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ABSTRACT

This work presents a new boundary meshfree method, named the average source method (ASM), for
solving two-dimensional potential problems. The method is based on combining a ‘completely’ regular-
ized boundary integral equation (CRBIE) with indirect unknowns developed in this paper, removing the
singularity computation, and an average source technique (AST). In this approach there are two critical
developments. One is the presentation of a new removal singularity technique that results in the CR-
BIE, and therefore all diagonal coefficients of influence matrices can be evaluated analytically by the off-
diagonal ones, unlike some existing meshless boundary approaches that determine diagonal coefficients
from the fundamental solution by using a known solution, thereby doubling the solution procedure. The
other is to introduce an AST, by which the distributed source on a segment/cell can be reduced to the
concentrated point source and therefore the boundary integrals in the CRBIE are not necessary. Hence, in
the ASM only boundary nodes are required for computation without involving any integration and ele-
ment notion. Several benchmark test examples are presented to demonstrate the accuracy, convergence,

efficiency and robustness of this new meshfree boundary-node methodology.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As is known to all, the finite element method (FEM) and bound-
ary element method (BEM) have been the dominant numerical en-
gines for science and engineering applications [1-8,36]. However,
they require resorting to an element frame for interpolants of pri-
mary variables and the ‘energy’ integration and thus, depend on
the generation of meshes, which can be arduous, time-consuming
and even subjected to pitfalls, especially for complex geometry
domains. These difficulties can be sidestepped via the so-called
meshless/meshfree techniques, which have drawn growing atten-
tion during the past decades and achieved outstanding progress in
solving a wide class of boundary value problems [8-35].

Among the aforementioned studies, the meshless boundary
methods have achieved remarkable progress and can be roughly
sorted into two categories: the MFS-based type and the BIE-based
type. The former is based on the concept of the method of funda-
mental solution (MFS), including, but are not limited to, the MFS
[12-14], the boundary knot method (BKM) [15-16], the boundary
collocation method (BCM) [17], the modified MFS (MMFS) [18], the
boundary distributed source method (BDSM) [19-20], the regular-
ized meshless method (RMM) [21-22], and the singular boundary
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method (SBM) [23-25]. The MFS, BKM and BCM generally lead to
the ill-conditioned system. The MMFS and the BDSM need to com-
pute some particular integrals to determine the diagonal terms.
The RMM uses double layer kernel to express the potential to eas-
ily remove the singularity, but the bewildering hyper singularity is-
sue has to be faced when the boundary flux solutions are required.
The SBM uses the null-field integral identity firstly to obtain the
diagonal terms from the derivative of the fundamental solution,
and then it applies a known solution to determine the diagonal
terms from the fundamental solution [23-25]. Therefore, as stated
in Ref. [19], this approach amounts to solving the problem twice. In
addition, the theoretical analysis of this approach is not rigorous,
since it uses a false integral identity [23-25]: Jp d%*;g')”)dl“(y) =
0,x ¢ I' with ux“(x, y) beings the fundamental solution of the ex-
terior problems. The latter category [8-11,26-31] is based on com-
bining BIEs with meshless shape functions constructed usually by
using the moving least-square (MLS) approximation. It is mainly
represented by the boundary node method (BNM) [26] and its vari-
ants [27-31]. These methods exploit the merits of both the BIE in
dimensionality reduction and the MLS in element removal. The es-
sential difference between these methods consists in the construc-
tion of meshless shape functions. Anyhow, they still require the
calculation of boundary integrals.

