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a b s t r a c t 

For surgical simulation applications, realistic behavioral modeling of soft tissue is considered to be one of

the most significant challenges, because biomechanical soft-tissue models need to reflect the correct elas- 

tic response, be efficient in order to run at interactive simulation rates, and be able to support operations

such as cuts and sutures. For these reasons, having a usable 3D cutting engine is a significant feature for

interactive surgery simulation software. Mesh-based solutions, where the connections between the indi- 

vidual degrees of freedom (DoF) are defined explicitly, have been the traditional approach to soft-tissue

biomechanics. However, when the problem under investigation in interactive biomechanics contains a

simulated surgical gesture that entails a cut that disrupts the connectivity, the underlying mesh struc- 

ture has to undergo remeshing operation, and most of the time it causes the performance bottleneck in

the simulation. Unlike the tightly-coupled nonoverlapping element composition of the mesh-based so- 

lutions, this paper builds an analytic enrichment function on top of a loosely-coupled meshless method

for constitutive modeling of elastic soft tissues, where arbitrary discontinuities or cuts are applied to

the objects in the context of surgical simulation. Enrichment values for a continuous cut interface are

computed and stored inside a grid structure that is accessed by individual meshless nodes in order to

update their weight functions. The presented analytic enrichment function is efficient to compute and

easy to integrate into existing meshless models. The meshless mechanics code and the enrichment-based

cut handling functionalities have been implemented within the open-source simulation framework SOFA.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Medical education traditionally involves the concept of appren-

ticeship [1] , where novices directly learn from experienced doctors,

while gradually taking an increasing role in therapy provided to

patients to increase their level of expertise. Although classical ap-

prenticeship program constitutes the basis of the medical educa-

tion field, relying solely on it is not an optimal education strategy

as it requires long training hours to bring the expertise to the de-

sired level and also it is difficult to ensure that trainees experience

all types of major cases. Computer-based modeling and simulation

practices such as virtual reality surgery simulation have begun to

make an impact in order to alleviate the aforementioned short-

comings of the traditional medical education. 

Computer-based medical modeling and simulation features both

anatomical models and therapy models, both of which represent

significant challenges. One of the greatest challenges in building

complex therapy models is to capture the accurate response of
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oft tissue [2–4] . For surgical simulator applications, biomechanical

odels of human soft tissues have to be accurate, efficient enough

o be computed in real time, and able to handle topology-altering

perations such as cuts and sutures [5] . Volumetric cutting of soft

issue is essential to interactive surgery simulation and convinc-

ng implementation of volumetric cutting is still an active research

rea in surgical simulation. 

This paper presents a new approach for treating material dis-

ontinuities such as cuts, which is built on top of a point-based

ather than mesh-based method. The introduced cuts are handled

hrough mathematical structures called analytic enrichment func-

ions , which are essentially functions that are discontinuous across

he cut edge yet smoothly varying around the tip of the cut. En-

ichment functions also need to be efficient enough to be com-

uted on-the-fly while a cut is continuously being introduced in

he simulation domain. The cut that affects the deformable body

s represented as a piecewise linear segment, which defines a local

ut-centered coordinate system that is used to compute the asso-

iated enrichment function. The enrichment values for a continu-

us cut series are computed and stored in a grid structure that is

alled the Enrichment Grid . The Enrichment Grid also doubles as a

http://dx.doi.org/10.1016/j.advengsoft.2016.08.011
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seful data structure in order to accelerate intra-simulation steps

uch as intersection queries. The methods and the algorithms de-

cribed in this paper are implemented as an extension to the pop-

lar open-source medical simulation framework Simulation Open

ramework Architecture (SOFA) [6] . Our contribution to the SOFA

odebase, which was previously lacking a volumetric cutting algo-

ithm, is a significant contribution to the open-source surgery sim-

lation community. 

