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We consider the problem of solving large sparse linear systems where the coefficient matrix is possibly sin-

gular but the equations are consistent. Block two-stage methods in which the inner iterations are performed

using alternating methods are studied. These methods are ideal for parallel processing and provide a very

general setting to study parallel block methods including overlapping. Convergence properties of these meth-

ods are established when the matrix in question is either M-matrix or symmetric matrix. Different parallel

versions of these methods and implementation strategies, with and without overlapping blocks, are explored.

The reported experiments show the behavior and effectiveness of the designed parallel algorithms by exploit-

ing the benefits of shared memory inside the nodes of current SMP supercomputers.

© 2015 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

1

A

w

m

M

a

w

c

i

T

x

f

A

w

r

d

t

R

P

M

c

t

e

s

z

h

0

. Introduction

Consider the problem of solving a linear system

x = b, (1)

here A is an n × n matrix such that b is in R(A), the range of A.

Given a splitting A = M − N (M nonsingular), a classical iterative

ethod produces the following iteration scheme

x(l+1) = Nx(l) + b, l = 0, 1, . . . . (2)

On the other hand, when the linear systems (2) are not solved ex-

ctly, but rather their solutions approximated by iterative methods,

e are in the presence of a two-stage method (see e.g. [1,2]). That is,

onsider the splitting M = F − G and perform, at each outer step l, q(l)

nner iterations of the iterative procedure induced by this splitting.

hus, the two-stage method can be written as follows

(l+1) = (F−1G)q(l)x(l) +
q(l)−1∑

j=0

(F−1G) jF−1(Nx(l) + b), l = 0, 1, . . . .

(3)
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Without loss of generality, let us assume that the matrix A has the

orm

=

⎡
⎢⎢⎢⎢⎣

A11 A12 · · · A1r

A21 A22 · · · A2r

...
...

...

Ar1 Ar2 · · · Arr

⎤
⎥⎥⎥⎥⎦, (4)

ith the diagonal blocks Aii being square of order ni, 1 ≤ i ≤
,

∑r
i=1 ni = n. Let A = M − N be a splitting of A such that M is a block

iagonal matrix M = Diag{M1, . . . , Mi, . . . , Mr}, and let us consider

he splittings Mi = Bi − Ci, Mi = Fi − Gi, 1 ≤ i ≤ r. Let M = Pi − Qi =
i − Si be splittings of the matrix M such that

i = Diag{I, . . . , Bi, . . . , I}, Ri = Diag{I, . . . , Fi, . . . , I}. (5)

oreover, let the n × n diagonal matrices Ei have ones in the entries

orresponding to the diagonal block Mi and zero otherwise. In order

o approximate the linear systems (2) we perform, at each outer it-

ration l, q(i, l) inner iterations of the following alternating iterative

cheme:

(k+ 1
2 )

i
= P−1

i
Qiz

(k)
i

+ P−1
i

(Nx(l) + b),

z(k+1)
i

= R−1
i

Siz
(k+ 1

2 )

i
+ R−1

i
(Nx(l) + b), k = 0, 1, . . . , q(i, l) − 1,

ith z(0) = x(l), or equivalently

(k+1)
i

= R−1
i

SiP
−1
i

Qiz
(k) + R−1

i
(SiP

−1
i

+ I)(Nx(l) + b),

k = 0, 1, . . . , q(i, l) − 1.
gorithms with and without overlapping on multicore architectures,
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Thus, for l = 0, 1, . . . , the alternating two-stage method can be writ-

ten as follows,

x(l+1) =
r∑

i=1

Eiz
q(i,l)
i

=
r∑

i=1

Ei[(R−1
i

SiP
−1
i

Qi)
q(i,l)x(l)

+
q(i,l)−1∑

j=0

(R−1
i

SiP
−1
i

Qi)
jR−1

i
(SiP

−1
i

+ I)(Nx(l) + b)]. (6)

Note that the global iteration matrix of the alternating two-stage it-

erative method (6) can be written as T (l) = ∑r
i=1 EiT

(l)
i

, with

T (l)
i

= (R−1
i

SiP
−1
i

Qi)
q(i,l) +

q(i,l)−1∑
j=0

(R−1
i

SiP
−1
i

Qi)
jR−1

i
(SiP

−1
i

+ I)N, (7)

or equivalently as

T (l) =
r∑

i=1

Ei[(R−1
i

SiP
−1
i

Qi)
q(i,l) + (I − (R−1

i
SiP

−1
i

Qi)
q(i,l))M−1N]. (8)

With the above notation, the iterative scheme (6) describes an

alternating two-stage Block-Jacobi type method but note that this

method is much more general if, for example other matrices M, Pi,

Ri and/or Ei are chosen. Particularly if Pi = P, Ri = R for all i = 1, . . . , r,

this iteration scheme includes the alternating method described in

[3] but this general formulation allows us to include overlapping set-

ting the weighting diagonal nonnegative matrices Ei such that they

add up to the identity. From a theoretical point of view, under cer-

tain hypotheses, the presence of overlap can reduce the convergence

rate of the iterative solvers in the nonsingular case. Therefore, if the

extra work required by the use of overlap is offset by a reduction in

the number of iterations, probably the computation time will be re-

duced; see [4] and [5]. The experiments performed in [4] have been

executed in only one processor using Matlab for the code imple-

mentation. However, to run the experiments of [5], a parallel block

iterative code was implemented with the Block Jacobi method as

the outer iteration and the point Gauss-Seidel method as the in-

ner iteration. The test matrix was generated from the discretization

of the Laplace’s equation using the standard five-point stencil and

the experiments were performed on a parallel computer using 16

processors. As compared to the non-overlapping implementation, the

parallel implementation with overlapping blocks achieved a time re-

duction about 5%, when the involved parameters in both algorithms

were chosen near to the optimal values.

Despite the fact that the behavior of the convergence rate of the

block-based iterative solvers with overlap is an open question, spe-

cially in the singular case, some numerical results given in [6] show

that overlap can also improve the asymptotic convergence factor and

the sequential execution time of iterative methods for singular sys-

tems, and specifically for ergodic Markov chains.

The use of quite general weighting matrices in (6) allows us the

study of truly parallel methods (with or without overlap), i.e., meth-

ods in which each processor computes an approximation to the solu-

tion of a problem which is much smaller than the original problem.

Recently convergence of (6) has been analyzed in the context of solv-

ing nonsingular linear systems obtaining similar convergence results

to those obtained in [3]; see [7] and [8]. In this paper we give con-

vergence results of these methods considering the general formula-

tion for consistent linear systems. Concretely, in Section 3, we give

convergence results of these methods when M-matrices or symmet-

ric matrices are considered. The numerical experiments performed

in Section 4 explore the behavior of these parallel algorithms for the

solution of singular and nonsingular systems. Previously, in Section 2,

we present some definitions and preliminaries that are used later in

the paper. The conclusions are given in Section 5. This paper is based

upon Migallón et al. [9], but the current paper includes the following

additional research: new convergence results for symmetric positive
Please cite this article as: H. Migallón et al., Parallel alternating iterative al
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emidefinite matrices are given and new parallel versions of these

ethods and implementation strategies, with and without overlap-

ing blocks, are explored.