Inspired by the pioneering work, this study presents a new
meshfree boundary method for 2D potential problems. The method
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is based on combing a CRBIE with direct unknowns developed in
this paper, which excludes the computation of both the weakly and
strongly singular integrals, with the AST. By using the CRBIE to
avoid the singularity of the kernel functions, the major challenge
of the coincidence of the source and collocation points vanishes.
By introducing the AST into the CRBIE, the distributed source on a
segment/cell can be reduced to the concentrated point source and
therefore the boundary integrals are no longer required. Since no
known solution in the MMFS, RMM and SBM is applied for com-
puting indirectly the diagonal coefficients of influence matrices,
the problem can be solved only once with the present approach.
Again, unlike the foregoing MLS-based methods [26-31] which is
based on introducing MLS-based meshless shape functions con-
structed elaborately into BIEs and is ‘truly meshless’ but still in-
volves the calculation of boundary integrals, the present ASM only
requires boundary nodes for computation without involving any el-
ement or integration notion. Consequently, the ASM is easier-to-
implement, much more computationally efficient, and theoretically
simpler. Furthermore, in the implementation of the ASM, the real
geometry of the domain boundary without approximation can be
employed for computation as long as the parametric representa-
tion of the domain boundary is given.

As usual, the ASM also requires the discretization of the do-
main boundary into cells, but as stated in Ref. [28], the using of the
cells should not be viewed as a shortcoming of meshless/meshfree
schemes if these cells can be generated with ease. Actually, the
cells in the ASM are essentially distinguished from the boundary
elements in BEM and are employed neither for the purpose of in-
terpolation of the primary variables nor for numerical integration
just for computing the Jacobian value at nodes, and also there is
no limitation on their shape and size, implying that when some
of them are partitioned into smaller cells, their adjacent ones are
not affected. In this sense, the ASM should be regarded as a “truly
meshless or meshfree” method.

The accuracy, stability, efficiency and widely practical applica-
bility are verified in numerical experiments of the Dirichlet and
mixed-type continue or discontinue boundary conditions (BCs) of
both interior and exterior problems with simple and complicated
boundaries.

2. Regularized BIEs and the ASM

In this paper, we always assume that €2 is a bounded domain
in R2, Q° its open complement, and I" their common boundary.

2.1. Boundary value problem

. Consider a two-dimensional potential problem in the domain
(2 = Q or Q°) governed by the Laplace equation

V2ux) =0, x= (x1,%) e (1)

with boundary conditions (BCs) [1-2,5-7]

ux) =ux), xely (2)
u(x)

q(x) = ) ), xely (3)

when Q = Q°, in order to guarantee the uniqueness of solution
of the exterior problems, the following infinity condition must be
supplemented [7,33]

u@)| = 0(1), as p =

where I' = I'; UT, is the boundary of € with I'; N[, = ¢; i(x)
and q(x) are the prescribed boundary functions and n(x) is the unit
outward normal vector at point X = (x1,%) € I.

X2 +x3 — oo (4)

2.2. Regularized indirect boundary integral equations (IBIEs)

For potential problems in the domain € (= or Q¢) bounded
by boundary I', in the absence of body source, the equivalent reg-
ularized IBIEs for the problems (1)-(4) can be expressed as [7,33]

[ ¢eoar —o (5)
u(y):/rqb(x)u*(x,y)dl" +C yerl (6)
i = ko) + [ 1900 - 01 Y ar
+¢(v)/r[aua(:yy) a”;(:;y)}dr, yel (D)
T = [ 19w - oo ar
+¢(v)/r [8”8(:;”') + B”B(fx’”}dr, yel' (8

For the internal point y €, the integral equations can be writ-
ten as

uw) = [(peouw xydr+C yeQ (©)
8“0’) /qﬁ()au XY yeh k=12 (10)
In Egs. (5)-(10), x= (x1,x) and y = (y1,y,) are the source

and the field points, respectively; ty = (t;(¥),t(y)) and ny =
(n1(y), np(y)) are the unit tangent and outward normal vectors at
yel =0Q; kis1oro, respectively, for the interior domain €2 and
the exterior domain ¢; ux(x, y) denotes the fundamental solution
for potential problems expressed as

1
ur(x.y) = —EIH|X—J’| (11)

In order to sidestep the direct computation of the weak singular
integral in Eq.(6), based on the following integral identities

[ mouyar = [ o ) EN gr e @i, d
r r 811
(12)

which is readily derived by the Green’ second identity, and a limit
procedure, i.e.

