
Advances in Engineering Software 101 (2016) 37–49

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Synchronous and asynchronous HEVC parallel encoder versions based

on a GOP approach

H. Migallón

a , ∗, J.L. Hernández-Losada

b , G. Cebrián-Márquez

b , P. Piñol a , J.L. Martínez

b ,
O. López-Granado

a , M.P. Malumbres a

a Department of Physics and Computer Architecture, University Miguel Hernández, Elche, E-03202 Alicante, Spain
b Albacete Research Institute of Informatics, Universidad de Castilla-La Mancha, E-02071 Albacete, Spain

a r t i c l e i n f o

Article history:

Available online 19 February 2016

Keywords:

Parallel algorithms

Video coding

HEVC

Multicore

Performance

GOP-based algorithms

Synchronous algorithms

Asynchronous algorithms

a b s t r a c t

In this paper, we focus on applying parallel processing techniques to HEVC encoder in order to signif-

icantly reduce the computational power requirements without disturbing its coding efficiency. So, we

propose several, synchronous and asynchronous, parallelization approaches working at a coarse grain

parallelization level, based on the Group Of Pictures (GOP), which we call GOP-based level. GOP-based

approaches encode simultaneously several groups of consecutive frames. Depending on how these GOPs

are conformed and distributed it is critical to obtain good parallel performance . The results show that

near ideal efficiencies are obtained using up to 10 cores. Furthermore, when the computational load is

unbalanced, the asynchronous versions outperform the synchronous ones. The parallel algorithms devel-

oped in this work support all standard coding modes proposed by the reference software.

© 2016 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

1

V

I

n

V

r

d

4

v

n

H

s

e

i

c

t

H

c

d

h

s

l

t

m

D

[

i

c

l

t

t

r

t

w

b

i

(

x

c

a

f

h

0

. Introduction

Recently, the Joint Collaborative Team on Video Coding (JCT-

C) co-established by ISO/IEC MPEG (Motion Experts Group) and

TU-T VCEG (Video Coding Experts Group), has standardized the

ext-generation video coding technology called High Efficiency

ideo Coding (HEVC) [1] . This new standard will replace the cur-

ent H.264/AVC (Advanced Video Coding) [2] standard in order to

eal with nowadays and future multimedia market trends, since

K definition video content is a nowadays fact and 8K definition

ideo will not take too long to become a reality. Even more, the

ew standard supports high quality color depth at 8 and 10 bits.

EVC greatly improved the coding efficiency over its predeces-

or (H.264/AVC) by a factor of almost twice while maintaining an

quivalent visual quality [3] .

Regarding complexity, in [4] , Bossen et al. studied the complex-

ty aspects of HEVC encoding and decoding software. This study

oncludes that the encoding process is much more challenging

han the decoding process, e.g., encoding one second of a 1080p60

D (High Definition) video with the reference software encoder

an take longer than one hour when running in an off-the-shelf

esktop computer. Therefore, HEVC encoder optimization will be a

ot research topic in years to come.
∗ Corresponding author. Tel.: +34 966658390; fax: +34 966658814.

E-mail address: hmigallon@umh.es (H. Migallón).

U

p

o

l

ttp://dx.doi.org/10.1016/j.advengsoft.2016.01.020

965-9978/© 2016 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
Several works about complexity analysis and parallelization

trategies for the emerging HEVC standard can be found in the

iterature [4–6] . Most of parallelization proposals are focused in

he decoding side, looking for the most appropriate parallel opti-

izations at the decoder that provide real-time decoding of High-

efinition (HD) and Ultra-High-Definition (UHD) video contents. In

7,8] the authors present a variation of Wavefront Parallel Process-

ng (WPP) called Overlapped Wavefront (OWF) for the HEVC de-

oder in which the executions over consecutive pictures are over-

apped. In a multi-threaded approach of the HEVC decoder, a pic-

ure is decoded by several threads at the same time, being each

hread in charge of decoding different Coding Tree Block (CTB)

ows. In these works, authors claim that a single thread may con-

inue processing the next picture when it finishes the current one,

ithout waiting for the other threads. These variations allow a

etter parallel processing efficiency, reducing the overall decod-

ng time. Recently, in [9] the authors mixed tiles, WPP and SIMD

Single-Instruction Multiple-Data instruction set extension to the

86 architecture) instructions to develop a real-time HEVC decoder.

At the moment, only a few works focused on the HEVC en-

oder have been reported. In [10] authors propose a fine-grain par-

llel optimization of the HEVC motion estimation module that per-

orms at the same time the motion prediction of all Prediction

nits (PUs) available at one Coding Unit (CU). In [11,12] authors

ropose a real-time motion estimation block over focusing on the

ptimization of motion estimation algorithms using an FPGA-based

ow cost embedded system with a combination of synchronous

http://dx.doi.org/10.1016/j.advengsoft.2016.01.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.01.020&domain=pdf
mailto:hmigallon@umh.es
http://dx.doi.org/10.1016/j.advengsoft.2016.01.020

38 H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49

Fig. 1. All Intra (AI) mode sequential structure.

Fig. 2. Random Access (RA) mode sequential structure.

Fig. 3. Low delay P (LP) mode sequential structure.

m

c

m

p

r

a

G

q

t

T

s

p

a

o

o

w

e

c

d

D

r

w
dynamic random access memory (SDRAM) with on-chip memory

of software-based Nios II processors. Through the optimizations

of memory access in this platform, time savings of up 53% were

achieved in the motion estimation module. In [13] authors propose

a parallelization at the intra prediction module that consists on re-

moving data dependencies among subblocks of a CU, obtaining in-

teresting speed-up results with a negligible loss in coding perfor-

mance. Other recent works are focused on changes in the scanning

order. For example, in [14] the authors propose a CU scanning or-

der based on a diamond search obtaining a good scheme for mas-

sive parallel processing. Also in [15] the authors propose to change

the HEVC deblocking filter processing order obtaining time savings

of 37.93% over many-core architectures.

