j th node x j . 

When y = x j ∈ � j , based on the AST, we have 

∫ 
� j 

[
∂ u 

∗( x , y ) 
∂ n y 

+ 

∂ u 

∗( x , y ) 
∂ n x 

]
d� ≈ −κ( x j ) ω( x j ) 

in which κ( x j ) is the curvature of the boundary at the node x j , and

ω( x j ) = 

1 
π J( x j ) , with J ( x j ) being the value of the Jacobian at j th

node x j . 

In a similar way, the other integrals in the above Eqs.(5) , ( 7 )–

( 10 ) and ( 13 ) can also be reduced to the boundary node form.

Therefore, Eqs. ( 5 ), ( 7 ), ( 8 ) and ( 13 ) can be expressed as 

N ∑ 

j=1 

J( x j ) φ j = 0 (16)

u i = 

N ∑ 

j=1 

( G i j φ j ) (17)

q n i = 

N ∑ 

j=1 

(H 

n 
i j φ j ) (18)

q t i = 

N ∑ 

j=1 

(H 

t 
i j φ j ) (19)

where N is the total number of collocation points on all cells, φj 

the unknown density at the j th node, and G ij , H 

n 
i j 

and H 

t 
i j 

are in-

fluence coefficients corresponding to Eq. (13) , ( 7 ) and ( 8 ), respec-

tively, given by 

G i j = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

−ω j ln r i j , i � = j 
N ∑ 

k =1 ,k � = i 
n i · n k ω k ln r ik 

−
N ∑ 

k =1 ,k � = i 
n i · ( x k − x i ) ω k 

( r ik · n k ) 

r 2 
ik 

, j = i 

(20)

H 

n 
i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ω j 

( r i j · n i ) 

r 2 
i j 

, i � = j 

ˆ k −
N ∑ 

k =1 ,k � = i 
ω k 

r ik · n k 

r 2 
ik 

− ω i κi , j = i 

(21)
 

t 
i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ω j 

( r i j · t i ) 

r 2 
i j 

, i � = j 

−
N ∑ 

k =1 ,k � = i 
ω k 

r ik · t k 

r 2 
ik 

, j = i 

(22)

here r ik is the vector from the i th node to the k th node, r ik is

he distance from the i th node to the k th node, t k = (t k 
1 
, t k 

2 
) and

 k = (n k 
1 
, n k 

2 
) are the unit tangent and normal vectors to � at the

 th node, respectively, ω i = 

1 
π J( x i ) , with J ( x i ) being the value of the

acobian at i the node x i , and κ i is the curvature of the boundary at

he i th node. 

It should be noted that any boundary flux can be calculated by

n appropriate combination of the normal gradient Eq. (21) and

he tangential gradient Eq. (22) . 

For any internal point y far from the boundary, by applying the

ST, Eqs. (9) and ( 10 ) can be reduced to the boundary node form

s follows 

 ( y ) = − 1 

2 π

N ∑ 

j=1 

φ j ln r i j ω j + C, y ∈ 

ˆ � (23)

∂u 

∂ y k 
( y ) = 

N ∑ 

j=1 

φ j 

r k 

r 2 
i j 

ω k , y ∈ 

ˆ �, k = 1 , 2 (24)

here r k = x k − y k . 

. Numerical examples 

In this section, the validity, accuracy and convergence of the

roposed method are tested to the potential problems with square,

ircular, multiply-connected and irregular domains, subjected to

arious BCs. For all test examples, the true geometry of the bound-

ry without approximation is used for computation. 

To assess the accuracy of the proposed ASM, the relative error

f the multiple calculation results is defined by 

elative error = 

√ 

M ∑ 

k =1 

(t k 
number 

− t k exact ) 
2 

/
M ∑ 

k =1 

(t k exact ) 
2 

(25)

here M is the total number of calculation points, and t k 
number 

and

 

k 
exact denote the numerical and exact solution at the k th calcula-

ion point, respectively.. 

