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a b s t r a c t 

In this work, we propose an immersed-boundary-type simulation method for the two-way coupling prob- 

lems between a rigid body and a fluid. In this simulation tool, the entire fluid-solid domain is treated as an

incompressible fluid with non-uniform density and the no-slip boundary condition at the rigid body surface

is enforced by the penalization method. The fluid solver is developed in use of the spectral element method

for the spatial discretization and the mixed explicit/implicit scheme for the temporal discretization. An ad- 

ditional Lagrangian mesh is employed and attached to the rigid body in order to trace the rigid body and

to perform the area integration over the solid domain. Besides, a so-called sub-cell scheme is developed to

smooth the discontinuity at the fluid–solid interface. The validity and accuracy of the proposed simulation

method were examined well by applying it to the sedimentation problems of circular, triangular, square, as

well as elliptic cylinders in a channel. An accuracy of 2nd order was observed, probably due to the use of

triangular Lagrangian elements and consequently a piecewise-linear approximation of the rigid body shape

and also due to the 2nd-order interpolation involved in the sub-cell scheme.

© 2015 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

The immersed boundary method has become very popular for the

FSI (Fluid-Structure Interaction) problems in recent decades mainly

because of its great capability in handling complicated fluid–solid in-

terfaces. The immersed boundary method was first proposed by Pe-

skin and his colleagues [1–3] who, when investigating the motion

of massless and elastic surfaces in a viscous incompressible fluid,

treated the elastic material as part of the fluid and modeled its in-

fluence on the fluid motion by a force term. The main advantage of

this method is that only one Eulerian mesh is required, together with

some Lagrangian markers used to identify the elastic material; body-

fitted-meshing thus becomes un-necessary and the method becomes

very efficient. This immersed-boundary concept caught a lot of atten-

tions and was employed in successive researches; Various new meth-

ods were developed such as the direct forcing method [4] , the ficti-

tious domain method [5–12] , the immersed finite element method

[13–15] , and so on. 

The direct forcing method was developed by Mohd-Yusof [4] for

motion-prescribed structures. A pseudo body force calcultated based

on the prescribed motion and the discretized momentum equation

was added at the mesh points near the fluid–solid interface in order
∗ Corresponding author. Tel: + 88 6922506111. 
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o fulfill the no-slip boundary condition. To count the two-way cou-

ling effects between the fluid and the rigid bodies, Glowinski et al.

5] proposed the fictitious domain method. In their work, the fluid

as extended into the rigid-body region and the fluid momentum

quation and the rigid-body motion were linked through a use of La-

rangian multipliers. Instead of employing Lagrangian multipliers, Yu

nd Shau [6] and Gallier et al. [7] linked the fluid and rigid-body by a

seudo body-force within the rigid-body domain and derived an ex-

licit equation for the pseudo body-force. In the studies of Sharma

nd Patankar [8] and Apte et al. [9,10] , the rigid body was treated as a

econd fluid with a different density; non-uniform-density fluid mo-

entum equations were then solved. The total momentum of the so-

ution within the solid region was next calculated and taken as the

otal momentum of the rigid body at the new time step. The non-

niform-density concept was also employed by Coquerelle and Cot-

et [11] as well as Gazzola et al. [12] when their solving the vor-

icity equation in use of a vortex method. The penalization method

as employed to enforce the rigid body motion. Furthermore, to

void/reduce the numerical instability arising from the discontinu-

ty, they used a smoothing function to smooth the flow density and

he penalization force near the fluid-structure interface. In the im-

ersed finite element methods [13–15] , the equations of motion of

he strucures were modified into a form similar to that of the fluid

omentum equations and differences between them were lumped as

he FSI force which was then distributed inside the solid region. Rigid

nd deformable structures immersed and moving in incompressible
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iscous fluid were both attempted and satisfactory results were

btained. 