In this paper, we will focus on applying parallel processing

techniques to the HEVC encoder in order to significantly reduce the

computational power requirements without disturbing the cod-

ing efficiency. Instead of focusing the optimization on one specific

module of the HEVC encoder, as other proposals do, our propos-

als use OpenMP programming paradigm working at a coarse grain

parallelization level which we call GOP-based level. GOP-based ap-

proaches encode simultaneously several Group Of Pictures (GOP).

Depending on how these GOPs are conformed and distributed it

is critical to obtain good parallel performance, taking also into

account the level of coding efficiency degradation. This paper is

based upon Migallón et al. [16] , including more results and addi-

tional research such (a) new asynchronous parallel versions, and

(b) a comparison between synchronous and asynchronous parallel

versions in terms of computational complexity (coding time) and

speed-up.

The remainder of this paper is organized as follows, in Section 2

an overview of the available profiles and parallel strategies in HEVC

are presented. Sections 3 and 4 describe the GOP-based parallel al-

ternatives proposed for both synchronous and asynchronous archi-

tectures , while in Section 5 a comparison between the proposed

parallel approaches is presented. Finally, in Section 6 some conclu-

sions are drawn.

2. HEVC coding modes and parallel strategies

HEVC follows a hybrid video coding scheme consisting on a se-

quence of three main steps. First, the spatial or temporal redun-

dancy is exploited to make a prediction of a frame region and, in

this way, only the residuum of the prediction and some side infor-

mation will be encoded. In the second step, the residuum is trans-

formed into the frequency domain and the resulting coefficients

are quantized (lossy compression). Depending on the quantization

step, we will achieve a higher or lower compression ratio in the bit

stream, and the reconstructed video sequence will exhibit a higher

or lower visual quality. In the third step, entropy coding is applied

to the quantized coefficients and the side information in order to

further compress the bit stream.

In the encoding process, each frame is divided into small square

regions called Coding Units (CU). Spatial redundancy is exploited

by obtaining a prediction for a CU (or CU subpartitions) using the

nearby pixels in the same frame. Temporal redundancy is exploited

by searching for similar CUs (or CU subpartitions) in previous or

past frames in order to obtain a prediction.

In our tests we have used the available coding modes of the ref-

erence software package [17] : All Intra (AI), Random Access (RA),

Low-Delay B (LB), and Low-Delay P (LP). Each mode has different

characteristics and can be used in different situations, depending

on the requirements of each application.

In All Intra mode every frame is coded as an I-frame, i.e.,

it is encoded without any motion estimation/compensation. So,

each frame is independent from the other frames in the sequence.

This mode gets lower compression rates compared to the other 3
odes, but the encoding process is faster. Fig. 1 shows the AI mode

oding structure.

Random Access mode combines I-frames and B-frames. In this

ode, reference frames used to perform the motion estimation

rocess can be located earlier or later than the frame we are cur-

ently encoding. So, encoding (and decoding) order is not the same

s rendering order. In the HEVC standard, the RA mode uses a

OP size of 8 frames. To allow navigating through the coded se-

uence (pointing to a certain video sequence frame) or to allow

rick modes like fast forward, an I-frame is inserted periodically.

he intra refresh period must be a multiple of GOP size. Fig. 2

hows the coding structure for the RA mode when the intra refresh

eriod is equal to 32 frames. The bit stream updating is performed

fter each GOP computation.

Low-Delay modes (LP and LB) encode each frame in rendering

rder. First an I-frame is inserted in the coded bit stream and then

nly P-frames (or B-frames) are used for the rest of the sequence,

ith a GOP size equal to 4. All the reference pictures are located

arlier than the current frame. These two modes achieve better

ompression performance than AI mode and do not suffer from the

elay that RA mode introduces. The coding structure of the Low

elay P (LP) and Low Delay B (LB) modes shown in Figs. 3 and 4 ,

espectively, are very similar.

Once we have presented all available coding modes in HEVC,

e will show the different parallel techniques that can be applied.

H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49 39

Fig. 4. Low delay (LB) mode sequential structure.

H

s

c

p

a

g

f

v

e

t

i

c

i

p

o

G

i

f

p

p

t

t

p

d

3

a

p

c

r

s

m

t

c

t

r

w

p

r

t

A

(

S

a

i

d

o

p

a

s

p

a

p

w

t

q

−

a

m

f

s

p

o
igh-level parallel strategies may be classified in a hierarchical

cheme depending on the desired parallel grain size. This classifi-

ation should be carefully applied, taking into account the available

arallel hardware resources in order to perform the most adequate

nd efficient implementation. So, we define from coarser to finer

rain the following parallelism levels: GOPs, slices, tiles, and Wave-

ront Parallel Processing (WPP). When designing an HEVC parallel

ersion we first analyze the available hardware where the parallel

ncoder will run, in order to determine which parallel scheme is

he most appropriate.

The coarsest parallelization level, GOP-based, is based on divid-

ng the whole video sequence in GOPs in such a way that the pro-

essing of each GOP is completely independent from the process-

ng of the other GOPs. In general, this approach can obtain good

arallel efficiency on both shared memory and distributed mem-

ry architectures. However, depending on the way we define the

OPs structure and remove the inter-GOP dependencies, the cod-

ng performance may be affected.

Other parallelization levels (tiles, slices and WPP) work at a

rame fragment scale and are not suitable for a distributed memory

latforms. We will perform all our tests using diverse GOP-based

arallelization configurations.

Current reference software does not directly support most of

he high-level parallelism approaches mainly due to its implemen-

ation design. In the next section we will present the GOP-based

arallelization approaches tested. They may be implemented in

istributed, shared or hybrid memory architectures.

. Synchronous GOP-based parallel algorithms

We have developed several strategies, described below, but in

ll of them one GOP is computed by one process. Firstly, we pro-

ose synchronous algorithms, in which the synchronization pro-

esses are located after the encoding process of a GOP, and the

eference pictures are not shared. The main goals of these mild re-

trictions are, on the one hand, to fill the bit stream as the infor-

ation is available, and on the other hand, to be able to extend

he work to distributed memory platforms without drastically in-

reasing the amount of information that should be transmitted.