The rest of the paper is organized as follows. Section 2 provides

 brief overview of meshless methods in general. Section 3 de-

cribes various strategies in handling discontinuities in meshless

ethods. Section 4 presents our contribution, which improves on

revious meshless approaches, and introduces the Enrichment Grid

ata structure. Section 5 provides the point-based deformable ob-

ect modeling along with the extended enrichment grid approach.

inally, Section 6 concludes the paper by presenting the final

emarks. 

. Previous work on tissue deformation and cutting 

Deformable modeling of soft tissue is a continuum elasticity

roblem, whose numeric solution involves the discretization of a

ontinuous domain into discrete elements. Numerous non-physical

nd physically-based models have been utilized in order to approx-

mate this solution, which typically rely on an underlying mesh

tructures either in 2D or 3D depending on the nature and the re-

uirements of the problem. A breadth-first classification of mesh-

ased continuum models includes mass-spring networks [7] , fi-

ite element methods [8] , finite volume methods [9] , and finite

ifference methods [10] . Among these, the finite element method

as received particular interest in the biomechanical modeling

ommunity. 

The early work of Bro-Nielsen discussed a fast adaptation of

nite element modeling to satisfy speed and robustness require-

ents in a surgical simulation setting [11] . In this framework,

he author incorporated a technique called condensation, which

ranslates into obtaining a more compact version of the system

odel by rearranging or eliminating terms of the matrix equa-

ions by simplifying a volume into a system of boundary elements.

he accuracy of the condensation procedure largely depends on

he redistribution quality of the masses; in case of a non-optimal

istribution, the solution accuracy can be adversely affected [8] .

oreover, this type of simplification is incompatible with arbitrary

utting. 

Another technique developed to optimize the fidelity versus ef-

ciency trade-off is the finite element model based on Total La-

rangian Explicit Dynamics (TLED) by Miller et al. [12] . The dif-

erence between the TLED based finite element model and other

pproaches is the former’s use of the original reference configura-

ion of the object to calculate the stress and strain tensors during a

imulation step. As a result of expressing computations in the ref-

rence coordinates, the authors were able to pre-compute spatial

erivatives. The pre-computation of the spatial derivatives leads to

fficiency in terms of computational resources, while being capa-

le of handling geometric and material non-linearities. The authors

mployed central differences-based explicit integration rather than

he implicit integration scheme. With this choice, they were able

o avoid solving the set of non-linear algebraic equations that are

equired by the implicit integration at each time step. However,

he use of explicit integration entails limitations on the time step

ize in order to ensure the stability of the system. The authors

ustified their implementation choice by stating that the relatively

ower stiffness (Youngs modulus) value of the soft tissue relaxes

he time step limitation considerably compared to the typical sim-

lations involving stiffer material like steel or concrete. 
Another attempt to increase the computational efficiency of the

lastic model in the context of interactive simulation was dis-

ussed in the method proposed by Marchesseau et al. [13] . The

uthors presented a new discretization method called Multiplica-

ive Jacobian Energy Decomposition (MJED), which allows the sim-

lation to assemble the stiffness matrix of the system faster than

he traditional Galerkin FEM formulation. The method utilized an

mplicit solver with larger time steps, which has the potential of

roducing more stable simulations, in application areas that in-

olve haptic interactions. The authors reported computation ac-

elerations of up to five times for the St. Venant Kirchoff mate-

ials. TLED and MJED methods both rely on pre-computation of

imulation variables in order to achieve faster solutions at each

ime step. Although useful for modeling the elastic response of the

eformable body that does not involve topological changes, these

re-computations at the initial configuration of the simulation ob-

ect would be invalidated when a topology-changing cut is intro-

uced to the system. In other words, TLED and MJED are under-

ined by interactive cutting requirements. 