Most of the above methods however adopted low-oder schemes

f either the finite element method or the finite volume method for

he spatial discreitization. Stationary but complicated structures may

lso exist in problem and has better be resolved in a traditional way,

ay by a body-fitted mesh. A high-order scheme can improve further.

uch an attempt was ever made by Parussini and Pediroda [16] who

mplemented the fictitious domain concept with the spectral element

ethod for steady FSI problems. The spectral element method is well

nown with its high accuracy and high geometric flexibility [17,18] .

n the present work, we also prefer the spectral element method but

ould like to attempt the non-uniform density approach and the pe-

alization method. Besides, we intend to employ a Lagrangian mesh

or tracing the solid structure in addition to one Eulerian mesh for the

ntire computational domain. To overcome the difficulties induced

y the discontinuity at the fluid–solid interface, a special approach

alled “sub-cell scheme’’ is developed. 

It must be mentioned that this work is an extension of a previ-

us work of the authors [19] . The original scheme employed no La-

rangian mesh. It thus could handle only solids which shapes are

escribable by a mathematic function and a particular piecewise in-

egration method was needed for the solid-region integration. The

cheme is now extended to rigid bodies of arbitrary convex shapes

ith the help of a Lagrangian mesh. The Lagrangian mesh is used not

nly to trace the rigid body but also to enable the Gaussian quadra-

ure integration over the solid region. Numerical experiments and

onvergence tests are finished in the present work. 

The rest of this paper is arranged as follows: the governing equa-

ions are introduced in Section 2 ; the discretization methods and the

roposed sub-cell scheme are described in Section 3 ; numerical ex-

eriments are performed and the validity and the accuracy of the pro-

osed solver are examined in Section 4 , and finally conclusion is given

n Section 5 . 

. Governing equations 

In this section, we introduce the physical and the model equations

or flow induced by a rigid body immersed and moving in an incom-

ressible Newtonian fluid. 

.1. Physical equations 

Let � be the physical domain of interest and �s ( t ) be the re-

ion occupied by the rigid body as shown in Fig. 1 ; the moving solid

oundary is denoted by ∂�s ( t ). The governing equations for fluid

ow outside the rigid body are the incompressible Navier–Stokes

quations: 

 · u = 0 , x ∈ �/ �s (t ) (1)
Fig. 1. A solid body �s moving in a physical domain � which is full of fluid. 
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∂u 

∂t 
+ (u · ∇ )u = 

1 

ρ f 

∇ · σ + g , x ∈ �/ �s (2)

 = u s , x ∈ ∂ �s (t ) (3)

here appear the fluid velocity u , the rigid-body velocity u s , the fluid

ensity ρ f , and the gravity g . For Newtonian fluids, the stress tensor

is related to the rate-of-strain tensor D by 

= −pI + 2 μ f D 

here p is the pressure, μf is the fluid dynamic viscosity, and I is the

dentity matrix. 

On the other hand, the rigid body moves according to the New-

on’s 2nd law as below: 

 

d u T 

dt 
= F + Mg = −

∮ 
∂ �s 

σ · n ds + Mg (4)

 

d ω 

dt 
= T = −

∮ 
∂ �s 

σ × (x −x c )ds (5) 

here F and T are the instantaneous force and torque exerted by the

uid on the rigid body; M and I are the mass and the moment of iner-

ia, u T and ω are the translational and angular velocities, and x c is the

ass center of the rigid body respectively; finally n is the normal unit

ector at the interface directing from the fluid into the solid. Finally,

he instantaneous velocity at any point x within the rigid body can be

xpressed as 

 s (x , t ) = u T (t ) + ω (t ) × (x − x c ) (6) 

.2. Model equations 

Following the approach of Coquerelle and Cottet [11] , we extend

he fluid flow field onto the solid region and add a penalization force

 f pen ) to enforce the no-slip boundary conditions. The so-built model

quations are as follows: 

 · u = 0 , x ∈ � (7)