.1. Square domain problems with mixed-type bc 

xample 1. A square domain( π × π ) subject to the mixed-type BC

s considered as 

 (π, x 2 ) = 1 , q ( x 1 , 0) = u ( x 1 , π) = q (0 , x 2 ) = 0 (26)

hich is an example used in Ref. [21] . An analytical solution is

vailable as follows 

 ( x 1 , x 2 ) = 

∞ ∑ 

n =1 

D n cosh 

(
(2 n − 1) x 1 

2 

)
cos 

(
(2 n − 1) x 2 

2 

)
(27)

here 

 n = 

4 (−1) 
n +1 

(2 n − 1) π cosh 

(
(2 n −1) π

2 

) (28)

The field potential solutions by using the analytical results and

he proposed ASM are plotted in Fig. 1 (a) and (b), respectively

ith using 120 boundary nodes. It can be seen that results of the

SM match the exact solutions very well. To investigate the error

nalysis, Fig. 2 (a) and (b) show the absolute error surfaces of the
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(a)                          (b)
Fig. 1. The field potential solutions: (a) exact results and (b) proposed method (120 source nodes). 

(a)                                    (b)
Fig. 2. Absolute error surfaces for field solutions: (a) potential and (b) flux ∂ u / ∂ x 1 (200 nodes). 
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Fig. 3. Problem sketch. 

 

i  

i  

i  

t  

p  

s  
omputational results, respectively, for the potential u and the flux

 u / ∂ x 1 , in which the absolute errors are generated at 30 × 30 in-

erior points uniformly distributed over a square domain covering

.14 ≤ x 1 , x 2 ≤ 2.9. These two figures clearly illustrate that the

roposed ASM works well for the mixed-type problems. 

.2. Circular domain problems with continue and discontinue BCs 

Examples 2 and 3 consider the interior and exterior Dirichlet

roblems with discontinue BCs, respectively, while Example 4 ad-

resses an interior Dirichlet problem with continue BCs, which is

n example used in Ref. [19,24] , to make a comparison between

he present ASM and other methods. 

xample 2. Problem sketch is depicted in Fig. 3 , which is an ex-

mple used in Ref. [21] . The problem is subjected to Dirichlet dis-

ontinuous BC as follows: 

 (1 , ϕ) = 

{
0 0 < ϕ < π
1 π < ϕ < 2 π

(29)

In this case, an analytical solution is available as follows 

 ( x 1 , x 2 ) = 

1 

π
arctan 

(
2 x 2 

x 2 
1 

+ x 2 
2 

− 1 

)
+ 

1 

2 

(30)
The contour plot of the exact field potential solution is plotted

n Fig. 4 (a). Fig. 4 (b) shows the field solutions calculated by us-

ng the proposed method with 60 boundary nodes. Good match

s observed from the comparison of Fig. 4 (a) and (b). To fur-

her investigate the accuracy and the convergence of the pro-

osed ASM, we plot Fig. 5 (a)–(c). Fig. 5 (a) and (b) display the ab-

olute error surfaces of the potential solutions in the interested
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Fig. 4. The contour plots for field potentials: (a) exact and (b) the proposed method (60 nodes). 

Fig. 5. Absolute error surfaces for field solutions: (a) potential (60 nodes), (b) potential (120 nodes) and (c) flux ∂ u / ∂ x 1 (120 nodes). 
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a  ∫
domain {( ρ , ϕ): 0 ≤ ρ ≤ 0.9, 0 ≤ ϕ ≤ 2 π} with 800 inte-

rior points using 60 and 120 boundary nodes, respectively. And

Fig. 5 (c) shows the absolute error surface for the field flux ∂ u / ∂ x 1
in the aforementioned domain with the same number of inte-

rior points using 120 source points. Due to discontinuity of BC,

it can be seen from these figures that the errors increase when

the calculated points are close to the boundary at y = 0 , and still,

acceptable numerical accuracies can be achieved by the present

method. Furthermore, we also can see through the comparison

 

f Fig. 5 (a) and (b) that the proposed method is stable, accu-

ate, and rapidly convergent as the number of boundary nodes in-

reases. Meanwhile for the purpose of comparison with the Ref.