. Notation and preliminaries

In this section we summarize some definitions and theoretical re-

ults used later in the paper. Concretely, main results about the ex-

stence and uniqueness of splittings for stationary iterative methods

re presented, the theoretical concepts of convergent and semicon-

ergent matrix are introduced along with the most important results

hat will be used in Section 3 to study the convergence of the alternat-

ng two-stage method when the coefficient matrix is both a singular

-matrix or a symmetric positive semidefinite matrix.

A general matrix A is called an M-matrix if A can be expressed as

= sI − B, with B ≥ O, s > 0, and ρ(B) ≤ s. The M-matrix A is singular

hen s = ρ(B) and nonsingular when s > ρ(B). Let Zn × n denote the

et of all real n × n matrices which have all non-positive off-diagonal

ntries. A splitting A = M − N is called regular if M−1 ≥ O and N ≥ O,

nd weak regular if M−1 ≥ O and M−1N ≥ O.

emma 1 ([2]). Given a nonsingular matrix A and a matrix T such that

I − T)−1 exists, there is a unique pair of matrices P, Q such that P is

onsingular, T = P−1Q and A = P − Q. The matrices are P = A(I − T)−1

nd Q = P − A.

In the context of Lemma 1, it is said that the unique splitting A =
− Q is induced by the iteration matrix T. We point out that when

he matrix A is singular, the induced splitting is not unique; see e.g.,

10].

heorem 1 ([10]). Let A be a nonsingular matrix such that A−1 ≥ O.

et A = M − N = P − Q be weak regular splittings. Consider the matrix

= P−1QM−1N, then ρ(T) < 1. Furthermore there is a unique pair of

atrices B, C, such that A = B − C is a weak regular splitting and T =
−1C.

Let T ∈ �n × n, by σ (T) we denote the spectrum of the matrix T.

e define γ (T) = max{|λ| : λ ∈ σ(T), λ �= 1}. We say that two

ubspaces S1 and S2 on �n are complementary if S1 ⊕ S2 = �n, i.e.,

f S1 ∩ S2 = {0} and S1 + S2 = �n. The index of a square matrix T,

enoted by ind˜T, is the smallest nonnegative integer k such that

(T k+1) = R(T k). By ind1T we denote the index associated with the

alue one, i.e., ind1T = ind(I − T). Note that when ρ(T) = 1, ind1T ≤ 1

f and only if ind1T = 1. We say that a matrix T ∈ �n × n, is convergent

f limk→∞ T k = O. It is well known that a matrix T is convergent if and

nly if ρ(T) < 1. By N (T) we denote the null space of T. We say that

is semiconvergent if limk → ∞Tk exists, although it need not be the

ero matrix. If, on the other hand, ρ(T) = 1, two different conditions

eed to be satisfied to guarantee semiconvergence, as the following

esult shows.

heorem 2 ([11]). Let T ∈ �n × n, with ρ(T) = 1. The matrix T is semi-

onvergent if and only if the following two statements hold.

(a) 1 ∈ σ (T) and γ (T) < 1,

(b) N (I − T) ⊕ R(I − T) = �n.

Condition (b) is equivalent to the existence of the group inverse

I − T)#, and it is also equivalent to having ind1T = 1; see, e.g., [12].

efinition 1 ([12]). Let A ∈ �n × n, and consider the following matrix

quations.

(1) AXA = A,

(2) XAX = X, and

(3) AX = XA.

A {1, 2}-inverse of A is a matrix X which satisfies conditions (1)

nd (2). If, in addition, X satisfies condition (3), X is said to be a group

nverse of A.
gorithms with and without overlapping on multicore architectures,
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Note that the group inverse A# of a matrix A, if it exists, is unique

nd when A is nonsingular, each generalized inverse coincides with
−1.

heorem 3 ([12]). Let T ∈ �n × n, with T ≥ O, and let C be a {1, 2}-inverse

f I − T with R(C) complementary to N (I − T), such that C is nonnega-

ive on R(I − T), i.e., the matrix C satisfies the following conditions.

(i) I − T = (I − T)C(I − T),
(ii) C = C(I − T)C,

(iii) N (I − T) ⊕ R(C) = �n,

(iv) If x ∈ R(I − T), x ≥ 0 then Cx ≥ 0.

Then, ρ(T) ≤ 1, and ind1(T) ≤ 1.

emma 2 ([12]). Let T ∈ �n × n be semiconvergent. Then

lim
→∞

T k = I − (I − T)(I − T)#.

heorem 4 ([13]). Let A(l), l = 0, 1, . . . , be a sequence of square com-

lex matrices such that each group inverse (I − A(l))# exists. Suppose

hat there is a subspace S satisfying N (I − A(l)) = S, l = 0, 1, . . . . If

here exists a matrix norm ‖ · ‖ such that the set {‖A(l)‖}∞
l=0

re-

ains bounded and ‖A(l)(I − A(l))(I − A(l))#‖ ≤ θ < 1, l = 0, 1, . . . ,

hen limi→∞ A(l)A(l−1) · · · A(0) = P, where P is a projection matrix onto

he subspace S.

efinition 2 ([12]). A general M-matrix A is said to have property c if

or some representation of A = sI − B, s > 0, B ≥ O, the matrix s−1B is

emiconvergent.

Obviously, a nonsingular M-matrix always has property c.

heorem 5 ([11]). Let A ∈ Zn × n. Let A = M − N be a regular splitting,

nd let T = M−1N. Then A is an M-matrix with property c if and only if

(T) ≤ 1, and N (I − T) ⊕ R(I − T) = �n.

The transpose and the conjugate transpose of a matrix A ∈ C
n×n

re denoted by AT and AH, respectively. Similarly, given a vector x ∈
n, xT and xH denote the transpose and the conjugate transpose of

, respectively. A matrix A ∈ C
n×n is said to be symmetric if A = AT ,

nd Hermitian if A = AH . Clearly a real symmetric matrix is a particu-

ar case of a Hermitian matrix. A complex, not necessarily Hermitian

atrix A, is called positive definite (positive semidefinite) if the real

art of xHAx is positive (nonnegative), for all complex x �= 0. When A

s Hermitian, this is equivalent to requiring that xHAx > 0 (xHAx ≥ 0),

or all complex x �= 0. A general matrix A is positive definite (positive

emidefinite) if and only if the Hermitian matrix A + AH is positive

efinite (positive semidefinite). Given a matrix A ∈ C
n×n, the splitting

= M − N is called P-regular if the matrix MH + N is positive definite.

f a matrix A is symmetric positive definite it induces a vector norm

x‖A = (xT Ax)
1
2 .