Note that the AI mode differs from the rest of modes on both

he GOP size (equal to 1 for the AI mode and greater than 1 for the
Fig. 5. Option S-I: para
est of modes), and in that all frames are computed as I-frames,

hich means that no reference frames are used. Therefore the AI

arallel algorithm does not differentiate from the sequential algo-

ithm regarding video quality and bit rate.

We have developed five synchronous parallel approaches. All of

hem support the Low Delay B (LB), Low Delay P (LP) and Random

ccess (RA) modes, except one of them that only supports All Intra

AI) mode. The first four approaches we have developed are:

• Option S-I (LB, LP and RA): All processes encode the first I-

frame and include it in the reference picture list. After that,

each GOP is allocated to every process in a round-robin fashion.

So, processes will encode isolated GOPs that link to the refer-

ence picture list.

• Option S-II (LB, LP and RA): The video sequence is divided in as

many chunks as the number of available parallel processes. Be-

fore processing the corresponding block of adjacent GOPs, each

process encodes the first GOP, which is composed by the first

I-frame of the video sequence.

• Option S-III (LB, LP and RA): In this approach the video se-

quence is divided in as many chunks as the number of pro-

cesses, in a similar way than in Option S-II, but in this case,

each process starts encoding one I-frame at the beginning of its

block of adjacent GOPs, altering the frame pattern of the corre-

sponding encoding mode.

• Option S-IV (AI): As in Option S-I each GOP is allocated to each

process following a round-robin scheme. However, all GOPs

consist of a single I-frame.

Fig. 5 shows the parallel distribution performed when Option

-I is used. As we have said, a synchronization process is located

fter each GOP is encoded. All processes compute the first GOP,

.e., one I-frame, but obviously only the root process (P0) writes

ata into the bit stream. After that, each process encodes a GOP

f 4 frames (or 8 frames for RA mode). The GOP assigned to each

rocess depends on the rank of the parallel process, because GOPs

re sequentially assigned to each process.

As each process will have its own working buffer in order to

tore the reference picture list, the real pattern of the reference

ictures used changes for parallel and sequential algorithms and it

lso changes depending on the number of processes used in the

arallel algorithm. Note that each process builds its own buffer

ith the reference picture list, numbering the frames according to

he order they are stored in the local buffer. For instance, in a se-

uential process, the second frame of a GOP uses frames −1, −2,

6 and −10 as reference pictures (−1 means the previous frame,

nd so on). Considering a GOP size equal to 4 (as in LB and LP

odes), frame −2 points to the last frame of the previous GOP (the

rame two positions before the current frame in the original video

equence). In a parallel process, as we assign isolated GOPs to each

rocess, the previous GOP is not the previous adjacent GOP in the

riginal video sequence and therefore frame −2 will not point to
llel distribution.

40 H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49

Fig. 6. Option S-I: example of parallel distribution.

Fig. 8. Option S-II: example of parallel distribution.

a

t

e

a

o

w

c

t

e

e

s

s

a

I

e

t

i

o

a

c

s

t

m

p

a

p

w

b

m

R

r

e

p

t

t
the frame two positions before the current frame. If, for instance,

the number of processes is 6, then the previous GOP for this pro-

cess will be located in the video sequence 6 GOPs away from the

current GOP. So for the second frame of a GOP, the reference pic-

ture −2 will point to frame −22 (−2 −(6 −1) × 4 = −22) in the

original video sequence. We can conclude that both parallel and

sequential algorithms will produce different bit streams. Later, we

will analyze the impact of this fact in terms of PSNR and bit rate,

and we will propose several parallel strategies in order to mini-

mize this issue.

In Fig. 6 , in order to clarify the Option S-I parallel distribution,

we present an example of a video sequence with 49 frames (the

first I-frame and 12 GOPs of 4 frames) is encoded with 3 parallel

processes. As we can see, all processes encode the first I-frame and

after that process 0 encodes GOPs 1, 4, 7, and 10, while process 1

encodes GOPs 2, 5, 8, and 11 and finally, process 2 encodes GOPs

3, 6, 9, and 12. As we have said, we perform a synchronization

process after a GOP is encoded by each process.

The parallel distribution performed in Option S-II is represented

in Fig. 7 . In this proposal we still perform a synchronization pro-

cess after each GOP is encoded. All processes compute the first

frame as an I-frame, that is, the first GOP, but obviously again only

the root process (P0) writes data into the bit stream. This first

frame is included in the reference picture list of all processes, but

in this case the reference pictures are not so much disturbed, be-

cause each process works with a group of adjacent GOPs. In the

previous example, the pattern is only altered for the first three

GOPs. From this point onward all reference pictures needed are

available in the private working buffer of each process.

Fig. 8 presents a similar example for Option S-II parallel distri-

bution. All processes encode the first I-frame and after that, each

process encodes adjacent GOPs. Process 0 encodes GOPs 1, 2, 3,

and 4, while process 1 encodes GOPs 5, 6, 7, and 8 and process 2

encodes GOPs 9, 10, 11, and 12. We still perform a synchronization

process when all processes finish the computation of one GOP.

The parallel distribution of Option S-III, shown in Fig. 9 ,

presents a parallel structure similar to Option S-II. We still assign
Fig. 7. Option S-II: para
 block of adjacent GOPs to each process, but we change the struc-

ure of frames indicated by LB, LP and RA modes, since in this case

ach process does not encode the first frame of the video sequence

s an I-frame. Instead of that, each process encodes the first frame

f its block of adjacent GOPs as an I-frame.

In the example shown in Fig. 10 , for the Option S-III algorithm,

e consider that 3 parallel processes encode 51 frames. In this

ase, each process encodes 17 frames. The video sequence is par-

itioned in 3 chunks each one containing 17 frames. Each process

ncodes the first frame of its chunk as an I-frame, and after that,

ach process encodes four adjacent GOPs.