Free-form deformation lattices, mass-spring networks, and 

nite element models (FEM) that are composed of tetrahe-

ral/hexahedral elements are all examples of mesh-based mod-

ls that result in systems with many degrees of freedom (DoFs)

hat essentially define the total kinematic state of the modeled

bject. The aforementioned model examples have one property in

ommon, they all define the connectivity information between the

oFs explicitly. When there is a situation that disrupts this connec-

ivity, such as an introduced discontinuity in the form of a cut, the

iscretization of the continuum needs to be redefined to handle

he changes in the connectivity. Various approaches have been pro-

osed to handle these changes caused by cuts. Courtecuisse et al.

14] presented an FEM-based soft tissue deformation methodol-

gy that also supports real-time virtual cutting. In the presence

f a cut, the topology of the finite elements comprising the sim-

lation object changes along with the simulation-specific matrices.

he topology changes in Courtecuisse’s implementation were en-

oded in three types of topology operations: element removal, ele-

ent subdivision, and element addition. This work benefitted from

 GPU-based parallel implementation in order to ensure interactive

peration rates. 

More recently, Wu et al. [15] discretized the simulation object

y using a semi-regular hexahedral finite element grid. The volume

as partitioned using an octree, and the face-adjacent cells of the

ctree were linked together. The advantage of this discretization is

he ability to update the topology of the elements in an efficient

ay, when a cut is being introduced to the simulation domain, by

arking the links between the affected elements as disconnected.

he octree was refined dynamically along the cut surface in order

o retain fine detailed cuts. The authors employed several approx-

mations of the deformable model, such as the concept of Com-

osite Finite Elements (CFEs), in which smaller neighboring hex-

hedral elements are grouped together to form larger elements,

hus decreasing the number of DoFs significantly. With this CFE-

ased approximation and a multigrid implicit solver [15] , the au-

hors were able to achieve simulation rates of 15 frames per sec-

nd during the cutting operation. 

. Meshless methods overview 

Mesh-based methods such as FEM have been widely used for

odeling physical phenomena such as elasticity, heat transfer, and

lectromagnetism, while relying on the assumption of a contin-

ous domain. However, FEM is not well suited to problems in-

olving extreme mesh distortions that result in degenerate ele-

ent shapes, moving discontinuities that do not align with the el-

ment edges such as propagating cracks or cuts [17] , and advanced
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Fig. 1. In meshless methods, the continuum is represented as a set of points, that 

influence others inside their domains according to a weight function. 
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material transformations such as melting of a solid or freezing [16] .

To address these issues, significant interest has been developed to-

wards a different class of methods for solving differential equa-

tions, namely meshless or mesh-free methods [18] . Mesh-based

methods divide the deformable body into tightly connected finite-

sized elements. Meshless methods, on the other hand, represent a

deformable object by a set of points, whose influence is distributed

around them by a weight function through the domain of the indi-

vidual points [19] . The domain of a point spatially overlaps several

other points as depicted in Fig. 1 . 

Meshless methods are characterized by the approximation of

the field variables such as displacement u . The work of Nayroles

et al. [20] used moving least square (MLS) approximations in a

Galerkin method, which was later refined by Belytschko et al.

[21] and named the Element-Free Galerkin (EFG) method. This

class of methods uses shape functions φ( x ) in approximations that

are essentially corrected versions of weight functions with compact

support 

u 

h (x ) = 

∑ 

I 

φI (x ) u I . (1)

Here, u h ( x ) is the approximated value of displacement field vari-

able at location x, I is the set of meshless nodes whose influence

(value of the associated weight function) at x is positive, and u I are

the displacement values kept at the meshless node set I . A desired

property of meshless approximations is that the sum of the shape

functions φI ( x ) for the neighborhood of a given meshless node

equal to 1, which is known as the Partition of Unity paradigm [18] .

The Partition of Unity concept is an important element in meshless

methods to improve the consistency of an approximation. 