∂u 

∂t 
+ (u · ∇ )u = − 1 

ρ
∇ p + ν∇ 

2 u + g + f pen , x ∈ � (8)

= 

{
ρ f , x ∈ �/ �s 

ρs , x ∈ �s 

(9) 

 pen = 

{
0 , x ∈ �/ �s 

λ(u s − u ), x ∈ �s 

(10) 

here ν = μf / ρ f , ρs is the solid density, and λ is the penalization fac-

or. Equivalently, the solid domain is replaced by an incompressible

uid with a density ρs and a kinematic viscosity ν . The penalaza-

ion method has been well studied in the works of Angot et al. [20]

nd Bost et al. [21] . This method is very easy to implement and the

enalty error can be easily controlled by choosing a sufficiently large

enalization factor, λ. In practice, the discontinuities in the density

eld ρ and in the penalty force f pen often cause numerical instabil-

ty and must be smoothed away. In the present work, we develop a

o-called sub-cell scheme to handle this problem (see Section 3.3 ). 

After Eqs. (7) –(10) are solved for the whole computational do-

ain, the velocity inside the solid region is replaced by u s ( x , t ),

amely by Eq. (6) , with 

 T = 

1 

M 

∫ 
�s 

ρu d �s (11) 

nd 

 = 

1 

I 

∫ 
�

ρ(x − x c ) × u d �s (12) 

s 
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3. Numerical scheme 

The discretization starts from the time discretization. Herein we

chose the 1st order mixed stiffly stable scheme [22] : 

u 

n +1 − u 

n 

	t 
= − 1 

ρ
∇ p n +1 − (u 

n · ∇ )u 

n + ν∇ 

2 u 

n +1 

+ λ
(
u s − u 

n +1 
)

+ g (13)

Terms on the right-hand side of Eq. (13) are then counted one

by one according to the factional step method [23] . The spatial dis-

cretization is executed based on the spectral element method; tri-

angular elements for both Eulerian and Lagrangian meshes were se-

lected. Details are introduced in the following subsections. 

3.1. Fractional-step time marching scheme 

We split the time marching for each time step (from time t n to

time t n + 1 ) into 4 sub-steps. The nonlinear term and the gravity term

in Eq. (13) are dealt first, resulting in an intermediate velocity u 

∗: 

u 

∗ − u 

n 

	t 
= −[ (u · ∇ )u ] 

n + g (14)

Next we apply the divergence free condition and solve the follow-

ing two coupled equations for the pressure p n +1 and the velocity u 

∗∗

by iteration: 

∇ · ρu 

∗ − u 

∗∗ · ∇ρ

	t 
= ∇ 

2 p n +1 (15)

u 

∗∗ − u 

∗

	t 
= − 1 

ρ
∇ p n +1 (16)

The viscous term is dealt implicitly next as follows 

u 

∗∗∗ − u 

∗∗

	t 
= ν∇ 

2 u 

∗∗∗ (17)

In the present work, Eqs. (15) and (17) are solved by a Helmholtz

solver developed based on the Galerkin method and a PCG matrix

solver. 

We are now ready to update the rigid body motion. The inter-

mediate velocity u 

∗∗∗ is first interpolated onto the Gaussian quadra-

ture points of the solid (Lagrangian) elements by using the modal

basis functions associated with the Eulerian elements. Solid-region

integrations in Eqs. (11) and (12) are then finished by the Gaus-

sian quadrature integration method based on the Lagrangian mesh;

consequently 

u T = 

1 

M 

∫ 
�s 

ρu 

∗∗∗d �s 

and 

ω = 

1 

I 

∫ 
�s 

ρ(x − x c ) × u 

∗∗∗d �s (18)

The location of the mass center and orientation of the rigid body can

be update now by 

x 

n +1 
c = x 

n 
c + u T 	t (19)

θn +1 = θn + ω	t (20)