Lemma [33-35]. Let I" be a piecewise smooth curve (open or closed),
and X a point on T (perhaps a corner). Suppose h=|y —X| and d =
inlf ly —x|. If w(x) € C®>%T') and h/d < K;(with constant K;), then
Xe

there holds

lim [ Yy ) - @)1y
y—R |x_ |
f % —— Y@ -y @®]dlx (k=1,2)
x—2[°

we develop a new boundary element formulation as follows
u) = [ [ - $@In)  nGol (. y)dr

8”( y)dI‘+CyeF (13)

+6) [ n@)- x-y)
which is named the ‘completely’ regularlzed boundary integral equa-
tion, because it excludes the computation of both the weakly and
strongly singular integrals.
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2.3. Formulations of the ASM

In this section, an average source technique is proposed, by
which the distributed source on a segment/ cell can be reduced to
the concentrated point source and therefore the boundary integrals
are not necessary. Assume that f(x, y) represents the integrand of
the integrals in the above Egs. (5), (7)-(10) and (13). Then, when
yelj, fix, y) is a smooth function with respect to ¥ on the I';, and
thus by utilizing the mean value theorem, we have

[ reydre=fesy (14)

where f(x4, ¥) is be referred to as an average source of distributed
source on segment I';. In practical application, boundary point x4
can be replaced by boundary nodes x; on I'; (usually the mid-point
of the segment I';) since the dimension (e.g., length or area) of
each segment is generally very small after boundary discretization.
Therefore, Eq. (14) can be rewritten as

1
[ eeydre= [ ).y ~ o,f(4.9) (15)

where x; is the mid-point of the segment I';, and w; = 2J(x;),
where J(x;) is the Jacobian value at the jth node x;.
When y = x; € [';, based on the AST, we have

vy Xy |

./r, |: an, + Iy ]dF ~ —K (X)) w (X))
in which «(%;) is the curvature of the boundary at the node x;, and
w(Xj) = %j(xj), with J(x;) being the value of the Jacobian at jth
node x;.

In a similar way, the other integrals in the above Egs.(5), (7)-
(10) and (13) can also be reduced to the boundary node form.
Therefore, Eqs. (5), (7), (8) and (13) can be expressed as

N
D Jx)$;=0 (16)
=1
N
u =Yy (Gyjp)) (17)
=1
N
qai =) (Hi¢)) (18)
=1
N
a =) (H¢)) (19)
=1

where N is the total number of collocation points on all cells, ¢;

the unknown density at the jth node, and Gj;, H}} and Hl.‘j are in-

fluence coefficients corresponding to Eq. (13), (7) and (8), respec-

tively, given by

—j In Tl‘j,i #* ]

5 I
n; - nywyg Ny

k=1 ki ' " (20)

(ry - m)

N
- 2 (X - X)w——
k=T ket Tik

Gij =

. J=i

rii-n) ..
0, i D i
HE = i 21
ij N N rik‘nk_wk.j_i ( )
1V -

Hf = i (22)

where r;, is the vector from the ith node to the kth node, ry is
the distance from the ith node to the kth node, t, = (t%, t¥) and
n, = (n, n’z‘) are the unit tangent and normal vectors to I' at the
kth node, respectively, w; = %](x,—), with J(x;) being the value of the
Jacobian at ithe node x;, and «; is the curvature of the boundary at
the ith node.

It should be noted that any boundary flux can be calculated by
an appropriate combination of the normal gradient Eq. (21) and
the tangential gradient Eq. (22).

For any internal point y far from the boundary, by applying the
AST, Egs. (9) and (10) can be reduced to the boundary node form
as follows

1 & A
u(y) = _E Z¢] lnr,-ja)j +C, Yy e Q (23)
j=1
ou N A
5. (y):qujr—lZ(a)k, yeik=1.2 (24)

=1 i

where 1 = X, — Yy
3. Numerical examples

In this section, the validity, accuracy and convergence of the
proposed method are tested to the potential problems with square,
circular, multiply-connected and irregular domains, subjected to
various BCs. For all test examples, the true geometry of the bound-
ary without approximation is used for computation.