The shape functions φI ( x ) are obtained by first represent-

ing the approximation as the product of a polynomial basis

p 

T (x ) = [ 1 x x 2 ] and a vector of unknown coefficients a (x ) =
[ a 0 (x ) a 1 (x ) a 2 (x ) ] 

 u (x I , x ) = p 

T (x I ) a (x ) . (2)

In this product, x I are the sample points that contain the values

used to reconstruct the continuous function, and x is the point

where this reconstructed function is to be evaluated at. With this

approximation, a functional is created by taking the weighted sum

of square of the approximation error 

j (x ) = 

N ∑ 

I=1 

w (x − x I )[ ̃  u (x I , x ) − u I ] 
2 , (3)

where w (x I − x ) is the weight value computed using the Euclidean

distance between the locations x and x I with respect to support

size d I of the meshless node I . A typical weight function is the

quartic spline weight function [18] , 

w (r) = 

{
1 − 6 r 2 + 8 r 3 − 3 r 4 , r ≤ 1 

0 , r > 1 

, (4)
here r is defined as 

 = 

‖ x I − x ‖ 

d I 
. (5)

fter expanding the ˜ u term, the functional becomes 

 (x ) = 

N ∑ 

I=1 

w (x − x I )[ p 

T (x I ) a (x ) − u I ] 
2 . (6)

n order to minimize the approximation error, the derivative of this

unctional with respect to the unknown coefficients a ( x ) is taken

nd set to zero. This operation results in the following equation 

N 
 

I=1 

w (x − x I ) p (x I ) p 

T (x I ) a (x ) = 

N ∑ 

I=1 

w (x − x I ) p (x I ) u I . (7)

sing this equation, we can solve for the unknown coefficients a ( x )

nd rewrite the approximation as 

 

h (x ) = p 

T (x )[ A (x )] −1 w (x − x I ) p (x I ) u , (8)

here A ( x ) is called the moment matrix and defined by 

 (x ) = 

N ∑ 

I=1 

w (x − x I ) p (x I ) p 

T (x I ) . (9)

he shape functions are therefore equal to 

I (x ) = p 

T (x )[ A (x )] −1 w (x − x I ) p (x I ) . (10)

The consistency of the MLS approximation scheme depends on

he order and completeness of the chosen basis function, an im-

ortant consideration to ensure stability. If the basis function used

n the approximation is a complete polynomial of order k , then

he MLS approximation is said to be k th-order consistent. In other

ords, an approximation that is k th-order consistent can repro-

uce a k th-order polynomial exactly. Another technique that has

sed the MLS approximation is the work of Müller et al. [22] .

n their framework, the authors calculated the spatial derivatives

f the deformation gradient only at the particle locations. This

pproach is similar to the meshless point collocation methods

23] that discretize the differential equations only at the meshless

odes. A typical characteristic of meshless point collocation meth-

ds that differentiate them from other meshless methods is their

ruly meshless nature as they do not require an underlying mesh

tructure for field variable approximation or spatial integration. As

escribed above in the meshless method steps, instead of convert-

ng the governing differential equations into their weak form and

ntegrating over a sub-domain, point collocation methods directly

iscretize the strong-form of the governing differential equation at

he meshless nodes. The advantage of the point collocation meth-

ds is their computational efficiency as the shape functions do

ot need to be evaluated at the integration points, at the expense

f difficulty in imposing natural boundary conditions, where the

eld variables take the specified values. The technique described

y Müller et al. is capable of simulating a wide range of material

roperties from very stiff materials to soft ones, while also being

ble to handle plastic deformations as well. Another point colloca-

ion method study in the area of virtual minimally invasive surgery

imulation is the work of Banihani et al. [28] that utilizes a proper

rthogonal decomposition (POD) model along with a MLS approx-

mation scheme to obtain real-time solutions to nonlinear hypere-

astic soft-tissue simulation problems. 