To avoid the accumulated distortion due to numerical errors, we up-

date the coordinates of the Lagrangian mesh points in the following

way 

x 

n +1 
s = x 

n +1 
c + 

[
cos θn +1 − sin θn +1 

sin θn +1 cos θn +1 

](
x 

0 
s − x 

0 
c 

)
(21)

where x 0 s − x 0 c is the relative position of the mesh point x s to the mass

center x c at time = 0. 
Finally we take care of the penalization term in the following way:

˜ u − u 

∗∗∗

	t 
= λ(u s − ˜ u ) (22)

 

n +1 = 

{
u 

∗∗∗, x ∈ �/ �s 

˜ u , x ∈ �s 

(23)

.2. Modal basis functions 

In the spectral element method, an interested physical variable

( x , y ) is approximated by a linear combination of basis functions φpq 

ith coefficients ˜ ψ pq as follows 

 (x, y ) ≈
P ∑ 

p=1 

Q+1 −p ∑ 

q =1 

˜ ψ pq φpq (ξ1 , ξ2 ) = 

P ∑ 

p=1 

Q+1 −p ∑ 

q =1 

˜ ψ pq ϕ p (η1 )ϕ pq (η2 )

(24)

here ( x, y ), ( ξ 1 , ξ 2 ), and ( η1 , η2 ) are the coordinates of the physical

omain, the standard triangular element, and the standard rectan-

ular element respectively. Along the η1 direction employed are the

auss–Lobatto quadrature points and along the η2 direction are the

auss–Radau quadrature points in the present work. The basis func-

ions chosen on the other hand are 

pq (ξ1 , ξ2 ) = ϕ p (η1 )ϕ pq (η2 ) (25)

 p (z ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 − z 

2 

, p = 1 

1 − z 

2 

1 + z 

2 

P 1 , 1 
p−2 (z ), 1 < p < P 

1 + z 

2 

, p = P 

(26)

nd 

 pq (z ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ϕ q (z ), p = 1 and 1 ≤ q ≤ Q (
1 − z 

2 

)p 

, 1 < p < P and q = 1 (
1 − z 

2 

)p 1 + z 

2 

P 2 p−1 , 1 
q −2 (z ), 1 < p < P and 1 < q < Q 

ϕ q (z ), p = P and 1 ≤ q ≤ Q 

(27)

here P 
α,β
n ‘s are the Jacobi polynomials of n th order having the or-

hogonality property of 

 1 

−1 
(1 − x )

α
(1 + x )

βP 
α,β
n (x )P 

α,β
m 

(x )dx = 0 (28)

inally, P = Q is employed in this study. 

.3. Sub-cell approach 

In this subsection, we describe how we take care of the discon-

inuities at the fluid–solid interface, that is Eqs. (9) and (23) . Re-

all that the Gaussian quadrature integration is performed based on

he Gauss–Lobatto quadrature points ( η1 i ) with weights w 1 i ’s along

he η1 direction and the Gauss–Radau quadrature points ( η2 j ) with

eights w 2 j ’s along the η2 direction, i.e. 

 ∫ 
�4 

f (η1 , η2 )d η1 d η2 = 

P ∑ 

i =1 

Q ∑ 

j=1 

f 
(
η1 i , η2 j 

)
w 1 i w 2 j (29)

here �4 represents the standard rectangular element. The proposed

ub-cell scheme starts from dividing the element into several sub-

ells according to the weights as illustrated in Fig. 2 . Each sub-cell
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Fig. 2. An illustration of sub-cells associated with a standard rectangular element as 

P = Q = 6. 

Fig. 3. An example of a cut cell. The red part is solid and the remaining is fluid. (For 

interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article). 
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herefore contains only one quadrature point ( x ij ) and has an area of

 1 i ×w 2 j . 