21] , Fig. 6 (a) and (b) display the norm error for the potential solu-

ion u and the flux solution q 1 = ∂u / ∂ x 1 along the circle of radius

0 = 0 . 5 and center at the origin versus the number of the bound-

ry nodes by using the ASM, BEM and RMM. The norm errors

re defined as 
∫ 2 π

0 | u exa ( ρ0 , ϕ) − u num 

( ρ0 , ϕ) | 2 dϕ in Fig. 6 (a) and
 2 π
0 | q 1 exa ( ρ0 , ϕ) − q 1 num 

( ρ0 , ϕ) | 2 dϕ in Fig. 6 (b), respectively, which
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Fig. 6. The norm errors of the solutions along the circle of radius ρ0 = 0 . 5 vs. the number of nodes: (a) potential and (b) flux ∂ u / ∂ x 1 . 

Fig. 7. Problem sketch. 
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re the same as in Ref. [21] . It can be found that both the ASM and

he BEM converge faster than the RMM [21] with the increase of

he boundary node number, and meanwhile, the solution accuracy

nd convergence rates of the former two are very close. It should

e noted, however, that the proposed ASM is inherently free from

eshing and integration, easier-to-implement, much more com-

utationally efficient, and theoretically simpler. Hence this exam-

le further verifies that the ASM works well for discontinuous BC

roblems. 

xample 3. In this case study, we investigate an exterior Dirichlet

roblem with discontinuous BC [21] , whose sketch is depicted in

ig. 7 . The BC is imposed on the edge of the unit circular domain

nd is given as follows: 

 (1 , ϕ) = 

{
1 0 < ϕ < π
−1 π < ϕ < 2 π

(31)

In this case, an analytical solution is available as follows 

 ( x 1 , x 2 ) = 

2 

π
arctan 

(
2 x 2 

x 2 
1 

+ x 2 
2 

− 1 

)
(32)

0 boundary nodes, uniformly distributed with respect to ϕ on the

nit circumference, are used in following calculations. The contour

lot of the field potential exact solution is plotted in Fig. 8 (a). And

ig. 8 (b) shows the numerical results for the field potential by us-

ng the proposed ASM. It can be seen from the comparison of these

wo figures that the results by the ASM are in excellent agreement

ith the exact solution. Furthermore, Fig. 9 (a) and (b) display the

elative errors of the computational results obtained by the ASM
nd BEM, respectively, for the field potential u and its derivative

 u / ∂ x 1 , at 32 field points uniformly distributed on a circle with ra-

ius ρ = 2 and center at the origin. And Fig. 10 depicts the bound-

ry normal flux ∂ u / ∂ n solutions at 60 boundary nodes by using the

SM, the BEM and the analytical solutions. Hence we can observe

rom Fig. 9 (a) and (b) and Fig. 10 that high calculation accuracy can

e achieved by both the ASM and BEM though with a very small

umber of boundary nodes. On the other hand, although their ac-

uracies are very close, as shown in the previous test example, the

SM is essentially free of mesh and integration. 

xample 4. The test example investigates a circular domain of ra-

ius r = 2 , which is an example used in Ref. [19,24] . Dirichlet BC

s imposed on the edge of the circle using the following analytical

olution: 

 (r, θ ) = r 6 cos (6 θ ) (33)

n the polar coordinates ( r, θ ). 

The number of boundary nodes used varies from 100 to 1400,

hich is the same as in Ref. [19,24] to make a fair comparison be-

ween these tested methods. 

A total number of 120 calculation points are selected inside

he domain distributed uniformly on a circle with radius r = 1

nd center at the origin for the solution of the field potentials.

ig. 11 shows the relative error curves for the field potential so-

utions at these calculation points by using different numerical

ethods. Here, the BEM, SBM, BDS and RMM solutions come from

ef. [24] . 

It can be seen from Fig. 11 that overall, the solution accuracy

nd convergence rate of the present ASM and the SBM are very

lose, but with the number of boundary nodes being less than 300,

he ASM converges faster than the SBM. This is mainly because

hat the ASM adopts the true geometry of the boundary with-

ut approximation for computation unlike the SBM which uses in

ature the straight line to approximate the segment geometry. It

hould be stressed that for such a 2D problem with very simple

eometry, 200 boundary nodes generally should not be regarded

s a small quantity. Therefore, the proposed ASM outperforms the

BM in terms of overall accuracy, efficiency, and robustness for the

olution of the field potentials. 