To assess the accuracy of the proposed ASM, the relative error
of the multiple calculation results is defined by

M M
. 2 2
Relative error = \/ > (K pber — o) [ D () (25)
k=1

k=1

where M is the total number of calculation points, and tgumber and

tk .. denote the numerical and exact solution at the kth calcula-

tion point, respectively..

3.1. Square domain problems with mixed-type bc

Example 1. A square domain(;r x ) subject to the mixed-type BC
is considered as

u(n,xZ)Zl,q(X],O)Zu(X],T[)=q(0,X2)=O (26)

which is an example used in Ref. [21]. An analytical solution is
available as follows

u(x1.x2) = iDn cosh ( (2n—21)x1 ) cos ((2’1 —2 1)Xz) 27)

n=1

where

4(-n™!
1= G Dy cosh (T50%) (28)

The field potential solutions by using the analytical results and
the proposed ASM are plotted in Fig. 1(a) and (b), respectively
with using 120 boundary nodes. It can be seen that results of the
ASM match the exact solutions very well. To investigate the error
analysis, Fig. 2(a) and (b) show the absolute error surfaces of the
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Fig. 1. The field potential solutions: (a) exact results and (b) proposed method (120 source nodes).
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Fig. 2. Absolute error surfaces for field solutions: (a) potential and (b) flux du/dx; (200 nodes).

computational results, respectively, for the potential u and the flux
du/dxq, in which the absolute errors are generated at 30 x 30 in-
terior points uniformly distributed over a square domain covering
0.14 < Xxq, X < 2.9. These two figures clearly illustrate that the
proposed ASM works well for the mixed-type problems.

3.2. Circular domain problems with continue and discontinue BCs

Examples 2 and 3 consider the interior and exterior Dirichlet
problems with discontinue BCs, respectively, while Example 4 ad-
dresses an interior Dirichlet problem with continue BCs, which is
an example used in Ref. [19,24], to make a comparison between
the present ASM and other methods.

Example 2. Problem sketch is depicted in Fig. 3, which is an ex-
ample used in Ref. [21]. The problem is subjected to Dirichlet dis-
continuous BC as follows:

_J0 O<¢<m
u(l’(p)_{l T <@ <27 (29)
In this case, an analytical solution is available as follows
1 2x; 1
u(xy,xp) = —arctan | ———— = 30
(x1.2) = — (ﬁ+%_1)+2 (30)

A o
=0
V=0 i
A
u=1

Fig. 3. Problem sketch.

The contour plot of the exact field potential solution is plotted
in Fig. 4(a). Fig. 4(b) shows the field solutions calculated by us-
ing the proposed method with 60 boundary nodes. Good match
is observed from the comparison of Fig. 4(a) and (b). To fur-
ther investigate the accuracy and the convergence of the pro-
posed ASM, we plot Fig. 5(a)-(c). Fig. 5(a) and (b) display the ab-
solute error surfaces of the potential solutions in the interested
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Fig. 4. The contour plots for field potentials: (a) exact and (b) the proposed method (60 nodes).
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Fig. 5. Absolute error surfaces for field solutions: (a) potential (60 nodes), (b) potential (120 nodes) and (c) flux du/dx; (120 nodes).