As previously mentioned, Option S-IV parallel strategy is the

ame as Option S-I, but working only with the AI mode. Fig. 11

hows the parallel distribution for Option S-IV. Note that a GOP

lways consists of one I-frame, and moreover these I-frames are

DRs (Instantaneous Decoder Refresh), therefore there are no differ-

nces between the parallel and the sequential execution, because

his mode does not use the reference picture list. In this case, as

n Option S-I, in the synchronization processes after the encoding

f each GOP, the bit stream can be updated with data provided by

ll processes, while in Option S-II and Option S-III the bit stream

an only be updated with data provided by the root process. Con-

equently, only at the end of the video encoding we can update

he bit stream with the data provided by the rest of processes.

As we have previously said, Option S-IV is designed for the AI

ode, where each I-frame is one GOP. Therefore, in Fig. 12 we

resent an example encoding 12 GOPs (i.e. 12 frames) using 3 par-

llel processes. The synchronization process is performed after all

rocesses have encoded one frame (i.e one GOP).

Finally, we have developed another strategy, named Option S-V,

ith two main goals, (a) all processes are able to write data in the

it stream more frequently than Options S-II and S-III, and (b) to

inimize changing the frame pattern of the standard LB, LP and

A modes, in order to reduce PSNR and bit rate differences with

espect to the sequential algorithm. The proposed Option S-V strat-

gy combines features of the other presented proposals. Firstly, all

rocesses encode the first GOP, composed by a single I-frame, in-

roducing it in each local buffer which stores the reference pic-

ure list. In the same way as in Option S-I and Option S-II, only
llel distribution.

H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49 41

Fig. 9. Option S-III: parallel distribution.

Fig. 10. Option S-III: example of parallel distribution.

Fig. 11. Option S-IV: parallel distribution.

Fig. 12. Option S-IV: example of parallel distribution.

t

b

p

t

Fig. 14. Option S-V: example of parallel distribution.

O

e

t

t

m

t

f

t

c

A

1

f

p

s

f

r

e

G

L

f

3

r
he root process updates the bit stream. After that, a fixed num-

er of adjacent GOPs (named GOP_BLOCK) are assigned to each

rocess depending on their parallel rank. Obviously the size of

he GOP_BLOCK must be the same for all processes. Fig. 13 shows
Fig. 13. Option S-V: par
ption S-V parallel structure when the size of the GOP_BLOCK is

qual to 3. Note that the root process can update the bit stream af-

er each GOP computation, while the rest of processes can update

he bit stream after the GOP_BLOCK computation. We want to re-

ark that as we increase the GOP_BLOCK size, the disturbance of

he reference picture list decreases.

For the Option S-V example shown in Fig. 14 , we encode 49

rames using 3 parallel processes. The GOP_BLOCK is equal to 2,

hus process 0 firstly encodes GOPs number 1, 2, whereas pro-

esses 1 and 2 encode GOPs number 3, 4, and 5, 6, respectively.

fter that, process 0 encodes GOPs number 7, 8, whereas processes

 and 2 encode GOPs 9, 10, and 11, 12, respectively. We still per-

orm a synchronization process when all processes finish the com-

utation of one GOP.

Remark that Figs. 5, 7, 9 and 13 show parallel distributions con-

idering the GOP size is equal to 4, like for LB and LP modes, but

or RA mode the GOP size is equal to 8. Regarding Option S-V algo-

ithm the GOP_BLOCK size sets the number of GOPs. Thus, in the

xample shown in Fig. 13 , the number of frames included in one

OP_BLOCK is equal to 12 (three GOPs of four frames) for LB and

P modes, while for RA mode it is equal to 24 (three GOPs of eight

rames).

.1. Synchronous algorithms evaluation

In this subsection we analyze the synchronous parallel algo-

ithms described previously in terms of parallel performance, PSNR
allel distribution.

42 H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49

Fig. 15. Option S-IV parallel algorithms when computing 120, 240 and 480 frames.

Table 1

Computational times for the parallel algorithms for the LB

mode when computing 120, 240 and 480 frames.

Processors #Frames S-I S-II S-III

1 120 437 .8 438 .4 426 .9

240 884 .8 887 .7 909 .9

480 1807 .2 1811 .7 1803 .6

2 120 247 .2 231 .7 223 .8

240 541 .4 479 .8 456 .5

480 1054 .9 945 .0 906 .9

4 120 122 .2 112 .3 114 .8

240 308 .4 248 .4 237 .3

480 674 .1 489 .7 473 .7

6 120 86 .4 79 .4 76 .2

240 223 .0 172 .3 158 .3

480 425 .1 327 .1 317 .3

8 120 65 .0 59 .7 57 .3

240 162 .7 121 .0 125 .9

480 332 .2 250 .8 238 .0

10 120 60 .1 52 .7 50 .1

240 133 .3 106 .8 98 .0

480 273 .7 203 .2 197 .5

Fig. 16. Speed-up for the parallel algorithms for the LB mode when computing 120,

240 and 480 frames.
and bit rate. As the experiments reported were obtained on a

shared memory platform, we have used the OpenMP [18] pro-

gramming paradigm. In particular the multicore platform used

is a HP Proliant SL390 G7 with two Intel Xeon X5660, each

CPU with six cores at 2.8 GHz, therefore the experiments re-

ported use up to 10 processes. The testing video sequence used

is BQSquare_416x240_60.yuv , and disposes of 600 frames at 60 Hz

with a frame size equal to 416 x 240 pixels. We have run the paral-

lel algorithms encoding 120, 240 and 480 frames for All Intra (AI),

Low Delay B (LB) and Low Delay P (LP) modes, and encoding 256

and 512 frames for Random Access (RA) mode. The Group of Pic-

tures (GOP) size for LB and LP modes is equal to 4 while for RA

mode is equal to 8. Also, LB and LP modes compute only the first

frame as I-frame, while RA mode inserts one I-frame (IDR type) ev-

ery 32 frames in our experiments. In the AI mode all frames are I-

frames and one GOP consists on one I-frame. In all cases the value

of quantization parameter (QP) is equal to 32. Finally, version 10.0

of the HEVC reference software has been used and the experiments

reported were performed using the Main profile (i.e. bit depth of 8

bits)

In Fig. 15 , we present computational results for Option S-IV par-

allel algorithm. Fig. 15 (a) shows the computational times when en-

coding 120, 240 and 480 frames, and Fig. 15 (b) shows the corre-

sponding speed-up. Note that Option S-IV is the only algorithm re-

lated to the AI mode, in which there are no dependencies between

frames. This parallel algorithm offers good time reductions when

increasing the number of processes, achieving efficiencies close to

the ideal ones. Remark that in Option S-IV the reference sequential

execution (i.e using 1 process) obtains the same bit rate and PSNR

results than the parallel execution.