Again, Fig. 12 illustrates the relative error of the computed

oundary normal fluxes versus the number of boundary nodes,

emonstrating that the ASM also can solve the boundary physical

uantities accurately and efficiently. 
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Fig. 8. The field potential solution: (a) exact results and (b) by using the proposed method. 

Fig. 9. The relative errors of the field solutions at radius ρ = 2 : (a) potential and (b) flux ∂ u / ∂ x 1 . 

Fig. 10. The boundary normal flux solutions ( ∂ u / ∂ n ) at 60 boundary nodes. 
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.3. Multiply-connected domains with complex shapes 

xample 5 . This example investigates a mixed-type problem with

ultiply-connected domain, whose sketch is shown in Fig. 13 . This

roblem has been used in Ref. [22] and its analytical solution is

vailable as follows: 

 = r 3 cos (3 θ ) (34)

In this example, we suppose that the Neumann boundary con-

itions are prescribed on the boundary �1 and �3 , and the Dirich-

et boundary conditions on boundary both �2 and �4 , as shown

n Fig. 11 . The numbers of boundary nodes on the four boundary

arts �1 , �2 , �3 and �4 are taken as 7:1:1:1. Fig. 14 (a) and (b) dis-

lay the relative error surfaces of the field solutions for the poten-

ial and its derivative ∂ u / ∂ x 1 in the entire domain with 640 inte-

ior points, respectively. It can be clearly seen that good numerical

ccuracies can be obtained by the proposed method with only us-

ng 160 boundary nodes. Furthermore, Fig. 15 (a) displays the rela-

ive error of the boundary potential solutions on �1 and �2 versus

he number of boundary nodes, and Fig. 15 (b) the relative error

f the boundary normal flux solutions on �1 and �2 versus the

umber of boundary nodes. Hence it is observed from Fig. 15 (a)

nd (b) that the ASM is stable, accurate and quickly convergent,

nd also has higher accuracy and convergence rates than the BEM

ith the increase of the boundary node number. This example il-
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Fig. 11. Relatively error curves for the field potential solutions, respectively, by us- 

ing the proposed ASM, BEM, SBM, BDS and RMM. 

Fig. 12. Relative error of the computed boundary normal fluxes versus the number 

of boundary nodes. 

Fig. 13. Problem sketch ( r 1 = 2 , r 2 = r 3 = r 4 = 0 . 25 and a = 1 . 0 ). 
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Fig. 14. Relative error surfaces for field solutions: 
ustrates that the proposed method works reasonably well for the

ultiply-connected domain problems. 

xample 5. In the last example, an arbitrary-shape problem is

onsidered, which is an example used in Ref. [22] . Problem sketch

nd the nodes distribution employing the proposed method are de-

icted in Fig. 16 (a) and (b), respectively, in which the inner bound-

ry �2 is a circle with radius r = 0 . 5 and center at the origin and

he outer boundary �1 is a gear-shape curve, whose parametric

quation is 

= 

{ 

( r cos ϕ, r sin ϕ ) : r = 

1 

n 

2 

[
n 

2 + 2 n + 2 

−2(n + 1) cos ( nϕ − nπ/ 2 ) ] , 0 ≤ ϕ ≤ 2 π} (35) 

with n = 6 . An analytical solution is available as follows [22] : 

 (x, y ) = e x cos y (36)

The contour plot of the exact filed potential solutions is plotted

n Fig. 17 (a), and Fig. 17 (b) depicts the filed potential results ob-

ained by the proposed method with 120 boundary nodes. It can

e found from Fig. 17 (a) and (b) that the numerical results match

he exact solutions well. Fig. 18 (a) and (b) display the relative er-

ors of the field solutions, respectively, for the potential u and the

ux ∂ u / ∂ x 1 versus the number of boundary nodes by using the

SM and the BEM, in which the relative errors are yielded at 20

nterior points uniformly distributed, according to ϕ, on the circle

ith radius r = 0 . 9 and center at the origin. We can observe from

hese two figures that the field solution accuracy and convergence
(a) potential and (b) flux ∂ u / ∂ x (160 nodes). 