domain {(p, ¢): 0 < p < 09, 0 < ¢ < 2w} with 800 inte-
rior points using 60 and 120 boundary nodes, respectively. And
Fig. 5(c) shows the absolute error surface for the field flux du/dx,
in the aforementioned domain with the same number of inte-
rior points using 120 source points. Due to discontinuity of BC,
it can be seen from these figures that the errors increase when
the calculated points are close to the boundary at y =0, and still,
acceptable numerical accuracies can be achieved by the present
method. Furthermore, we also can see through the comparison

of Fig. 5(a) and (b) that the proposed method is stable, accu-
rate, and rapidly convergent as the number of boundary nodes in-
creases. Meanwhile for the purpose of comparison with the Ref.
[21], Fig. 6(a) and (b) display the norm error for the potential solu-
tion u and the flux solution q! = du/dx; along the circle of radius
po = 0.5 and center at the origin versus the number of the bound-
ary nodes by using the ASM, BEM and RMM. The norm errors
are defined as fOZ” |texa(po, @) —unum(po,(p)|2d<p in Fig. 6(a) and

2 . . . .
13 19k (0. ©) — Ghum (Po. )| “d in Fig. 6(b), respectively, which
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Fig. 6. The norm errors of the solutions along the circle of radiuspy = 0.5 vs. the number of nodes: (a) potential and (b) flux du/dx;.

Fig. 7. Problem sketch.

are the same as in Ref. [21]. It can be found that both the ASM and
the BEM converge faster than the RMM [21] with the increase of
the boundary node number, and meanwshile, the solution accuracy
and convergence rates of the former two are very close. It should
be noted, however, that the proposed ASM is inherently free from
meshing and integration, easier-to-implement, much more com-
putationally efficient, and theoretically simpler. Hence this exam-
ple further verifies that the ASM works well for discontinuous BC
problems.

Example 3. In this case study, we investigate an exterior Dirichlet
problem with discontinuous BC [21], whose sketch is depicted in
Fig. 7. The BC is imposed on the edge of the unit circular domain
and is given as follows:

1 O<p<m
u(l’(p)_{—l T <@<27 (31)
In this case, an analytical solution is available as follows
2 2X2
u(x1,Xp) = —arctan|{ ———— 32
(x1.%2) = = (X%H%]) (32)

60 boundary nodes, uniformly distributed with respect to ¢ on the
unit circumference, are used in following calculations. The contour
plot of the field potential exact solution is plotted in Fig. 8(a). And
Fig. 8(b) shows the numerical results for the field potential by us-
ing the proposed ASM. It can be seen from the comparison of these
two figures that the results by the ASM are in excellent agreement
with the exact solution. Furthermore, Fig. 9(a) and (b) display the
relative errors of the computational results obtained by the ASM

and BEM, respectively, for the field potential u and its derivative
oufdxq, at 32 field points uniformly distributed on a circle with ra-
dius p =2 and center at the origin. And Fig. 10 depicts the bound-
ary normal flux du/dn solutions at 60 boundary nodes by using the
ASM, the BEM and the analytical solutions. Hence we can observe
from Fig. 9(a) and (b) and Fig. 10 that high calculation accuracy can
be achieved by both the ASM and BEM though with a very small
number of boundary nodes. On the other hand, although their ac-
curacies are very close, as shown in the previous test example, the
ASM is essentially free of mesh and integration.

Example 4. The test example investigates a circular domain of ra-
dius r =2, which is an example used in Ref. [19,24]. Dirichlet BC
is imposed on the edge of the circle using the following analytical
solution:

u(r,0) =r8cos(60) (33)
in the polar coordinates (r, 6).

The number of boundary nodes used varies from 100 to 1400,
which is the same as in Ref. [19,24] to make a fair comparison be-
tween these tested methods.

A total number of 120 calculation points are selected inside
the domain distributed uniformly on a circle with radius r =1
and center at the origin for the solution of the field potentials.
Fig. 11 shows the relative error curves for the field potential so-
lutions at these calculation points by using different numerical
methods. Here, the BEM, SBM, BDS and RMM solutions come from
Ref. [24].