In Table 1 we present the computational times for Option S-I,

Option S-II and Option S-III parallel algorithms using the LB encod-

ing mode. Note that when using just 1 process, all the proposed

algorithms show similar timings than the ones obtained by the

sequential version. Fig. 16 shows the speed-ups associated to the

results shown in Table 1 . This figure confirms the good behavior

of the proposed parallel algorithms, obtaining good speed-ups in

H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49 43

Fig. 17. Speed-up for the parallel algorithms for the LP mode when computing 120,

240 and 480 frames.

a

O

S

i

t

t

m

s

a

c

m

a

t

s

a

L

t

o

t

t

Fig. 18. Speed-up for the parallel algorithms when encoding in RA mode computing

256 and 512 frames.

Fig. 19. Speed-up for various video sequences when encoding in LB mode comput-

ing 240 frames using Option S-III algorithm.
ll cases. However, the results obtained using both Option S-II and

ption S-III are significantly better than those obtained by Option

-I. Note that the reference picture list used in Option S-I does not

nclude adjacent GOPs.

Fig. 17 shows the speed-ups when parallel algorithms encode

he video sequence using the LP encoding mode. It should be noted

hat the results shown are better than those obtained with the LB

ode. In particular, when using Option S-III parallel algorithm, the

peed-up results are as good as those obtained using the S-IV par-

llel algorithm.

Taking into account all previous computational results, we can

onclude that Option S-II and Option S-III obtain better perfor-

ance than Option S-I, when LB or LP modes are used. In order to

nalyze the computational behavior when the RA mode is used we

est our parallel proposals encoding 256 and 512 frames. We have

elected this number of frames because the RA mode works with

 GOP size equal to 8 and it inserts an I-frame every 32 frames.

ooking at the results shown in Fig. 18 , similar conclusions are ob-

ained for RA mode.

In order to confirm that the results can be extended to

ther video sequences, in Fig. 19 we present the speed-up ob-

ained by Option S-III encoding 240 frames in LB mode for

he following four videos sequences: BasketballPass_416x240_50.yuv

44 H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49

Fig. 20. Percentage of bit rate increase for the parallel algorithms.

Table 2

Luminance PSNRs (dB) for parallel algorithms.

Algorithms 1 Proc 2 Proc 4 Proc 8 Proc

Option S-II-LB-480 frames 31.28 31.24 31.19 31.04

Option S-III-LB-480 frames 31.28 31.29 31.32 31.37

Option S-II-LP-480 frames 31.15 31.11 31.05 30.94

Option S-III-LP-480 frames 31.15 31.16 31.18 31.21

Option S-II-RA-512 frames 31.92 31.90 31.87 31.80

Option S-III-RA-512 frames 31.92 31.93 31.94 31.95

Fig. 21. Bit rate and PSNR for Option S-V algorithm varying the GOP_BLOCK size

for LP mode.

i

r

o

n

e

V

G

b

t

b

i

c

o

p

s

t

r

s

c

4

a
(BP), FourPeople_1280x720_60.yuv (FP), RaceHorses _832x480_30.yuv

(RHC) and BQTerrace_1920x1080_60.yuv (BQ). As it can be seen in

Fig. 19 , the behavior for all sequences is similar. It is important to

remark that we have used video sequences with different frame

resolutions and frame rates.

As previously mentioned, the parallel versions do not provide

the same results than the ones produced by the sequential algo-

rithm. So, in Fig. 20 we show how parallel versions increase the

bit rate obtained with respect to the sequential version. It is im-

portant to remark that Fig. 20 shows results for options S-II and

S-III, but not for Option S-IV, because in this case the parallel and

the sequential versions exhibit the same bit rate. Furthermore, we

can observe that the bit rate increase introduced by Option S-I al-

gorithm is not acceptable. This algorithm drastically changes the

structure of the reference pictures and as a consequence it causes

the large bit rate increase. In all cases the bit rate increase be-

comes larger as the number of processes does.

Table 2 shows the PSNR data, i.e., video quality measurement,

for the parallel algorithms S-II and S-III. We can observe that the

quality of the encoded video decreases when using Option S-II al-

gorithm, although, in Fig. 20 , we have shown that the bit rate in-

creases. However, the bit rate increase introduced by the Option

S-III algorithm, shown in Fig. 20 , is compensated by a quality in-

crease as it can be seen in Table 2 .
In order to analyze Option S-V parallel algorithm, we will take

nto account a new parameter which modifies the parallel algo-

ithm. As we saw in Fig. 13 , in Option S-V parallel algorithm

ne block of consecutive GOPs is assigned to each process. The

umber of GOPs of each block, GOP_BLOCK, is the new param-

ter. Note that if the GOP_BLOCK is equal to 1, both Option S-

 and Option S-I parallel algorithms are identical, while if the

OP_BLOCK size is equal to Number of Frames to Encode / Num-

er of Processes Option S-V and Option S-II parallel algorithms are

he same. Now, we will analyze Option S-V algorithm attending to

it rate and PSNR data. The results reported were obtained encod-

ng 256 and 512 frames. As we encode 512 frames using 8 pro-

essors, each process computes 64 frames, i.e., 16 GOPs when LB

r LP mode is used and 8 GOPs when RA mode is used. As ex-

ected, as we increase the GOP_BLOCK size the bit rate decreases,

ee Fig. 21 (a) for LP mode and Fig. 22 (a) for RA mode, and also

he PSNR improves, see Figs. 21 (b) and 22 (b) for LP and RA modes,

espectively.

After analyzing in detail the synchronous proposals, we can as-

ess that good computational results are obtained without appre-

iably affecting the performance of the HEVC encoder.