40 F.-L. Sun et al. / Advances in Engineering Software 100 (2016) 32–42 

Fig. 15. Relative errors for the boundary quantities vs. the number of nodes: (a) potential on �1 and �3 , (b) the normal flux ∂ u / ∂ n on �2 and �4 . 

Fig. 16. (a) Problem sketch and (b) the nodes distribution (120 nodes). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rate of these two approaches are very close. Fig. 19 depicts the rel-

ative errors of the computed boundary flux ∂ u / ∂ n versus the num-

ber of boundary nodes by using the ASM and the BEM. It can be

seen from this figure that the ASM has better accuracy and conver-

gence rate than the BEM for the solution of the boundary flux, as

the previous case in Fig. 15. 

This test example demonstrates that the proposed ASM also

works very well for the irregular domain problems. 

4. Conclusions 

In this paper, a new boundary-type meshfree method, termed

average source method (ASM), is proposed to solve 2D Laplace

problems. This method is based on coupling the RBIEs and the AST,

which has the following key features: 

1. The proposed ASM develops a new strategy to analytically

compute diagonal coefficients of influence matrices, which

are weakly singular or strongly singular, so that the prob-

lem can be solved only once, unlike the foregoing MFS-

based type methods that apply a known solution to deter-
mine such diagonal coefficients, thereby doubling the solu-

tion procedure. This is an essentially crucial but very dif-

ficult issue for the boundary-type collocation schemes, and

therefore great advance has been achieved by present work

in this area. 

2. Due to the using of the AST, the proposed ASM is a truly

boundary-node method without involving any element or

integration concept, unlike the aforementioned MLS-based

methods that introduce the MLS-based meshless shape func-

tions constructed elaborately into BIE to exploit the mesh-

less attribute of MLS approximation, and but still need the

calculation of boundary integrals. It is worth noting that this

is a general methodology and also readily applicable to other

or even singular BIEs. Some applications of the AST to other

BIEs are already underway and will be reported in some

subsequent papers. 

3. For the present ASM, the true geometry of the boundary

without approximation can be adopted for computation as

long as the parametric representation of the domain bound-

ary is given, as seen in the test examples in this paper.
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Fig. 17. The field potential solutions: (a) exact and (b) the proposed method (120 nodes). 

Fig. 18. Relative error for field solutions along the radius r = 0 . 8 vs. the number of nodes: (a) potential and (b) flux ∂ u / ∂ x 1 . The symbols ( ●) in this Figure represent 

calculation points. 

Fig. 19. Relative error for the boundary normal flux ∂ u / ∂ n vs. the number of 

boundary nodes. 
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Therefore, the ASM can seamlessly connect with parameter-

based CAD technique, which is a demanding feature for the

solution of practical engineering problems. 

4. Unlike the MMFS, RMM and SBM, where the dimension (e.g.,

length or area) of a cell/segment need be evaluated and

is generally obtained by a numerical integration as in Ref.

[18,21–25] , the present ASM does not involve such a prob-

lem. As stated before, the cells/segments in the ASM are only

for computing the Jacobian values at the node. 

Several category examples with different BCs and shapes of do-

ain are presented to test the developed method. The numeri-

al solutions obtained by present method agree very well with

he exact solutions. From the figures of the various errors evalu-

tion, such as the relative error, the absolute error and norm er-

ors for the potential and its derivative solutions, we also can see

hat the numerical results exhibit a stable and rapidly convergent

rend as the number of boundary nodes increases. All these fea-

ures demonstrate that present method is efficient and accurate for

he numerical analysis of 2D potential problems. Furthermore, the

asic idea of the proposed method can be extended to the ASM
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solution of other types of problems. Some works are already un-

derway. 

Moreover, it is observed that for the boundary value problem

with discontinue BCs the solution accuracy and convergence rate

of the ASM and the BEM are very close, while for the boundary

value problem with continue BCs the ASM has better accuracy and

convergence rates than the BEM with the increase of the boundary

nodes number. 
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