. Convergence study through Hertzian contact theory 

The Hertzian theory of non-adhesive elastic contact [29] defines

nalytical solutions for the interaction of elastic half-spaces with

imple shapes in terms of applied force and object indentation. For
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Fig. 2. Convergence of the indentation value with increasing number of meshless 

nodes. 
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Fig. 3. The discontinuity caused by a cut segment is defined at the local coordinate 

frame of the cut segment. 
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xample, the amount of indentation of an elastic half-space under

 spherical load is given by 

f = 

4 

3 

E ∗
√ 

r d 
3 
2 (11) 

here f is the vertical force applied on the spherical load, r is the

adius of the spherical load, d is the indentation amount, and E ∗ is

he combined Youngs modulus of the two materials and calculated

sing the Youngs moduli ( E 1 , E 2 ) and Poissons ratios ( v 1 , v 2 ) of the

wo materials as 

1 

E ∗
= 

1 − v 2 1 

E 1 
+ 

1 − v 2 2 

E 2 
. (12) 

The Hertzian theory assumes 1) small strains within the elastic

aterial, 2) much smaller area of contact compared to the areas of

he objects in contact, and 3) continuous and frictionless contact

urfaces. There have been numerous finite element analysis studies

bout the Hertzian theory that use both research and commercial

nite element code [30–33] . 

For the meshless collocation method with nodal integration, an

xplicit time integration scheme was used with a time step of

.001 s without any stability problem. For the SOFA FEM imple-

entation, implicit integration with a time step of 0.01 s or greater

ere used. The calculations were performed within the SOFA ap-

lication on a single Intel Core i5 CPU running at 2.67 GHz with

6GB of RAM under Windows 7 operating system. The SOFA FEM

mplementation took 195ms of calculations per time step, whereas

he meshless method consumed 20.11ms for calculations per time

tep. Therefore, the meshless collocation implementation in SOFA

along with other SOFA related operations such as collision de-

ection) is roughly 25 times slower than the real-time operation,

hich is slightly better than the 30 times slower performance re-

orted by the Meshless TLED algorithm [34] . The calculation speed

f the meshless collocation algorithm is governed by the number

f particles and the number of neighbors assigned to each particle.

A mesh convergence study for the meshless collocation method

as also performed by investigating the convergence of the inden-

ation amount to the theoretical value for a fixed amount of force

 Fig. 2 ). After around 60 0 0 particles, the indentation value con-

erges to the theoretical indentation value. 

. Handling discontinuities in meshless methods 

In engineering problems, discontinuities are a common occur-

ence. In these cases, the continuum assumption of the elastic the-

ry is undermined, which typically requires special treatment to

nsure the correct solution to the system. Discontinuities may be

aused when the continuum domain is composed of different ma-

erial types or when there is a spatial gap in the continuum such

s a cut. The cuts that modify the elastic response of the de-

ormable objects are called strong discontinuities in the continuum

lasticity mechanics field. In meshless methods, there are three
ain classes of techniques to treat discontinuity of the field vari-

ble (displacement). These techniques are: (1) modification of the

eight function w ( x ) of the affected meshless nodes, (2) intrinsic

nrichment of the basis p 

T ( x ) of the approximation, and (3) tech-

iques based on extrinsic enrichment [16] . The visibility method is

n example of techniques that modify the weight function. In this

ethod, the cut segment is treated as an opaque object and the

nfluence of a node on a point in the domain is decided by shoot-

ng a ray between the node and the point in question, and testing

hether the ray intersects with the cut segment or not. Although

t is simple in nature, this method can lead to incorrect disconti-

uity calculations along the rays that pass through the tips of the

ut. Another disadvantage of this method is that it cannot be used

o treat non-convex boundaries. The diffraction method follows the

ame steps as the visibility criterion, but improves the technique

y passing the ray around the tip of the cut and by calculating the

nfluence of a node on a point via the ray length. The diffraction

ethod requires complex computations of the bending rays and its

xtension into three dimensions is even more complex [24] . 

Enrichment functions have been introduced to the classical FEM

pproach by Moes et al. [25] and incorporated into several stud-

es afterwards. Kaufmann et al. [26] presented a method that em-

loyed harmonic enrichment functions for simulating detailed cut-

ing of thin shells. These functions were computed by solving a

aplace equation that is subject to boundary conditions that cor-

espond to the cut, and stored in 2D texture elements in higher

esolutions than the underlying finite element discretization. De-

pite being a 2D enrichment technique, the high computational

ost of the solution of the Laplace equation prevented this work

rom achieving interactive rates. 