These sub-cells can be distinguished into 3 types according to

heir overlapping condition with the solid body. The first (second)

ype of sub-cells called “solid (fluid) cells” is totally occupied by the

olid body (fluid). Cells of the third type are partially occupied by

olid and named “cut cells”. For each cut-cell as illustrated in Fig. 3 ,

e find the centroids ( x f and x s ) and the areas ( A f and A s ) of the fluid

nd solid parts separately. 

To smooth the density discontinuity, we define an area-weighted

verage density as follows 

= 

⎧ ⎨ 

⎩ 

ρs for quadrature points in the solid cells , 

(1 −w c )ρ f + w c ρs for quadrature points in the cut cells , 

ρ f for quadrature points in the fluid cells . 

(30) 

here 

 c = A s /(w i w j ) (31) 

The mass is conserved therefore. As far as the velocity is con-
erned, we choose the mass weighted averages instead in order to
onserve the linear momentum; consequently 

 

n +1 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

˜ u for quadrature points in solid cells , 
w c ρs ̃  u + (1 −w c )u 

∗∗∗ρ f 

ρ
for quadrature points in cut cells , 

u 

∗∗∗ for quadrature points in fluid cells . 

(32) 

Before we end this subsection, we would like to explain how

he types of the sub-cells are identified and how the area fractions

 w c ) are calculated. Before a simulation starts, an auxiliary Cartesian

square) mesh covering the whole computational domain is gener-

ted. A cell-link table [24] is built in advance, which stores the infor-

ation of the Eulerian triangular elements overlapping with every 3

y 3 grid in the Cartesian mesh. At each time step, given the instanta-

eous location of a solid triangular element, we call out only the Eu-

erian elements in the cell-link table associated with the 3 by 3 grid

n the middle square of which the centroid of the solid element is lo-

ated. We judge which ones of them overlap with the solid element. If

n Eulerian element does overlap with the solid element, we find out

ll the intersection points of the boundary lines of the solid element

ith the boundary lines of all sub-cells of the Eulerian element. Be-

ause the overlapped region of a sub-cell with the solid element is a

olygon, the overlapped area and its centroid can be easily calculated

ased on the vertices of the polygon, which include the intersection

oints found above and possibly the vertices of the sub-cell and the

ertices of the solid element. By accumulating contributions from all

he solid elements, the solid area fractions of sub-cells of all Eulerian

lements are obtained and so are the centroids of their fluid parts and

olid parts. 

Two things need special attention. One is that the above sorting

lgorithm is developed and performed preferably on the standard tri-

ngular element, because the mapping between a physical triangle

nd a standard triangle is linear and thus advantageous; it is easier

owever to explain the sub-cell concept on a standard rectangular el-

ment. The other one is that the grid size in the cell-link table must

e large enough to ensure that every solid element can be accommo-

ated within some 3 by 3 grid; it must thus be larger than the size of

he solid elements therefore. 

. Numerical experiments 

In this section, several numerical experiments were performed to

erify the accuracy of the proposed solver. We first simulated a uni-

orm flow past a fixed circular cylinder in Section 4.1 . The sedimenta-

ion of a rigid circular cylinder in a rigid channel was simulated next

n Section 4.2 ; a convergence test was finished to find out the order of

ccuracy of the proposed solver. Cylinders of other geometries were

ttempted eventually in Section 4.3 . 

.1. Flow over a fixed circular cylinder 

We consider a uniform flow past a fixed circular cylinder

 u s = 0 cm/s) with Re ≡ u ∞ 

D/ v = 40. The rigid circular cylinder has a

ensity as the same as the fluid and a diameter of D = 1 cm. The com-

utational domain is [–10, 25] × [–10, 10] cm 

2 ) and the cylinder is

xed at the origin (0, 0) cm). The outflow boundary condition is em-

loyed at x = 25 cm) and u ∞ 

= ( u ∞ 

, v ∞ 

) = (1,0) cm/s) is imposed at

he other three boundaries. For comparison, we also solved the same

ow by using the spectral element solver with a body-fitted mesh.

ig. 4 shows the Eulerian meshes in the neighborhood of the cylinder

nd Fig. 5 shows the Lagrangian mesh for the circular cylinder. Other

umerical parameters employed are the expansion order P = 9, the

ime step 	t = 0.001 s), and the penalization factor λ	t = 10 6 . 