emma 3 ([14]). Let A be a symmetric positive definite matrix and let

= B − C be a P-regular splitting. Given s ≥ 1, the unique splitting in-

uced by (B−1C)s is also a P-regular splitting.

heorem 6 ([14]). Let A be a Hermitian positive definite matrix. Let

= M − N = P − Q be P-regular splittings. Consider the matrix T =
−1QM−1N, then ρ(T) < 1. Moreover, the unique splitting A = B − C in-

uced by the iteration matrix T, such that T = B−1C, is also P-regular.

heorem 7 ([12]). Let A = M − N be a P-regular splitting of a symmetric

atrix A. Then the matrix M−1N is semiconvergent if and only if A is

ositive semidefinite.

heorem 8 ([15]). Let A be a symmetric positive definite matrix. A split-

ing A = M − N is P-regular if and only if ‖M−1N‖ < 1.
A x

Please cite this article as: H. Migallón et al., Parallel alternating iterative al
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. Convergence

In this section we analyze the convergence of the alternating two-

tage method (6) in the context of singular M-matrices and symmet-

ic positive semidefinite matrices. Additionally, these results are ex-

ended to the nonsingular case. First of all we proceed to study the

onvergence of the alternating two-stage method when A is an M-

atrix with property c.

heorem 9. Let A be an M-matrix with property c. Let the splitting A =
− N be regular, and the splittings M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be

eak regular. Then, the matrices T (l), l = 0, 1, . . . , defined in (7), satisfy

(T(l)) ≤ 1 and ind1T(l) ≤ 1.

roof. From (8), it follows that I − T (l) = (I − H(l))(I − M−1N), l =
, 1, . . . , where H(l) = ∑r

i=1 Ei(R−1
i

SiP
−1
i

Qi)
q(i,l). From [16, Theo-

em 2.1] and Theorem 1 it follows that ρ(H(l)) < 1. Therefore (I −
(l))−1 exists. On the other hand the existence of (I − M−1N)# fol-

ows from Theorem 5. Let us consider the matrix C = (I − M−1N)#(I −
(l))−1. Using Definition 1, the matrix C satisfies conditions (i) and (ii)

f Theorem 3. Furthermore, R(C) = R((I − M−1N)#) = R(I − M−1N)
nd N (I − T (l)) = N (I − M−1N) = N (A). Moreover, from Theorem 5,

t follows that R(I − M−1N) and N (I − M−1N) are complementary.

et x ∈ R(I − T (l)), x ≥ 0, then following Theorem 3, to conclude the

roof we need to show that Cx ≥ 0. Since M−1N ≥ O and (I − M−1N)#

xists, it follows from [17, Theorem 2] that (I − M−1N)# is nonnega-

ive on R(I − M−1N). Taking into account that (I − H(l))−1x ∈ R(I −
−1N) and (I − H(l))−1x ≥ 0, the proof is complete. �

heorem 10. Let A be an M-matrix with property c. Let the splitting

= M − N be regular, and the splittings M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r

e weak regular. Assume further that the diagonal entries of the matri-

es P−1
i

Qi and R−1
i

Si, are positive. Then, the matrices T (l), l = 0, 1, . . . ,

efined in (7), are semiconvergent.

roof. From the hypotheses it follows for all l = 0, 1, . . . , that the

atrices

(l) =
r∑

i=1

Ei[(R−1
i

SiP
−1
i

Qi)
q(i,l)

+
q(i,l)−1∑

j=0

(R−1
i

SiP
−1
i

Qi)
jR−1

i
(SiP

−1
i

+ I)N],

re nonnegative and have positive diagonal entries. Moreover, from

heorem 9, the matrices T (l), l = 0, 1, . . . , satisfy condition (b) of

heorem 2. Therefore, using the result in [18, Theorem 2], the proof is

omplete. �

heorem 11. Let A be an M-matrix with property c. Let the splitting

= M − N be regular, and the splittings M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r

e weak regular. Then, for each δ ∈ (0, 1), the matrices T
(l)
δ

= δT (l) +
1 − δ)I, l = 0, 1, . . . , with T(l) defined in (7), are semiconvergent.

roof. Since I − T
(l)
δ

= δ(I − T (l)), l = 0, 1, . . . , from Theorem 9 it fol-

ows, for each δ ∈ (0, 1), that ρ(T
(l)
δ

) ≤ 1 and N (I − T
(l)
δ

) ⊕ R(I −
(l)
δ

) = �n, l = 0, 1, . . . . Moreover, T(l) ≥ O. Thus (see e.g., [12, Exer-

ise 6.4.3]), T
(l)
δ

has only the eigenvalue one on the unit circle, and

rom Theorem 2 it follows that T
(l)
δ

is semiconvergent for all δ ∈ (0,

). �

Note that in Theorem 10 we have assumed that the matrices P−1
i

Qi

nd R−1
i

Si, have positive diagonal entries. However, the iteration ma-

rices of some classical alternating iterative methods do not have this

roperty. In order to ensure that condition (a) of Theorem 2 holds,

rom Theorem 11 it follows that equation (6) can be replaced in the

lternating two-stage method by

(l+1) = δ(T (l)x(l) + c ) + (1 − δ)x(l), l = 0, 1, . . . . (9)
l

gorithms with and without overlapping on multicore architectures,
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Theorem 12. Let A be an M-matrix with property c. Let the splitting

A = M − N be regular, and the splittings M = Pi − Qi = Ri − Si be weak

regular. Assume that the sequence of inner iterations {q(i, l)}∞
l=0

satisfies

q(i, l) = q(i), l = 0, 1, . . . . Then the following two results hold.

(a) If the diagonal entries of the matrices P−1
i

Qi and R−1
i

Si, are

positive, the alternating two-stage method (6) converges to a

solution of the consistent linear system Ax = b, for any initial

vector x(0).

(b) The alternating two-stage method (6) with the modification (9),

converges to a solution of the consistent linear system Ax = b, for

any initial vector x(0).

Proof. Since q(i, l) = q(i), l = 0, 1, . . . , then there is a single iteration

matrix, i.e.,

T (l) = T =
r∑

i=1

Ei[(R−1
i

SiP
−1
i

Qi)
q(i)

+
q(i)−1∑

j=0

(R−1
i

SiP
−1
i

Qi)
jR−1

i
(SiP

−1
i

+ I)N].

Let x∗ be a solution of (1), then e(l) = x(l) − x∗ = Te(l−1) = T le(0),

for l = 1, 2, . . . . In the case (a), from Theorem 10, T is semiconvergent,

and from Lemma 2 it follows that

lim
l→∞

e(l) = lim
l→∞

T le(0) = [I − (I − T)(I − T)#]e(0) ∈ N (I − T) = N (A)

Therefore, the proof of part (a) is complete. The proof of part (b) is

analogous, but using Theorem 11. �

Theorem 13. Let A be an M-matrix with property c. Let the splitting

A = M − N be regular, and the splittings M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r

be weak regular. Suppose that there exists a matrix norm ‖ · ‖ such

that ‖T (l)(I − T (l))(I − T (l))#‖ < 1, l = 0, 1, . . . , where T(l) are defined

in (7). Assume further that the sequence of inner iterations q(i, l), l =
0, 1 . . . , 1 ≤ i ≤ r remains bounded. Then, the alternating two-stage it-

erative method (6) converges to a solution of the consistent linear system

Ax = b, for any initial vector x(0)

Proof. The proof is an immediate consequence of Theorems 4 and

9. �

Note that in the particular case in which A is a nonsingular M-

matrix, the hypotheses of Theorem 13 can be lightened as follows.