. Asynchronous GOP-based parallel algorithms

The synchronization processes in the previous algorithms imply

 fixed and structured Group of Pictures (GOP) computation, i.e.,

H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49 45

Fig. 22. Bit rate and PSNR for Option S-V algorithm varying the GOP_BLOCK size

for RA mode.

t

k

a

c

o

t

c

t

l

c

s

p

f

b

a

g

r

A

t

G

l

t

Fig. 23. Option A-I: parallel distribution.

Fig. 24. Option A-I: example of parallel distribution.

I

p

d

a

p

t

s

G

p

f

c

A

t

p

r

a

p

t

c

a

he number and the order of GOPS computed by each process is

nown (see Figs. 6, 8, 10, 12 and 14). In this section, we propose

synchronous algorithms based on the previously presented syn-

hronous algorithms, in which the next GOP to be computed by

ne process depends on the encoding state at the time of finishing

he computation of the actual GOP. The main goals of the asyn-

hronous algorithms are, on the one hand, to be able to balance

he computing load, and, on the other hand, to reduce the paral-

el overhead introduced by the synchronization processes. As the

omputational load assigned to each parallel process depends on

everal factors, like the video content (i.e motion estimation com-

lexity of one GOP depends on its motion activity), the number of

rames to encode and the number of parallel processes. As the load

alancing cannot be achieved using asynchronous versions of S-II

nd S-III (see Figs. 7 –10), we have developed the asynchronous al-

orithms A-I, A-IV and A-V which are versions of S-I, S-IV, and S-V,

espectively.

• Option A-I (LB, LP and RA): All processes encode the first I-

frame and include it in the reference picture list. Then each

process encodes the next uncoded GOP of the input video se-

quence. The GOP allocation order will depend on the order in

which each process finishes the encoding its current GOP.

• Option A-IV (AI): As in Option A-I, each new GOP computation

is assigned to the first process that becomes idle, but here all

GOPs are composed of a single I-frame.

• Option A-V (LB, LP and RA): As in Option A-I, all processes

encode the first I-frame and, after that, each process encodes

a fixed number of contiguous GOPs (GOP_BLOCK). The new

GOP_BLOCK allocation depends on which process becomes idle

first.

Fig. 23 shows the parallel distribution performed when Option

-I is used. There is no synchronization process until the end of

he overall computation. After the encoding process of the first

OP, i.e., one I-frame, each process encodes the first GOP regard-

ess the previously encoded GOP. As said before, the parallel dis-

ribution of Option A-IV, shown in Fig. 25 , is similar to Option A-
 parallel distribution, taking into account that each GOP is com-

osed by only one I-frame. One GOP computed by one process is

enoted by G (a b) and I G (a b)
in Figs. 23 and 25 , respectively, being

 the rank of the parallel process and b the number of GOP com-

uted by the process a . Also, on both figures, “x”, “y” and “z” are

he total number of GOPs computed by process “0”, “1” and “N” re-

pectively. Contrary to the synchronous algorithms, the number of

OPs computed by each process may vary depending on the com-

utational load assigned to each process.

In Fig. 24 we present an example for Option A-I, encoding 49

rames (the first I-frame and 12 GOPs of 4 frames). Note that we

annot ensure which GOPs are computed by each parallel process.

fter the first I-frame is encoded, each parallel process accesses

o the shared memory in order to know the next GOP to be com-

uted. This memory access is performed within an OpenMP critical

egion, in order to ensure that no more than one parallel process

ccesses to memory concurrently.

In Fig. 26 we present an example for Option S-IV in which each

arallel process encodes the same number of GOPs. Therefore, as

he number of frames to compute is 12, each parallel process en-

odes 4 frames. However, again, we cannot guarantee which GOPs

re computed by each parallel process.

46 H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49

Fig. 25. Option A-IV: parallel distribution.

Fig. 26. Option A-IV: example of parallel distribution.

Fig. 27. Option A-V: parallel distribution.

Fig. 28. Reading process.

Fig. 29. Option A-V: example of parallel distribution.

T

c

l

t

b

q

t

l

i

k

s

w

e

o

c

b

t

I

i

i

m

a

o
Option A-V parallel distribution is shown in Fig. 27 . As pre-

viously said in Section 3 , the main goals of Option S-V are, (a)

all processes are able to write data into the bit stream more fre-

quently than Options S-II and S-III, and (b) to reduce PSNR and bit

rate differences with respect to the sequential algorithm. In Option

A-V the same two goals are pursued but due to the fact that the

pattern of GOPs assigned to each process is determined at runtime,

the level of achievement of the goals may vary from one execution

to another. In Fig. 27 one GOP_BLOCK computed by one process is

denoted by G (a BGd) , where a denotes the rank of the parallel pro-

cess and BGd denotes the GOP_BLOCK number d computed by the

process a .

As we increase the GOP_BLOCK size, the asynchronous compu-

tation will probably be more similar to the synchronous model.
he asynchronous execution differs with respect to the syn-

hronous execution when (due to the unbalanced computational

oad) one process completes its GOP (or GOP_BLOCK) computa-

ion before another lower rank process. As every encoding process

egins with the reading of one complete GOP from the video se-

uence file, and reading is a sequential process, the encoding of

he first GOP is not a simultaneous process. There is a small de-

ay here, which accumulates as the parallel rank increases. Fig. 28

llustrates this behavior.

Note that in all asynchronous algorithms we cannot previously

now, the frames to be computed by each parallel process. Fig. 29

hows an example for Option A-V encoding 49 frames. In contrast

ith Fig. 14 , in which the execution is accurately described, the

xample shown in Fig. 29 is a simulation.

We want to remark that, in the asynchronous algorithms, a co-

rdination process is needed in such a way that each parallel pro-

ess could get, after the computation of a GOP, the next GOP to

e encoded. As it can be seen in Figs. 24, 26 and 29 , we use

he shared memory to perform the required coordination process.

n particular, we store in the global memory a variable contain-

ng the next GOP to be encoded. The first process that becomes

dle reads and updates this variable. These reading and updating

emory processes are performed inside a OpenMP critical region,

voiding problems due to concurrent accesses. As future work, in

rder to use distributed memory platforms, we will perform the

H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49 47

Fig. 30. Option A-IV parallel algorithms when computing 480 frames.