It can be seen from Fig. 11 that overall, the solution accuracy
and convergence rate of the present ASM and the SBM are very
close, but with the number of boundary nodes being less than 300,
the ASM converges faster than the SBM. This is mainly because
that the ASM adopts the true geometry of the boundary with-
out approximation for computation unlike the SBM which uses in
nature the straight line to approximate the segment geometry. It
should be stressed that for such a 2D problem with very simple
geometry, 200 boundary nodes generally should not be regarded
as a small quantity. Therefore, the proposed ASM outperforms the
SBM in terms of overall accuracy, efficiency, and robustness for the
solution of the field potentials.

Again, Fig. 12 illustrates the relative error of the computed
boundary normal fluxes versus the number of boundary nodes,
demonstrating that the ASM also can solve the boundary physical
quantities accurately and efficiently.
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Fig. 9. The relative errors of the field solutions at radius p = 2: (a) potential and (b) flux du/dx;.

O Exact

® ASM Example 5. This example investigates a mixed-type problem with
101 O BEM multiply-connected domain, whose sketch is shown in Fig. 13. This
problem has been used in Ref. [22] and its analytical solution is
available as follows:

q p u=r>cos(30) (34)
or In this example, we suppose that the Neumann boundary con-
f \ ditions are prescribed on the boundary I'y and I'3, and the Dirich-

o e let boundary conditions on boundary both I', and I'4, as shown
in Fig. 11. The numbers of boundary nodes on the four boundary

parts I'y, 'y, I's and I'y are taken as 7:1:1:1. Fig. 14(a) and (b) dis-

play the relative error surfaces of the field solutions for the poten-

tial and its derivative du/dx; in the entire domain with 640 inte-

9 ® rior points, respectively. It can be clearly seen that good numerical
-15 1 1 1 J accuracies can be obtained by the proposed method with only us-
w2 w 3mi2 2m ing 160 boundary nodes. Furthermore, Fig. 15(a) displays the rela-

0 tive error of the boundary potential solutions on I'y and I', versus

Fig. 10. The boundary normal flux solutions (du/dn) at 60 boundary nodes. the number of boundary nodes, and Fig. 15(b) the relative error
of the boundary normal flux solutions on I'y and I', versus the
number of boundary nodes. Hence it is observed from Fig. 15(a)
and (b) that the ASM is stable, accurate and quickly convergent,
and also has higher accuracy and convergence rates than the BEM
with the increase of the boundary node number. This example il-

15 E 3.3. Multiply-connected domains with complex shapes
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Fig. 11. Relatively error curves for the field potential solutions, respectively, by us-
ing the proposed ASM, BEM, SBM, BDS and RMM.
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Fig. 12. Relative error of the computed boundary normal fluxes versus the number
of boundary nodes.

Relative erorr

(2)

Fig. 13. Problem sketch (r; =2, 1, =r3 =14 =0.25 and a = 1.0).

lustrates that the proposed method works reasonably well for the
multiply-connected domain problems.

Example 5. In the last example, an arbitrary-shape problem is
considered, which is an example used in Ref. [22]. Problem sketch
and the nodes distribution employing the proposed method are de-
picted in Fig. 16(a) and (b), respectively, in which the inner bound-
ary I'; is a circle with radius r = 0.5 and center at the origin and
the outer boundary I'y is a gear-shape curve, whose parametric
equation is

r= [(rcosgo, rsing):r= %[n2 +2n+2
—2(n+1)cos(ng —nm/2)],0 <@ <27} (35)
with n = 6. An analytical solution is available as follows [22]:
u(x,y) = e*cosy (36)

The contour plot of the exact filed potential solutions is plotted
in Fig. 17(a), and Fig. 17(b) depicts the filed potential results ob-
tained by the proposed method with 120 boundary nodes. It can
be found from Fig. 17(a) and (b) that the numerical results match
the exact solutions well. Fig. 18(a) and (b) display the relative er-
rors of the field solutions, respectively, for the potential u and the
flux du/dx; versus the number of boundary nodes by using the
ASM and the BEM, in which the relative errors are yielded at 20
interior points uniformly distributed, according to ¢, on the circle
with radius r = 0.9 and center at the origin. We can observe from
these two figures that the field solution accuracy and convergence
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Fig. 14. Relative error surfaces for field solutions: (a) potential and (b) flux du/dx (160 nodes).
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Fig. 15. Relative errors for the boundary quantities vs. the number of nodes: (a) potential on I'y and I'3, (b) the normal flux du/dn on I' and T'y.
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Fig. 16. (a) Problem sketch and (b) the nodes distribution (120 nodes).