In contrast with the previous approach, Duflot and Nguyen-

ang [35] proposed an analytical enrichment function in 2D, which

as later on developed by Barbieri et al. [27] as an analytical en-

ichment function in 2D that is easy to compute and extend into

D, based on a distance function calculated on the local coordi-

ate frame of the cut segment. Their method processed cuts as

iecewise-linear segments and calculated the absolute distance of

 meshless node to these segments. The enrichment function ob-

ained from the distance field was then multiplied with the weight

ernel of the node. Based on an analytic formulation, this approach

ot only required less computation compared to the competing

echniques such as the visibility criterion, but also offered greater

otential for computationally efficient extension to 3D by modify-

ng the distance function to support the extra dimension. As de-

icted in Fig. 3 , the distance function is computed in the local co-

rdinate system of the cut piece. The 2D distance function for a
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Fig. 4. The function d + 
1 
(t) is calculated for a cut segment defined from t 1 = 0 to 

t 2 = 1 . 

Fig. 5. Three dimensional plot of the distance function d 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Contour plot of the discontinuous ϕ function. 

Fig. 7. When the enrichment values from individual segments are multiplicatively 

applied, the overall enrichment results in incorrect modification of meshless weight 

functions. 
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given point ( x, y ), can therefore be computed in terms of the local

coordinates ( t, s ) as 

d 2 (x, y ) = 

√ 

d + 
1 
(t) 2 + s 2 , (13)

where d + 
1 
(t) is defined as 

d + 1 (t) = 

d s (t) + | d s (t) | 
2 

. (14)

d + 
1 
(t) is the positive part of the 1D signed distance function d s ( t )

for a 1D segment, in local coordinates, which in turn defined as 

d s (t) = | t − t 1 + t 2 
2 

| − | t 1 − t 2 
2 

| (15)

where t 1 and t 2 are the endpoints of the cut segment in the cuts

local coordinate system ( Fig. 4 ). 

In order to obtain an enrichment function that is sharply dis-

continuous across the cut segment, but smoothly varies from one

side to the other side around the tips of the cut segment, we can

take the partial derivative of the distance function d 2 ( Fig. 5 ) with

respect to the normal coordinate axis s , 

∂d 2 
∂s 

= 

s 

d 2 
= ϕ, (16)

and obtain the discontinuous function ϕ across the segment that

is 1 on one side of the cut and −1 on the other side and varies

smoothly around the cut ( Fig. 6 ). The partial derivative of the dis-

tance function d 2 with respect to the coordinate that is vertical to

the cut segment results in a constant 1 value above the cut seg-

ment and a constant −1 value below the cut segment, as d 2 has

a constant variation at these regions along the vertical direction.

Outside the regions immediately above and below the cut segment

though, the function d 2 varies smoothly with respect to the vertical

direction. The actual enrichment function is obtained by first trans-

lating the ϕ function and then scaling it down so that it ranges
rom 0 to 1, 

 = 

ϕ + 1 

2 

. (17)

Designed for elastic isotropic deformable bodies modeled with

eshless methods, the Barbieri technique handled multiple cut

egments by simply multiplying their enrichment functions con-

ecutively as 

 = �i h i , (18)

here h i is the enrichment computed for the cut segment i , and

 is the final enrichment function for the meshless node that is

ffected by the cut segments. Although the multiplicative applica-

ion is simple to implement, it can result in incorrect modification

f meshless weight functions, therefore decreasing the stability of

he simulation as depicted in Fig. 7 . 