Theorem 14. Let A be a nonsingular M-matrix. Let the splitting A =
M − N be regular, and the splittings M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be

weak regular. Then, the alternating two-stage iterative method (6) con-

verges to the solution of the nonsingular linear system Ax = b, for any

initial vector x(0) and for any sequence of inner iterations q(i, l), l =
0, 1 . . . , 1 ≤ i ≤ r.

Proof. Reasoning as in Theorem 15 of [3] the iteration matrices can

be written as

T (l) =
r∑

i=1

Ei[(B−1
i

Ci)
q(i,l) + (I − (B−1

i
Ci)

q(i,l))M−1N], l = 0, 1, . . . ,

such that B−1
i

Ci = R−1
i

SiP
−1
i

Qi, and M = Bi − Ci, 1 ≤ i ≤ r are weak reg-

ular splittings. Therefore the matrices T (l), l = 0, 1, . . . , can be seen as

the iteration matrices of a two-stage multisplitting method. There-

fore using the result of Theorem 3.2 in [19] the proof is complete. �

Next we study the symmetric positive semidefinite case.

Theorem 15. Let A be a symmetric positive semidefinite matrix. Let

the splitting A = M − N be such that M is a symmetric positive defi-

nite matrix and N is a positive semidefinite matrix. Let M = Pi − Qi =
R − S , 1 ≤ i ≤ r be P-regular splittings and E = α I, 1 ≤ i ≤ r, with
i i i i
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i > 0 and
∑r

i=1 αi = 1. Assume that the sequence of inner itera-

ions {q(i, l)}∞
l=0

satisfies q(i, l) = q(i), l = 0, 1, . . . . Then the alternat-

ng two-stage method (6) converges to a solution of the consistent linear

ystem Ax = b, for any initial vector x(0).

roof. Since q(i, l) = q(i), l = 0, 1, . . . , then there is a single iteration

atrix, i.e.,

(l) = T =
r∑

i=1

Ei[(R−1
i

SiP
−1
i

Qi)
q(i) + (I − (R−1

i
SiP

−1
i

Qi)
q(i))M−1N].

oreover, from Theorem 6, for each i, 1 ≤ i ≤ r, there exists a pair

f matrices Bi, Ci, such that R−1
i

SiP
−1
i

Qi = B−1
i

Ci, M = Bi − Ci is a P-

egular splitting and ρ(B−1
i

Ci) < 1. Therefore, I − (B−1
i

Ci)
q(i) is a non-

ingular matrix. Thus, from Lemma 1 and Lemma 3 it follows that

he splitting induced by (B−1
i

Ci)
q(i), namely M = B̂i − Ĉi, with B̂i =

(I − (B−1
i

Ci)
q(i))−1, is P-regular.

On the other hand, since each matrix B̂i is positive definite, the

atrix
∑r

i=1 EiB̂i

−1
is positive definite, and therefore nonsingular.

oreover ρ(
∑r

i=1 EiB̂i

−1
Ĉi) < 1.

Let B̂ = (
∑r

i=1 EiB̂i

−1
)−1 and Ĉ = B̂(

∑r
i=1 EiB̂i

−1
Ĉi). Then taking

nto account that M = B̂ − Ĉ, it obtains

(l) = T =
r∑

i=1

EiB̂i

−1
Ĉi +

(
I −

r∑
i=1

EiB̂i

−1
Ĉi

)
M−1N

= B̂−1(Ĉ + (B̂ − Ĉ)M−1N) = B̂−1(Ĉ + N).

hus, the splitting A = B̂ − (Ĉ + N) is a (non-unique) splitting induced

y T. Since B̂T + Ĉ is positive definite and N is positive semidefinite,
ˆT + Ĉ + N is positive definite and thus this splitting is P-regular.

herefore, from Theorem 7 it follows that T is a semiconvergent ma-

rix and the proof is completed. �

heorem 16. Let A be a symmetric positive semidefinite matrix. Let

he splitting A = M − N be such that M is a symmetric positive defi-

ite matrix and N is a positive semidefinite matrix. Let M = Pi − Qi =
i − Si be P-regular splitting and Ei = αiI, 1 ≤ i ≤ r, with αi > 0 and

r
i=1 αi = 1. Suppose that there exists a matrix norm ‖ · ‖ such that

T (l)(I − T (l))(I − T (l))#‖ < 1, l = 0, 1, . . . , where T(l) are defined in

7). Assume further that the sequence of inner iterations {q(i, l)}∞
l=0

re-

ains bounded. Then, the alternating two-stage iterative method (6)

onverges to a solution of the consistent linear system Ax = b, for any

nitial vector x(0).

roof. The proof is an immediate consequence of Theorems 4 and

5. �

We want to point out that in the particular case in which A is a

ymmetric positive definite matrix the linear system (1) is nonsingu-

lar and then the following results hold.

Corollary 1. Let A be a symmetric positive definite matrix. Let the split-

ting A = M − N be such that M is symmetric and N is a positive semidef-

inite matrix. Let M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be P-regular splittings

nd Ei = αiI, 1 ≤ i ≤ r, with αi > 0 and
∑r

i=1 αi = 1. Assume that the se-

uence of inner iterations {q(i, l)}∞
l=0

satisfies q(i, l) = q(i), l = 0, 1, . . . .

hen the alternating two-stage method (6) converges to the solution of

he nonsingular linear system Ax = b, for any initial vector x(0).

orollary 2. Let A be a symmetric positive definite matrix. Let the split-

ing A = M − N be such that M is symmetric and N is a positive semidef-

nite matrix. Let M = Pi − Qi = Ri − Si be P-regular splittings and Ei =
iI, 1 ≤ i ≤ r, with αi > 0 and

∑r
i=1 αi = 1. Suppose that there exists a

atrix norm ‖ · ‖ such that ‖T (l)(I − T (l))(I − T (l))#‖ < 1, l = 0, 1, . . . ,

here T(l) are defined in (7). Assume further that the sequence of inner

terations {q(i, l)}∞
l=0

remains bounded. Then, the alternating two-stage

terative method (6) converges to the solution of the nonsingular linear

ystem Ax = b, for any initial vector x(0).
gorithms with and without overlapping on multicore architectures,
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In [8], the authors give convergence results for the alternating

wo-stage method (6) similar to Corollary 1 but considering weight-

ng matrices Ei ≥ O, 1 ≤ i ≤ r and
∑r

i=1 Ei = 1. However, we point

ut that if the weighting matrices Ei are of this form, the alternat-

ng two-stage iterative method (6) may not converge when A is sym-

etric positive semidefinite (or symmetric positive definite), even

hough the splittings satisfy Theorem 15 or 16 (Corollary 1 or 2);

ee Examples 1 and 2. Therefore, Theorems 3 and 4 of [8] are not

rue. This is due to they consider in the proof of these theorems that
r
i=1 ‖Ei‖A = 1 and this equality does not hold for the above general

eighting matrices.

xample 1. Let A be the following symmetric positive semidefinite

atrix.