The pressure contours from both schemes are shown in Fig. 6 . An

xcellent agreement is observed. Next we compare the length of the
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Fig. 4. The body-fitted mesh (a) and non-body-fitted (immersed-boundary) mesh, (b) employed in the neighborhood of the circular cylinder. 

Fig. 5. The Lagrangian mesh employed for the circular cylinder. 

Table 1 

Comparison of the length of the trailing bubble and the separation angle 

at Re = 40. 

Re = 40 L/D θ s (degree) 

Present result 

body-fitted-mesh 2.25 53.9 °
Immersed-boundary mesh 2.24, 2.24 [19] 53.8 °, 53.8 ° [19] 

Calhoun [25] 2.18 54.2 °
Russell and Wang [26] 2.29 53.1 °
Fornberg [27] 2.24 —

Dennis and Chang [28] 2.35 53.8 °

 

 

 

 

Fig. 6. Pressure contours at Re = 40 obtained based on the immersed-boundary mesh 

(solid lines) and based on the body-fitted mesh (dotted lines). 

Table 2 

Strouhal numbers at Re = 100 and 200. 

Re = 100 Re = 200 

Present results 

Body-fitted-mesh 0.170 0.201 

Immersed-boundary mesh 0.170, 0.170 [19] 0.20 0, 0.20 0 [19] 

Calhoun [25] 0.175 0.202 

Russell and Wang [26] 0.169 0.195 

Liu, Zheng [29] 0.165 0.192 

Roshko [30] ∗ 0.167 0.190 

Williamson [31] ∗ 0.164 0.197 

∗ interpolated from experimental measurements 

4

 

c  

m  
trailing bubble ( L ) and the separation angle ( θ s ) with data in literature

as shown in Table 1 , including those obtained by the previous version

of the present solver [19] . The results are all very close. 

Flows with Re = 100 and 200 were also simulated. In Table 2 we

show the obtained Strouhal numbers together with data in literature.

Agreement is once again obtained. 
.2. Freely falling circular cylinder 

To test the order of the accuracy of the proposed solver, espe-

ially for two-way coupling problems, we simulated the freely falling

otion of a rigid circular cylinder in a channel of width W = 4 cm;



L.-C. Chen et al. / Advances in Engineering Software 101 (2016) 60–68 65 

Fig. 7. The Eulerian mesh employed for the simulation of the sedimentation of a circular cylinder. 
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Fig. 8. The evolution of the x component of the translational velocity ( u T ) of the cylin- 

der as P = 17 (solid lines), superimposed with the analytical terminal velocities (dotted 

lines). 

Fig. 9. The convergence of the simulated terminal velocity against the expansion order 

P. 

 

e  

t  

n  

e  

a  

p  

o

he computational domain prepared is [0, 16] ×[0, 4] cm 

2 . Herein we

hoose ρ f = 1 g/cm 

3 and ν = 10 cm 

2 /s. The circular cylinder, initially

ocated at the position (6, 2) cm, has a diameter of D = 1 cm and is free

o fall from rest under the gravity of g = (981, 0) cm/s 2 . Three solid

ensities: ρs = 1.05, 1.1, and 1.15 g/cm 

3 were attempted. Fig. 7 shows

he Eulerian mesh for this simulation. It has a total of 3394 triangular

lements which average side size ( 	L f ) is 0.2 D. The Lagrangian mesh

or tracing the cylinder is the same as the one shown in Fig. 5 ; the

veraged side size of the Lagrangian elements ( 	L s ) is 0.04 D , about

/5 of the Eulerian mesh. Furthermore, 9 × 9 Gaussian quadrature

oints were employed for the solid-area integration. According to the

uggestion of Zhang and Gay [32] , the resolution of the Lagrangian

esh should be at least twice as high as that of the Eulerian mesh.