rate of these two approaches are very close. Fig. 19 depicts the rel-
ative errors of the computed boundary flux du/on versus the num-
ber of boundary nodes by using the ASM and the BEM. It can be
seen from this figure that the ASM has better accuracy and conver-
gence rate than the BEM for the solution of the boundary flux, as
the previous case in Fig. 15.

This test example demonstrates that the proposed ASM also
works very well for the irregular domain problems.

4. Conclusions

In this paper, a new boundary-type meshfree method, termed
average source method (ASM), is proposed to solve 2D Laplace
problems. This method is based on coupling the RBIEs and the AST,
which has the following key features:

1. The proposed ASM develops a new strategy to analytically
compute diagonal coefficients of influence matrices, which
are weakly singular or strongly singular, so that the prob-
lem can be solved only once, unlike the foregoing MEFS-
based type methods that apply a known solution to deter-

mine such diagonal coefficients, thereby doubling the solu-
tion procedure. This is an essentially crucial but very dif-
ficult issue for the boundary-type collocation schemes, and
therefore great advance has been achieved by present work
in this area.

2. Due to the using of the AST, the proposed ASM is a truly
boundary-node method without involving any element or
integration concept, unlike the aforementioned MLS-based
methods that introduce the MLS-based meshless shape func-
tions constructed elaborately into BIE to exploit the mesh-
less attribute of MLS approximation, and but still need the
calculation of boundary integrals. It is worth noting that this
is a general methodology and also readily applicable to other
or even singular BIEs. Some applications of the AST to other
BIEs are already underway and will be reported in some
subsequent papers.

3. For the present ASM, the true geometry of the boundary
without approximation can be adopted for computation as
long as the parametric representation of the domain bound-
ary is given, as seen in the test examples in this paper.
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Fig. 17. The field potential solutions: (a) exact and (b) the proposed method (120 nodes).
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Fig. 18. Relative error for field solutions along the radius r = 0.8 vs. the number of nodes: (a) potential and (b) flux du/dx;. The symbols (e) in this Figure represent

calculation points.
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Fig. 19. Relative error for the boundary normal flux du/on vs. the number of
boundary nodes.

Therefore, the ASM can seamlessly connect with parameter-
based CAD technique, which is a demanding feature for the
solution of practical engineering problems.

4. Unlike the MMFS, RMM and SBM, where the dimension (e.g.,
length or area) of a cell/segment need be evaluated and
is generally obtained by a numerical integration as in Ref.
[18,21-25], the present ASM does not involve such a prob-
lem. As stated before, the cells/segments in the ASM are only
for computing the Jacobian values at the node.

Several category examples with different BCs and shapes of do-
main are presented to test the developed method. The numeri-
cal solutions obtained by present method agree very well with
the exact solutions. From the figures of the various errors evalu-
ation, such as the relative error, the absolute error and norm er-
rors for the potential and its derivative solutions, we also can see
that the numerical results exhibit a stable and rapidly convergent
trend as the number of boundary nodes increases. All these fea-
tures demonstrate that present method is efficient and accurate for
the numerical analysis of 2D potential problems. Furthermore, the
basic idea of the proposed method can be extended to the ASM
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solution of other types of problems. Some works are already un-
derway.

Moreover, it is observed that for the boundary value problem
with discontinue BCs the solution accuracy and convergence rate
of the ASM and the BEM are very close, while for the boundary
value problem with continue BCs the ASM has better accuracy and
convergence rates than the BEM with the increase of the boundary
nodes number.
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