=
[

0.75 0.75

0.75 0.75

]
.

onsider the splitting A = M − N, such that

=
[

1 0.75

0.75 1

]
= Pi − Qi = Ri − Si, i = 1, 2,

here

1 = R1 =
[

1.75 −2

2 3

]
, P2 = R2 =

[
3 2

−2 1.75

]
.

ote that M is a symmetric positive definite matrix, N = M − A

s a positive definite matrix and M = Pi − Qi = Ri − Si, i = 1, 2

re P-regular splitting. Then, setting E1 = [
0 0
0 1

], E2 = [
1 0
0 0

],

nd q(i, l) = q(i) = 1, i = 1, 2, l = 0, 1, . . . , the iteration ma-

rix T = ∑2
i=1 Ei[(R−1

i
SiP

−1
i

Qi) + (I − (R−1
i

SiP
−1
i

Qi))M−1N] =
1.00986 0.00986
0.00986 1.00986

], has spectral radius equal to 1.0197, and the

lternating two-stage iterative method (6) is not convergent.

xample 2. Let A be the following symmetric positive definite ma-

rix

=
[

0.75 0

0 0.5

]
.

Consider the splitting A = M − N, such that

=
[

0.75 0

0 0.75

]
= Pi − Qi = Ri − Si, i = 1, 2,

here

1 = R1 =
[

0.3934 −2.0660

2.0660 7.6244

]
, P2 =R2 =

[
7.6244 2.0660

−2.0660 0.3934

]
.

ote that M is a symmetric matrix, N = M − A is a positive semidefi-

ite matrix and M = Pi − Qi = Ri − Si, i = 1, 2 are P-regular splitting.

hen, setting E1 = [
0 0
0 1

], E2 = [
1 0
0 0

], and q(i, l) = q(i) = 1, i =
, 2, l = 0, 1, . . . , the iteration matrix T = ∑2

i=1 Ei[(R−1
i

SiP
−1
i

Qi) +
I − (R−1

i
SiP

−1
i

Qi))M−1N] = [
0.87499 0.16666
0.24999 0.91666

], has spectral radius

qual to 1.101, and the alternating two-stage iterative method (6) is

ot convergent.

heorem 17. Let A be a symmetric positive semidefinite matrix. Let

he splitting A = M − N be such that M = Diag(M1, . . . , Mi, . . . , Mr) is

symmetric positive definite matrix and N is a positive semidefinite

atrix. Let M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be the splittings defined in

5) such that the splittings Mi = Bi − Ci = Fi − Gi, 1 ≤ i ≤ r are P-regular.

onsider the diagonal matrices Ei, 1 ≤ i ≤ r have ones in the entries cor-

esponding to the diagonal block Mi and zero otherwise and assume that

he sequence of inner iterations {q(i, l)}∞
l=0

satisfies q(i, l) = q(i), l =
, 1, . . . . Then the alternating two-stage method (6) converges to a solu-

ion of the consistent linear system Ax = b, for any initial vector x(0).
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roof. Since q(i, l) = q(i), l = 0, 1, . . . , from (5) and (8) it follows

hat

(l) = T = H + (I − H)M−1N,

ith

= Diag((F−1
1 G1B−1

1 C1)
q(1), . . . , (F−1

i
GiB

−1
i

Ci)
q(i), . . . ,

(F−1
r GrB−1

r Cr)
q(r))

nd M−1 = Diag(M−1
1

, . . . , M−1
i

, . . . , M−1
r ). From Theorem 6, for

, 1 ≤ i ≤ r, there exists a pair of matrices Ui, Vi, such

hat F−1
i

GiB
−1
i

Ci = U−1
i

Vi, Mi = Ui − Vi is a P-regular splitting and

(U−1
i

Vi) < 1. Therefore, I − (U−1
i

Vi)
q(i) is a nonsingular matrix.

rom Lemma 1 and Lemma 3 it follows that the splitting

nduced by (U−1
i

Vi)
q(i), namely Mi = Ûi − V̂i, with Ûi = Mi(I −

U−1
i

Vi)
q(i))−1, is P-regular. Let Û = Diag(Û1, . . . , Ûi, . . . , Ûr) and V̂ =

iag(V̂1, . . . , V̂i, . . . , V̂r), then T (l) = T = Û−1V̂ + (I − Û−1V̂)M−1N =
ˆ−1(V̂ + (Û − V̂)M−1N) = Û−1(V̂ + N). Thus, the splitting A = Û −
V̂ + N) is a (non-unique) splitting induced by T. Since ÛT + V̂ is posi-

ive definite and N is positive semidefinite, reasoning in the same way

s in Theorem 15 the proof is completed. �

heorem 18. Let A be a symmetric positive semidefinite matrix. Let

he splitting A = M − N be such that M = Diag(M1, . . . , Mi, . . . , Mr) is

symmetric positive definite matrix and N is a positive semidefinite

atrix. Let M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be the splittings defined in

5) such that the splittings Mi = Bi − Ci = Fi − Gi, 1 ≤ i ≤ r are P-regular.

onsider the diagonal matrices Ei, 1 ≤ i ≤ r have ones in the entries cor-

esponding to the diagonal block Mi and zero otherwise. Suppose that

here exists a matrix norm ‖ · ‖ such that ‖T (l)(I − T (l))(I − T (l))#‖ <

, l = 0, 1, . . . , where T(l) are defined in (7). Assume further that the

equence of inner iterations {q(i, l)}∞
l=0

remains bounded. Then, the al-

ernating two-stage iterative method (6) converges to a solution of the

onsistent linear system Ax = b, for any initial vector x(0).

roof. The proof is an immediate consequence of Theorems 4 and

7. �

heorem 19. Let A be a symmetric positive semidefinite matrix. Let

he splitting A = M − N be such that M is a symmetric positive defi-

ite matrix and N is a positive semidefinite matrix. Let M = Pi − Qi =
i − Si, 1 ≤ i ≤ r be P-regular splittings. Assume that the sequence of

nner iterations {q(i, l)}∞
l=0

satisfies q(i, l) = q(i), l = 0, 1, . . . . Given a

xed positive number θ < 1, let η = θ/(
∑r

i=1 ‖Ei‖M). Let q̂ be such that

(R−1
i

SiP
−1
i

Qi)
q‖M ≤ η for all q ≥ q̂, i = 1, . . . , r. If q(i) ≥ q̂, then the al-

ernating two-stage method (6) converges to a solution of the consistent

inear system Ax = b, for any initial vector x(0).