erein, we chose an even higher resolution for the sake of capturing

he solid shape more precisely and for the sake of keeping the nu-

erical errors arising from the solid-area integration minor. The zero

elocity boundary condition is imposed on all the four walls of the

hannel. The time step is 	t = 5 × 10 −5 s) and the penalization factor

mployed is λ	t = 10 6 . 

Because the solid-fluid density ratio of interest is small, the

eynolds number based on the terminal velocity, Re = V t D / ν , is ex-

ected to be very small too. Therefore the analytical solution from

appel and Brenner [33] is applicable: 

 t = 

(
ρs / ρ f − 1 

)
D 

2 g 

16 ν

×
[

ln 

(
W 

D 

)
− 0 . 9157 + 1 . 7244 

(
D 

W 

)2 

− 1 . 7302 

(
D 

W 

)4 
]

(33) 

In Fig. 8 , we show the evolutions of the x -velocity component ( u T )

f the mass center of the cylinder superimposed with the analytical

erminal velocities. The simulated and the analytical terminal veloci-

ies match pretty well. The relative errors are all below 2%. 

We now focus on the case of ρs = 1.1 g/cm 

3 and perform a conver-

ence test by varying the expansion order P . For each simulation, we

ake the average value during the time period t = 0.2 ∼0.4 s) as the

imulated terminal velocity V . Fig. 9 shows that the simulated termi-

al velocity increases and converges gradually with the increasing ex-

ansion order P . By taking the value obtained when P = 17 ( ̄V P=17 ) as

he exact value, we plot the error e v ≡ | ̄V − V̄ P=17 | against the expan-

ion order P in Fig. 10 . As seen, the order of accuracy is between 2 and

. Although a spectral accuracy is expected for spectral methods, the

se of the immersed boundary skill and the local smoothing near the

olid–fluid interface must cause a reduction of the accuracy. In fact,

he proposed “sub-cell scheme” is more like a 2nd order interpolation

cheme; so is the piecewise linear approximation of the solid shape.

urthermore, the terminal velocity is a result of a balance between

he gravity force and the total drag; the influence of local errors must

e less significant and therefore an order of accuracy slightly greater

han 2 is observed. 
To further explore the accuracy of the proposed solver, we also

xamine the detailed flow field near the fluid–solid interface. We

arget at the pressure distribution on the surface of the cylinder,

amely p ( θ ) for 0 ≤ θ ≤ 2 π . The maximum absolute difference,

 p ≡ max 0 ≤θ≤2 π | p − p P=17 | , is measured and presented in Fig. 11 . An

ccuracy of order 2 is observed. Figs. 10 and 11 indicate that a local

hysical variable converges slower than a global one which is not out

f expectation for an immersed-boundary-type scheme. 
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Fig. 10. The error associated with the terminal velocity against the expansion order P . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The maximum error in the pressure around the cylinder against the expansion 

order P . 

Table 3 

The terminal velocities of the freely falling square and triangular cylinders. 

Cross section Square Regular triangle 

Density (g/cm 

3 ) 1.0 0 02 1.01 1.0 0 02 

Terminal velocity (cm/s) Present 8.22 × 10 −2 2.12 6.96 × 10 −2 

Wachs [34] 8.00 × 10 −2 2.10 6.64 × 10 −2 

d  

λ  

l  

t

i  

t  
4.3. Freely falling cylinders of other geometrics 

To test the geometric capability of the proposed solver, we test

square, regular triangular, and elliptic cylinders in this subsection.

The Lagrangian meshes employed are shown in the Fig. 12 . 