. Extended enrichment grid 

As described above, the weight functions of the close meshless

odes are modified incorrectly when consecutive enrichments are

pplied through multiplication. In order to address these issues,

n extension of the distance function-based enrichment technique

s proposed to support consecutive discontinuity fronts in a cor-

ect way. In this extended technique, the enrichment values for

ultiple cuts are evaluated inside a grid structure, named the En-

ichment Grid. For each grid point, the corresponding enrichment

alue is calculated in a manner similar to the original distance

unction-based technique, though instead of a multiplicative ap-

roach, each grid point is assigned to a specific cut segment region

nd its enrichment value is calculated with respect to this specific
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Fig. 8. The common coordinate system is calculated from four cut segments. 
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Fig. 9. Cut segments are processed as a series instead of individual processing. The 

series of cut segments are used to derive a common coordinate system. The func- 

tion d + 
1 

is calculated with respect to this common coordinate system. 

Fig. 10. The region values are assigned for individual cut segments with respect to 

the common coordinate system. 

Fig. 11. For each grid location, the s -coordinates, which essentially represent the 

signed vertical distance of a point to the cut, are calculated according to the as- 

signed region value. 
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c  

m  
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s  

i  
ut segment. The first step in the enrichment grid algorithm is to

efine a common coordinate system for calculating the regions of

he grid points. In 2D, this common coordinate system is defined

y the enrichment origin p 0 with coordinates ( x 0 , y 0 ) as well as

he angle θ0 between the horizontal axis of the common coordi-

ate system and the positive x-axis of the world coordinate system

s depicted in Fig. 8 . The coordinate system is updated with each

ropagating cut as 

 0 = 

∑ n 
l=1 w l p l ∑ n 

l=1 w l 

, (19) 

nd 

0 = 

∑ n 
l=1 w l θl ∑ n 

l=1 w l 

, (20) 

here n is the number of cut segments, w l is the associated weight

ith the cut segment l , which is typically the length of the seg-

ent in 2D problems, and p l and θ l are the center point and hor-

zontal angle of the l th cut segment respectively. After setting the

lobal coordinate system for the series of cut segments, each grid

oint with coordinates ( x, y ) as well as the endpoints of the cut

egments ( x l , y l ) are rigidly transformed into this new coordinate

ystem to obtain new coordinates t and t l by 

 = cos (θ )(x − x 0 ) + sin (θ )(y − y 0 ) (21)

nd 

 l = cos (θ )(x l − x 0 ) + sin (θ )(y l − y 0 ) . (22)

With these transformed points, the modified d + 
1 
(t) function is

ow defined as 

 

+ 
1 (t) = (t 0 − t) · H(t 0 − t) + (t − t n ) · H(t − t n ) , (23)

here t 0 and t n are the t -coordinates of the first and last points

f the cut segment series, and H is the Heaviside step function

 Fig. 9 ). 

The next step to calculate the distance function d 2 ( x, y ) is to

et the s -coordinates of the grid points. This is achieved by assign-

ng a cut segment region for each of the grid points by compar-

ng their t -coordinates against the t -coordinates of the cut segment

ndpoints. A grid point with t -coordinate t 
′ 

is set to be in the re-

ion of the cut segment l when t 
′ 
> t l−1 & t 

′ 
< t l . For grid points

hose t -coordinates are smaller than t 0 and larger than t n , their

egions are set to the first and last regions respectively ( Fig. 10 ). 

After assigning the region values for the grid points, the s-

oordinates are calculated by finding the vertical distance of the

rid point to the assigned cut segment. For a grid point with co-

rdinates ( x, y ) and assigned region l , the s -coordinate ( Fig. 11 ) is

alculated as 

 = −sin (θl )(x − x l ) + cos (θl )(y − y l ) . (24)

The extended enrichment function can be calculated with

he ( t, s ) coordinates of the grid points. Using these values,
 2 ( x, y ) is calculated and its partial derivative with respect to the

 -coordinates is taken to obtain the extended enrichment function

 Fig. 12 ). 

The extended enrichment technique with enrichment grids pro-

ides a computationally efficient way of handling multiple dis-

ontinuity fronts. Moreover, unlike the multiplicative approach, it

odifies the weight function of the affected meshless nodes in a

ay such that stability problems are avoided. 