roof. Since q(i, l) = q(i), l = 0, 1, . . . , then there is a single iteration

atrix, i.e.,

(l) = T =
r∑

i=1

Ei[(R−1
i

SiP
−1
i

Qi)
q(i) + (I − (R−1

i
SiP

−1
i

Qi)
q(i))M−1N].

oreover, from Theorem 6, there is a pair of matrices Bi, Ci, such

hat R−1
i

SiP
−1
i

Qi = B−1
i

Ci, and M = Bi − Ci is a P-regular splitting. Since

is a symmetric positive definite matrix, by the hypotheses and

heorem 8 it obtains that ‖∑r
i=1 Ei(B−1

i
Ci)

q(i)‖M < 1. Then, using

emma 1 there exist B and C such that
∑r

i=1 Ei(B−1
i

Ci)
q(i) = B−1C

nd M = B − C. Since ‖B−1C‖M < 1, this splitting is P-regular and it

btains

(l) = T = B−1(C + (B − C)M−1N) = B−1(C + N).

hus, the splitting A = B − (C + N) is a (non-unique) splitting induced

y T. Since BT + C is positive definite and N is positive semidef-

nite, reasoning in the same way as in Theorem 15 the proof is

ompleted. �
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Algorithm 1: (Block Jacobi - BJ) .

Initialization x(0)T = [x
(0)
1

T
, x

(0)
2

T
, . . . , x

(0)
q

T
], l = 0;

repeat

for i = 1 to q do

Solve (or approximate) Aiix
(l+1)
i

=− ∑q
j=1

j �=i

Ai jx
(l)
j

+bi; (11)

end

until convergence;

Algorithm 2: (Symmetric Block Gauss–Seidel - SBGS) .

Initialization x(0)T = [x
(0)
1

T
, x

(0)
2

T
, . . . , x

(0)
q

T
], l = 0;

repeat

for i = 1 to q do
Solve (or approximate)

Aiix
(l+ 1

2
)

i
= − ∑i−1

j=1 Ai jx
(l+ 1

2
)

j
− ∑q

j=i+1
Ai jx

(l)
j

+ bi; (12)

end

until convergence;

repeat

for i = q to 1 do
Solve (or approximate)

Aiix
(l+1)
i

=− ∑q
j=i+1

Ai jx
(l+1)
j

− ∑i−1
j=|!1

Ai jx
(l+1

2
)

j
+ bi; (13)

end

until convergence;
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Note that, Theorem 15 requires the assumption that weighting

matrices are multiples of identity. This assumption on the weighting

matrices have little applicability for analysis of parallel processing.

However, Theorem 19 does not have this restriction. In the Example 1,

where there is no convergence using general weighting matrices,

the splittings satisfies hypotheses of Theorem 19, and the smallest

integer q̂ for which ‖(R−1
i

SiP
−1
i

Qi)
q̂‖M < 1∑2

i=1 ‖Ei‖M

, is q̂ = 11. Thus

for q(i, l) = q(i) ≥ 11 l = 0, 1, . . . , Theorem 19 assures the conver-

gence of the alternating two-stage method (6). Note that, in this case,

q(i, l) = q(i) = 2 is the smallest integer for which the alternating two-

stage method (6) converges.

Theorem 20. Let A be a symmetric positive semidefinite matrix. Let

the splitting A = M − N be such that M is a symmetric positive defi-

nite matrix and N is a positive semidefinite matrix. Let M = Pi − Qi =
Ri − Si be P-regular splitting. Given a fixed positive number θ < 1, let

η = θ/(
∑r

i=1 ‖Ei‖M). Let q̂ be such that ‖(R−1
i

SiP
−1
i

Qi)
q‖M ≤ η for all

q ≥ q̂, i = 1, . . . , r. Suppose that there exists a matrix norm ‖ · ‖ such

that ‖T (l)(I − T (l))(I − T (l))#‖ < 1, l = 0, 1, . . . , where T(l) are defined

in (7). If q(i, l) ≥ q̂, then, the alternating two-stage iterative method (6)

converges to a solution of the consistent linear system Ax = b, for any

initial vector x(0).

Proof. The proof is an immediate consequence of Theorems 4 and

19. �

Note that in the particular case in which A is symmetric positive

definite and therefore nonsingular, the hypotheses on the matrix M

in Theorems 15–20 can be lightened in the sense that if M = A + N is

symmetric then M is a symmetric positive definite matrix.

4. Experimental setup and results

The alternating iterative methods treated here have been ap-

plied to the solution of singular and nonsingular linear systems.

In the nonsingular case, the problem to be solved comes from the

discretization of the Laplace’s equation satisfying Dirichlet bound-

ary conditions on the rectangle 
 = [0, a] × [0, b]. The discretization

of the domain, using five point finite differences, with J × K points

equally spaced by h, yields a linear system Ax = b, where A is block

tridiagonal, A = tridiag[−I,C,−I], where I and C are K × K matrices, I

is the identity, and C = tridiag[−1, 4,−1]. Note that A is a nonsingu-

lar M-matrix with J × J blocks of size K × K. Then the convergence of

the alternating two-stage method (6) is guaranteed when the split-

tings are chosen as in Theorem 14. Note that the Block Jacobi, the

Block Gauss–Seidel and the Symmetric Block Gauss–Seidel splittings

of an M-matrix are regular and weak regular splittings [12]. In the

singular case, the test problems arise from Markov chain modelling.

Concretely, these methods can be used to find the stationary prob-

ability distribution of a Markov chain, i.e., one is looking for a non-

negative vector x such that Bx = x, where B is a nonnegative column

stochastic matrix, i.e., BT e = e, where e = (1, 1, . . . , 1)T . This implies

that ρ(B) = ρ(BT ) = 1; see e.g., [12]. The vector of probabilities is

normalized so that xT e = 1. In this case, the system to be solved is

(I − B)x = 0. (10)

If B is a transition matrix of a Markov chain, the matrix A = I − B is

an M-matrix with property c, and thus the convergence of the alter-

nating two-stage method (6) with the modification (9), if need be, is

guaranteed when the splittings are chosen as in Theorems 12 and 13.

In the performed experiments , the variables are partitioned into

r groups, i.e., x = [xT
1 , xT

2 , . . . , xT
r ]T , xi ∈ �ni , i = 1, . . . , r,

∑r
i=1 ni = n.

Therefore, the matrix A is partitioned into r × r blocks as it is de-

scribed in (4), with the diagonal blocks Aii being square of order

ni. In the experiments reported in this paper, the number of ob-

tained groups, r, is larger than the number of processes p. Thus, we
Please cite this article as: H. Migallón et al., Parallel alternating iterative al
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ave assembled blocks from (4) into p groups, each group being as-

igned to one process. There are r� blocks assigned to process �,

= 1, . . . , p, and thus
∑p

�=1
r� = r. In order to explain the tested it-

rative methods, we describe the Block Jacobi (BJ) and the Symmetric

lock Gauss-Seidel (SBGS) Algorithms, for solving these linear sys-

ems, for a generic number of blocks q in (4).