Table 3

Computational times for the asynchronous parallel algorithms for the LB

mode when computing 480 frames.

Algorithm 1 p 2 p 4 p 6 p 8 p 10 p

A-I 1807.2 1046.5 593.6 417.0 325.2 262.5

A-V 1807.2 1046.4 593.1 404.6 307.3 249.9

c

t

4

a

c

e

e

s

t

o

c

a

N

s

F

T

a

b

5

a

r

a

Fig. 31. Speed-up for the asynchronous parallel algorithms for the LB mode when

computing 480 frames.

Fig. 32. Synchronous and asynchronous comparison.

t

A

d

o

a

m

g

fi

l

t

p

m

l

o

t

i

s

c

l

a

p

c

v

p

s

c

I

t

(

s

t
oordination task through messages, using the Message Passing In-

erface (MPI) [19] .

.1. Asynchronous algorithms evaluation

In this subsection we analyze the proposed asynchronous par-

llel algorithms in terms of parallel performance under the same

onditions than the ones used in the synchronous algorithms

valuation.

Fig. 30 (a) shows the computational times for Option A-IV when

ncoding 480 frames while Fig. 30 (b) shows the corresponding

peed-ups. Option A-IV is related to the AI coding mode in which

here are no dependencies between frames. This parallel algorithm

ffers good time reductions when increasing the number of pro-

esses, achieving efficiencies close to the ideal ones.

In Table 3 we present the computational times for Option A-I

nd Option A-V parallel algorithms using the LB encoding mode.

ote that when using just 1 process, all proposed algorithms show

imilar timings than the ones obtained by the sequential version.

ig. 31 shows the speed-ups associated to the results shown in

able 3 . This figure confirms a good behavior of the proposed par-

llel algorithms, especially for Option A-IV which obtains slightly

etter speed-ups than Option A-V.

. Comparison results between synchronous and asynchronous

lgorithms

Finally, in this section we will compare the synchronous algo-

ithms explained in Section 3 , with respect to the asynchronous

lgorithms presented in Section 4 .
Fig. 32 shows a comparison, in terms of relative computational

ime savings, between synchronous and asynchronous algorithms.

s it can be seen, asynchronous algorithms obtain a slight time re-

uction that is increased as the number of processes does. Since

ur parallel test platform is an homogeneous computing platform

nd the computational load is balanced, the reduction time is

ainly due to the removal of the synchronization processes. Re-

arding the GOPs computed by each parallel process, we can con-

rm that all processes compute the same number of GOPs, i.e., the

oad is balanced.

As mentioned before, when using the asynchronous algorithms,

he pattern of the GOPs computed by each process may vary de-

ending on a particular execution, so both the bit rate and PSNR

ay be different depending on the order in which GOPs are al-

ocated to each process. However, in our experiments the pattern

f GOPs computed by each process remains unchanged respect to

he one found with synchronous algorithms. Therefore, concern-

ng to bit rate and PSNR, we can extend the conclusions of the

ynchronous algorithms to the asynchronous counterparts. We can

onsider the asynchronous algorithms significantly better when the

oad is unbalanced, either because the computing platform will be

n heterogeneous computing platform, or because the power com-

uting of some processors may be affected by other external pro-

esses, or because the GOPs assigned to each process involves di-

ergent computational loads.

In order to verify this statement, we have used a computing

latform, with only one quad core Intel Xeon F5640. As the GOP

ize for the AI mode is the smallest one (equal to 1), we have

ompared the synchronous S-IV mode with the asynchronous A-

V mode using up to 8 processes over 4 cores. In this case, as

he number of processes is greater than the number of processors

cores), the computational load is unbalanced because one proces-

or (core) must execute more than one process. In Fig. 33 , we show

he number of GOPs computed by each parallel process using a

48 H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49

Fig. 33. GOPs computed by each parallel process for the AI mode when computing 480 frames. QUADCORE platform.

Fig. 34. Synchronous and asynchronous comparison for the AI mode when com-

puting 480 frames. QUADCORE platform.

l

H

s

c

6

o

c

v

c

e

f

t

h

c

p

w

s

m

w

s

a

a

g

(

b

c

p

r

t

a

m

w

i

r

b

p

a
larger number of processes than the available processors in the

quad core platform. Obviously, when we use 5 processes one core

must execute 2 processes, using 6 processes two cores must exe-

cute 2 processes and using 7 processes three cores must execute

2 processes while the remaining ones must execute just 1 process.

Finally, when using 8 processes, all cores execute 2 processes, be-

ing again the load balanced. Looking at Fig. 33 , we can confirm that

the asynchronous mode automatically balances the load by assign-

ing higher number of GOPs to processors running only one process.

Fig. 34 shows the computational times and speed-up using up

to 8 processes in the quad core platform. This figure confirms that

the computational results for the asynchronous mode are always

better than for the synchronous mode, due to the load balanc-

ing performed in the asynchronous mode. Moreover, in the syn-

chronous mode, the speed-up gets worse as the computational
oad is more unbalanced, i.e., for 5 processes in our experiment.

owever, in the asynchronous mode, the speed-up remains con-

tant when the number of processes is higher than the number of

ores, i.e., when the computational load is unbalanced.

. Conclusions

In this paper we have proposed several parallel algorithms

f the HEVC video encoder. These algorithms are based on a

oarser grain parallelization approach with the organization of

ideo frames in Group Of Pictures (GOP) and different GOP allo-

ation schemes. A good parallel behavior has been shown in the

xperiments reported, which were obtained using a multicore plat-

orm. However the developed algorithms are able to run on dis-

ributed memory architectures since a coarser grain parallelization

as been used. We have presented results using the different en-

oding modes proposed by the reference software, analyzing its

erformance. After implementing the algorithms in the HEVC soft-

are some experiments were performed showing interesting re-

ults as (a) GOP organization determines the final coding perfor-

ance, being the best approach Option S-IV (AI mode) algorithm

hen comparing both sequential and parallel versions in terms of

peed-up/efficiency; (b) although Option S-III algorithm introduces

 bit rate overhead as the number of processes increases, the over-

ll parallel performance and the improvements in PSNR make it a

ood approach when LB, LP or RA coding modes are demanded;

c) Option S-V algorithm offers similar features than Option S-III

ut with the ability to update the bit stream during encoding pro-

ess with data obtained from all processes, not just from the root

rocess; and (d) asynchronous versions of S-I, S-IV y S-V algo-

ithms were provided showing slightly lower encoding times with

he ability of load-balancing the input workload among the avail-

ble processes. Some experiments prove this special feature that

ay be crucial in certain heterogeneous computing platforms or

hen source video has high variable motion content that produces

rregular workloads at the encoder.