The square and triangular cylinders are falling in a channel with

a dimension of [0, 40] × [0, 4] cm 

2 . Both have a cross sectional area

as large as that of a circular cylinder of diameter D = 1 cm. Like what

Wachs did [34] , the mass centers of the cylinders are initially located

at (6, 1.95) cm, slightly offset from the centerline in order to inspire

possible oscillating motion. The fluid has a density of ρ f = 1 g/cm 

3 

and a viscosity of ν = 0.08 cm 

2 /s; two solid densities are tested:

ρs = 1.0 0 02 and 1.01 g/cm 

3 . The average side sizes of the Eulerian

and Lagrangian elements are 	L f = 0.2 D and 	L s = 0.04 D, respec-

tively . Other numerical parameters employed are the expansion or-
Fig. 12. The Lagrangian meshes for the squ
er P = 9, the time step 	t = 0.005 s, and the penalization factor

	t = 10 6 . The resulting terminal velocities of the square and triangu-

ar cylinders are shown in Table 3 . The present results are very close

o those obtained by Wachs [34] . 

The elliptic cylinder is falling in a channel of [0,12] × [0,2] cm 

2 

nstead. Initially it is located at (1,1) cm with three different orienta-

ions: 5 °, 45 °, and 90 ° as shown in Fig. 13 . The ellipse has a semi-major
are, triangular, and elliptic cylinders. 
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Fig. 13. The instantaneous locations and orientations of the ellipse at several different times and the trajectories of its mass center (red curves). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article). 

Fig. 14. The evolutions of the velocity components (u T , v T ) of an ellipse with an initial orientation of θ = 5 °, 45 °, and 90 ° (from left to right). 
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n

xis of a = 0.324 cm, a semi-minor axis of b = 0.081 cm, and a den-

ity of ρs = 1.25 g/cm 

3 . The fluid has a density of ρ f = 1 g/cm 

3 and

 viscosity of ν = 0.1 cm 

2 /s. The averaged side sizes of the Eulerian

nd the Lagrangian elements are chosen to be 0.1 cm and 0.02 cm, re-

pectively. Other numerical parameters employed are the expansion

rder P = 9, the time step 	t = 0.0 0 05 s, and the penalization factor

	t = 10 6 . 

Fig. 13 shows the instantaneous locations and orientations of the

llipse at several different times; the red curves are the trajectories of

ts mass center. As seen, with an initial orientation of θ = 45 °, the el-

ipse starts fluttering as soon as it is released. This phenomenon was

lso observed by Finn [35] . When the initial orientation is θ = 90 °,
he ellipse goes straight down during the early time period but de-

iates away from the centerline of the channel later and eventu-

lly flutters like the previous case. The motion of the ellipse is the

ost stable one when it is having an initial orientation of θ = 5 °;
t keeps on falling straight down until the very end of the simu-

ation. According to the evolution of velocity components, (u T , v T ),

f the mass center as shown in Fig. 14 , periodic fluttering motion

ight be expected in all cases if the channel is sufficiently long; the
nal behavior of the cylinder is seemingly independent of the initial

rientation. 

. Conclusion 

A 2D simulation method was developed to solve the two-way cou-

ling problems between an incompressible viscous fluid and a rigid

ody. It is developed based on the spectral element method and the

mmersed boundary concept. The whole system is modeled as a non-

niform density flow and the rigid body motion is enforced by the pe-

alization method. A Lagrangian mesh is employed to trace the rigid

ody and a so-called sub-cell approach is constructed to deal with

he discontinuity at the solid–fluid interface. The proposed scheme

as found to be 2nd-order accurate and its geometric flexibility was

onfirmed. With this geometric flexibility arising from the use of the

pectral element method as well as the use of a Lagrangian mesh, the

resent scheme is applicable to flow induced by rigid bodies of arbi-

rary shapes in channels with complicated wall boundaries. Numeri-

al instabilities associated with high density-ratio and high Reynolds-

umber flow need further improving however. 
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