By setting b = [bT
1
, bT

2
, . . . , bT

r ]T = 0, Algorithms 1 and 2 can be

sed for solving the Markov singular linear system (10). In this case,

e will assume that the solution x is normalized so that xT e = 1.

n fact, in the algorithms studied below, such normalization is as-

umed at every iteration when singular linear systems are solved.

n the other hand, in order to ensure the regularity of the Block

acobi splitting, when B is the transition matrix of a finite homo-

eneous Markov chain, one can suppose that each column of N =
− Diag(A11, . . . , Arr) must have one non-zero entry, or each block

ii must be irreducible and at least one column, for each correspond-

ng block in N, must have at least one non-zero entry; see, e.g., [13].

n Algorithm 1, the linear systems (11) can be solved independently

f each other. Thus, this algorithm is inherently parallel. When each

olution of (11) in Algorithm 1 is approximated by an alternating it-

rative method, this is called an alternating two-stage method. In

articular, each solution of (11) could be approximated by the Sym-

etric Block Gauss–Seidel method. In order to describe the parallel

lgorithms explored in this paper, we assume that there are p pro-

esses with r� blocks assigned to process �, � = 1, . . . , p. In Step 3 of

lgorithm 3 (PAGS), each solution of (12) and (13) is approximated

sing Gauss–Seidel iterations while in Algorithm 4 (PALU), these so-

utions are obtained using LU factorizations.

We have used as the global stopping criterion (i.e., in the outer

teration) ‖Ax(l) − b‖2 < ε and to guarantee convergence, for the sin-

ular linear systems, we use the customary device of shifting the it-

ration matrix from T to Tδ = δT + (1 − δ)I, where 0 < δ < 1. This

hift is performed at the end of each outer iteration. This is also

he point of the computation where the vector x(l) is normalized. In

he experiments reported in this section we have used ε = 10−6 and
gorithms with and without overlapping on multicore architectures,
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Algorithm 3: Parallel Alternating Algorithm with GS inner

iterations - PAGS.

Divide the r blocks of (4) into p groups, each assigned to a

different process �;

1. Perform parallel BJ (with q = p in Algorithm 1), i.e., each

process approximates the solution of one linear system (11)

(This is the outer iteration);

2. Each solution of (11) in Step 1 is approximated using t steps

of SBGS (with q = r� in Algorithm 2);

3. Each solution of (12) and (13) in Step 2 is approximated by a

fixed number m of Gauss–Seidel (GS) iterations;

Algorithm 4: Parallel Alternating Algorithm using LU factoriza-

tions - PALU.

Divide the r blocks of (4) into p groups, each assigned to a

different process �;

1. Perform parallel BJ (with q = p in Algorithm 1), i.e., each

process approximates the solution of one linear system (11)

(This is the outer iteration);

2. Each solution of (11) in Step 1 is approximated using t steps

of SBGS (with q = r� in Algorithm 2);

3. Each solution of (12) and (13) in Step 2 is obtained using LU

factorizations;
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Table 1

Row-wise distribution for the test matrices.

Matrix Number of processes Row-wise distribution

LAPLACE 4 25,000 × 4

NCD 8 ((37,828; 37,827) × 3; 37,828 × 2)

QNATM1 4 523,269 × 4

8 (261,634; 261,635) × 4

12 174,423 × 12

16 (130,817 × 3; 130,818) × 4

QNATM2 4 1,178,117 × 4

8 (589,058; 589,059) × 4

12 (392,706 × 2; 392,705) × 4

16 (294,529 × 3; 294,530) × 4

24 (196,353 × 5; 196,352) × 4
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= 0.95. We note that, the computation of both the stopping crite-

ion and the normalization is also performed in parallel with the need

f an AllReduce operation at the end. Additionally, the shift Tδ is also

omputed by all of the processes before an AllGatherv operation is

ccomplished.

We have implemented the algorithms described here on an HPC

luster of 26 nodes HP Proliant SL390s G7 connected through a net-

ork of low-latency QDR Infiniband-based. Each node consists of two

ntel XEON X5660 hexacore at up to 2.8 GHz and 12MB cache per pro-

essor, with 48 GB of RAM. The operating system is CentOS Linux 5.6

or x86 64 bit.

We have run our codes using several test matrices. The singu-

ar models are taken from [20]. The first model is a multi-class,

nite-buffer, priority queuing network model with applicability to

elecommunications modelling. The matrices we use are of order

,093,076 and 4,712,468 and we label them QNATM1 and QNATM2,

espectively. The QNATM1 matrix has 14,120,056 nonzero entries

nd the QNATM2 matrix has 31,796,856 nonzero entries. The second

odel represents the system architecture of a time-shared, multi-

rogrammed, paged, virtual memory computer. The resulting nearly

ompletely decomposable (NCD) matrix corresponds to 120 users.

his matrix is of order 302,621 and has 2,074,061 nonzero elements;

ee [21] for more details. In the nonsingular case, we discuss the re-

ults for a Laplace matrix of size 100,000. This matrix, labelled as

APLACE, has 1,000 × 1,000 blocks of size 100 × 100.

A sparse matrix format is considered in order to store the coeffi-

ient matrices and all block structures needed in the algorithms. Con-

retely, the Compressed Sparse Row (CSR) format was used, which is

ne of the most extensively used storage schemes for general sparse

atrices, with minimal storage requirements.

We have used equal block sizes obtained from the original matrix.

hese equal block sizes were obtained in the following way: firstly,

e consider a balanced block diagonal structure depending on the

umber of processes (see Table 1). That is a row-wise distribution

s chosen, where each process gets, if possible, the same amount of

onsecutive rows. If the number of rows is not a multiple of the num-

er of processes there are some processes with one more row. Hence,

e construct, at each diagonal block, blocks of a predetermined and
Please cite this article as: H. Migallón et al., Parallel alternating iterative al
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onstant size ni = η. If the order of a diagonal block is not a multiple

f η, the last block is of order greater than η. Fig. 1(a) shows this block

tructure for an intermediate process.

Algorithms 3 and 4 use a row domain decomposition, in which

ach subdomain consists of several consecutive rows of A without

verlapping. Alternatively, we can consider that every subdomain has

n overlapping in the following way: the number of rows of the origi-

al non-overlapped subdomains is incremented by 2s rows, s rows in

he upper part and s rows in the lower part; the first and last sub-

omains are incremented by 2s rows in the lower part and upper

art, respectively. In each overlapping subdomain, calculations are

erformed independently of each other in the framework of a Block

acobi iteration. Fig. 1(b) shows this overlapping subdomain for an

ntermediate process. After each Block Jacobi iteration, the overlap-

ing components of the current approximation are assembled in av-

rage way. In this case, the AllGatherv operation is performed over

vector of size n + 2sp. After that operation, each process compacts

his vector in another vector of size n taking into account that the

verlapping components are assembled in average way. Moreover,

sing the overlapping pattern and that the iterative vectors are non-

egative, it is possible to compute the normalization in parallel as in

he non-overlapped case. We have called the overlapped versions of

lgorithms 3 and 4, OPAGS and OPALU Algorithms, respectively.