In general, all proposed versions attain high parallel efficiency

esults, showing that GOP-based parallelization approaches should

e taken into account to reduce the HEVC video encoding com-

lexity. As future work, we will explore hierarchical parallelization

pproaches combining GOP-based approaches with slice and tile

H. Migallón et al. / Advances in Engineering Software 101 (2016) 37–49 49

p

o

A

t

M

C

R

[

[

[

[

[

[

[

[
arallelization levels, which are aimed to exploit the shared mem-

ry parallelism rather than the distributed memory parallelism.

cknowledgments

This research was supported by the Spanish Ministry of Educa-

ion and Science under Grant TIN2011-27543-C03-03, the Spanish

inistry of Science and Innovation under Grants TIN2015-66972-

5-4-R and TIN2011-15734-E .

eferences

[1] Bross B., Han W., Ohm J., Sullivan G., Wang Y.-K., Wiegand T.. High effi-
ciency video coding (HEVC) text specification draft 10. Document JCTVC-L1003.

Geneva: JCT-VC.
[2] ITU-T, ISO/IEC JTC 1, Advanced video coding for generic audiovisual services,

ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC) version 16. 2012.
[3] Sullivan G , Ohm J , Han W , Wiegand T . Overview of the high efficiency

video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol

2012;22(12):1648–67 .
[4] Bossen F , Bross B , Suhring K , Flynn D . HEVC complexity and implementation

analysis. IEEE Trans Circuits Syst Video Technol 2012;22(12):1685–96 .
[5] Alvarez-Mesa M , Chi C , Juurlink B , George V , Schierl T . Parallel video decoding

in the emerging HEVC standard. In: Proceedings of international conference on
acoustics, speech, and signal processing, Kyoto; 2012. p. 1–17 .

[6] Ayele E , Dhok SB . Review of proposed high efficiency video coding (HEVC)

standard. Int J Comput Appl 2012;59(15):1–9 .
[7] Chi CC , Alvarez-Mesa M , Juurlink B , Clare G , Henry F , Pateux S , et al. Parallel

scalability and efficiency of HEVC parallelization approaches. IEEE Trans Cir-
cuits Syst Video Technol 2012;22(12):1827–38 .
[8] Chi CC , Alvarez-Mesa M , Lucas J , Juurlink B , Schierl T . Parallel HEVC decoding
on multi- and many-core architectures. J Signal Process Syst 2013;71(3):247–

60 .
[9] Bross B , Han W-J , Ohm J-R , Sullivan GJ , Wang Y-K , Wiegand T . High efficiency

video coding (HEVC) text specification draft 10. Technical report JCTVC-l1003.
Geneva, Switzerland: Joint Collaborative Team on Video Coding (JCT-VC); Jan-

uary 2013 .
10] Yu Q , Zhao L , Ma S . Parallel AMVP candidate list construction for HEVC. In:

Proceedings of VCIP’12; 2012. p. 1–6 .

[11] González D , Botella G , García C , Prieto M , Tirado F . Acceleration of block-
matching algorithms using a custom instruction-based paradigm on a NIOS II

microprocessor. EURASIP J Adv Signal Process 2013;1:1–20 .
12] González D , Botella G , Meyer-Baese U , García C , Sanz C , Prieto M , et al. A low

cost matching motion estimation sensor based on the NIOS II microprocessor.
Sensors 2012;12(10):13126–49 .

13] Jiang J , Guo B , Mo W , Fan K . Block-based parallel intra prediction scheme for

HEVC. J Multimed 2012;7(4):289–94 .
14] Bolc L , Tadeusiewicz R , Chmielewski L , Wojciechowski K . Diamond scanning

order of image blocks for massively parallel HEVC compression. Lect Notes in
Comput Sci 2012;7594:172–9 .

15] Yan C , Zhang Y , Dai F , Liang L . Efficient parallel framework for HEVC deblocking
filter on many-core platform. In: Proceedings of data compression conference

(DCC); 2013 .

16] Migallón H, Hernández-Losada J, Cebrián-Márquez G, nol PP, Martínez J, López-
Granado O. OpenMP HEVC parallel version based on a gop approach. Proceed-

ings of the ninth international conference on engineering computational tech-
nology. Iványi P, Topping B, editors. Stirlingshire, UK: Civil-Comp Press; 2014.

doi: 10.4203/ccp.105.24 .
[17] HEVC Reference Software, https://hevc.hhi.fraunhofer.de/svn/svn _

HEVCSoftware/tags/HM-10.0/ [accessed 01.31.13].

18] OpenMP Architecture Review Board. OpenMP application program interface,
version 3.1. http://www.openmp.org [accessed 09.05.11].

19] MPI Forum. MPI: a message-passing interface standard. Version 2.2. http://
www.mpi-forum.org ; December 2009 [accessed 04.09.09].

http://dx.doi.org/10.13039/501100004837
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30028-X/sbref0013
http://dx.doi.org/10.4203/ccp.105.24
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-10.0/
http://www.openmp.org
http://www.mpi-forum.org

	Synchronous and asynchronous HEVC parallel encoder versions based on a GOP approach
	1 Introduction
	2 HEVC coding modes and parallel strategies
	3 Synchronous GOP-based parallel algorithms
	3.1 Synchronous algorithms evaluation

	4 Asynchronous GOP-based parallel algorithms
	4.1 Asynchronous algorithms evaluation

	5 Comparison results between synchronous and asynchronous algorithms
	6 Conclusions
	 Acknowledgments
	 References