The parallel environment has been managed using MPI (Message

assing Interface) [22]. Moreover, the BLAS routines [23] for vector

omputations and the SPARSKIT routines [24] for handling sparse ma-

rices have been used. The algorithms have been implemented and

ested on distributed and shared memory, and using a hybrid dis-

ributed shared memory model. Concretely, each process is assigned

o a core as follows: let p be the number of physical cores used,

p = d × c indicates that d nodes of the parallel platform have been

sed and for each one of these nodes, c cores have been considered.

herefore, we use a philosophy of distributed shared memory using

p = d × c processes or threads. Particularly, if d = 1, the algorithms

re executed in shared memory using p = c threads on a single node.

onversely, if c = 1, we are working on distributed memory using

p = d nodes. Fig. 2 illustrates the efficiency of the PAGS Algorithm

Algorithm 3) for the QNATM matrices, using diagonal blocks of size

= 50 and varying the number of processes and the number of cores

er node. In order to calculate the efficiency of these parallel algo-

ithms, we have used as reference sequential algorithm the best se-

uential algorithm obtained from the best execution of Algorithm 3,

sing p = 1. Note that Algorithm 3 differs for each value of p, that is,

ifferent sequences of iterative vectors are obtained for several values

f the number of processes p; in this sense, the number of iterations

f the parallel executions of Fig. 2(a) differs from the number of it-

rations of the sequential algorithm. Therefore superlinear efficiency

an be obtained in certain cases.

Furthermore, the speed-up does not decrease significantly as the

umber of processes p is increased, i.e., we obtain a good scalabil-

ty and efficiency of the algorithm. Generally, the best parallel results
gorithms with and without overlapping on multicore architectures,
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Fig. 1. Row domain decomposition for an intermediate process.

Fig. 2. Efficiency PAGS Algorithm. QNATM matrices, m = 2, t = 10, η = 50.

Fig. 3. PAGS versus PALU Algorithms. QNATM matrices, η = 50. Distributed memory.
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have been obtained using from 1 to 4 cores in each node. Moreover,

it seems inappropriate to use 8 or more cores on a single node. Note

that many processing cores sharing the same system bus and mem-

ory bandwidth limits the real performance advantage.

Figs. 3 and 4 compare the behavior of the parallel PAGS and PALU

Algorithms for the QNATM1 and QNATM2 matrices. We note that, for

all tested models, the best parallel results for the PAGS Algorithm are

obtained for m = 1 or m = 2, regardless of the number of processes.

Note that the execution time of the PAGS and PALU Algorithms is re-

duced as the number of SBGS steps, t, increases up to an optimal value

of t after which the time starts to increase. This behavior is character-

istic of two-stage methods and although the optimal value of t is dif-

ficult to predict, a good choice of it is one which balances the realiza-

tion of more inner updates with the decrease of the global iterations

and its associated computational cost. For the QNATM models dis-

cussed here, the experiments lead us to conclude that a good choice

of t for the three philosophies of implementation is t = 10. Fig. 5 com-

pares the execution time of the algorithms treated here with and

without overlapping, for different sizes of blocks. For the QNATM
Please cite this article as: H. Migallón et al., Parallel alternating iterative al
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atrices, we have obtained the best results for the OPALU Algorithm

sing blocks of size η = 100 and a relatively small overlapping com-

ared with the size of the matrix (s = 50 for the QNATM1 matrix and

= 100 for the QNATM2 matrix). Our experience indicates that, for

hese matrices, good choices of t for both overlapping algorithms are

etween 10 and 15, obtaining similar execution times. In Figs. 6 and

we report results for the Laplace matrix. Similar results to those

btained for the QNATM matrices were obtained. Note that, for each

alue of t, the timings of the PALU Algorithm are generally lower than

hose of the PAGS Algorithm, obtaining the greatest saving time of the

arallel PALU Algorithms in relation to the parallel PAGS Algorithms

hen only one core is used in each node, that is, using distributed

emory. However if the size of blocks is relatively big with respect

o the size of the matrix, the fill-in caused by the LU factorizations, in

he sparse diagonal blocks, increases the execution time of the PALU

lgorithm; see Fig. 6 (η = 400). On the other hand, for the Laplace

atrix, the saving time obtained with the overlapping algorithms in

elation to the non-overlapping algorithms is poor when optimal val-

es of t are considered (about 7% in Fig. 7(a) and 10.4% in Fig. 7(b).
gorithms with and without overlapping on multicore architectures,
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Fig. 4. PAGS versus PALU Algorithms. QNATM matrices, η = 50. Distributed memory versus shared memory.

Fig. 5. Overlapping versus non-overlapping Algorithms. QNATM matrices. Distributed shared memory.

Fig. 6. PAGS versus PALU Algorithms. Laplace matrix. Distributed memory, 4 (4 × 1) nodes.

Fig. 7. Overlapping versus non-overlapping Algorithms. Laplace matrix. Distributed memory, 4 (4 × 1) nodes. .
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Fig. 8. Overlapping versus non-overlapping Algorithms. NCD matrix. Distributed memory, 8 (8 × 1) nodes.

[

[

This is due to the fact that the lower number of iterations achieved

adding overlap is paid by a higher computational cost, in relation to

the small global cost of the algorithms for the Laplace matrix. Let us

highlight some observations about the results of these algorithms.

In general, usually larger overlap leads to faster convergence up to a

certain point where increasing the overlap does not further improve

the convergence rate. But, generally, the amount of overlap needed to

minimize the total solving time is problem specific. As it can be seen

in Fig. 8, for the NCD matrix, the OPALU Algorithm with η = 400 and

s = 100 reduces tremendously the number of iterations and the to-

tal time to solve the linear system in relation to the other algorithms

analyzed in this paper.

5. Conclusions

In this paper we have studied the problem of solving large consis-

tent linear systems by means of parallel alternating two-stage algo-

rithms with and without overlapping. These algorithms have been

applied to both singular and nonsingular large linear systems. In

the nonsingular case, the problem to be solved comes from the dis-

cretization of the Laplace’s equation while in the singular case the test

problems arise from Markov chain modeling. The algorithms have

been implemented and tested on distributed and shared memory,

and using a distributed shared memory model, obtaining a good scal-

ability and efficiency. Generally, the PALU algorithms behave better

than the PAGS algorithms. On the other hand, the overlapping algo-

rithms have sped up the convergence time of the non-overlapping al-

gorithms. The amount of overlap needed to improve the convergence

rate is problem specific and depends on the characteristics of the ma-

trix and the block diagonal structure considered in the corresponding

parallel algorithm.
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