Although, the enrichment technique is described in two dimen-

ions, it can be extended into three dimensions through changes

n the defined entities. For example, the piecewise-linear cut seg-
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Fig. 12. The extended enrichment function for sequential cut segments. Unlike the 

original multiplicative approach, the enrichment function modifies the weight func- 

tions correctly to prevent instabilities. 

Fig. 13. The pseudocode for the extended enrichment function calculation in 2D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The meshless node locations of the deformable block. This simulation ob- 

ject has 436 DoFs and simulated at around 125 FPS under the effect of gravitational 

forces. 

Fig. 15. The rectangular block object that is modeled with the meshless method 

and deformed with the gravity. This simulation object has 436 DoFs and simulated 

at around 105 FPS. 

Fig. 16. The deformable block is cut, which results in the update of the behavior 

model. 
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ments are replaced with triangle strips and the 2D-array repre-

sentation of the enrichment grid structure is replaced with a 3D-

lattice structure with coordinate points ( x, y, z ). Likewise, the com-

mon coordinate system in 2D is replaced with the common plane

in 3D. The distance function d 3 ( x, y, z ) is defined as 

d 3 (x, y, z) = 

√ 

d + 
2 

2 + s 2 . (25)

Here, d + 
2 

is obtained by first projecting the grid point ( x, y, z ) and

the associated cut triangle on to the common plane and then cal-

culating the absolute distance of the projected point to the pro-

jected triangle. This absolute distance gets positive values outside

of the projected triangle and 0 otherwise. The other term, s , is the

distance of the grid point to the associated triangle along the tri-

angle’s normal direction. 

After d 3 is computed, similar to the 2D case, the partial deriva-

tive of d 3 with respect to the normal direction s is taken to get the

discontinuous function ϕ as Fig. 13 

∂d 3 
∂s 

= 

s 

d 3 
= ϕ. (26)

7. Results 

Presented meshless method and the extended enrichment func-

tion were implemented as a plug-in component within the SOFA

library using the library’s object-oriented extension schema. The

modular construct of the library allowed the division of the pre-

sented concepts into separate modules. For example, the meshless

method was implemented as a Behavior Model , whereas the En-

richment Grid structure was suitably implemented as a Container

module. In SOFA, the modules are consumed and linked together
hrough hierarchical XML-based files called Scene Files . Scene Files

an be used to setup links between modules so that information

utput from a module can be accessed from the linked one. A use

ase for such a requirement in our implementation is the informa-

ion transfer from the module that controls the haptic device to

ur Enrichment Grid module. 

In this section, the results for the point-based deformable ob-

ect modeling approach and the cutting operation with the Ex-

ended Enrichment Grid are presented by modeling a sample ob-

ect in the form of a synthetic rectangular block. The meshless

odes shown in Fig. 14 correspond to the Behavior Model of the

imulation object ( Fig. 15 ). 

When a cutting operation is performed, an Enrichment Grid is

enerated for the cut, which is used to update the behavior model

f the deformable object by modifying the weight functions of the

ffected meshless nodes ( Fig. 16 ). 
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. Conclusion 

In the surgical simulation context, an important functionality

hat the soft tissue models need to have is the cutting operation.

or the mesh-based models however, the cutting operation is par-

icularly problematic and usually becomes the bottleneck of the

imulation in terms of performance. This paper discussed a novel

ay of handling piecewise cut segments in 2D, while also demon-

trating its extension into 3D. The approach was achieved by refin-

ng the application of the mathematical enrichment function de-

cribed earlier by Barbieri et al. [27] . The enrichment grid structure

hat is proposed in this work allowed the handling of consecutive

ut segments in a correct way that prevented the occurrence of

omputational instabilities. Another advantage of the enrichment

rid approach is that it is possible to utilize this structure as a spa-

ial query accelerator in order to increase the performance of steps

uch as finding the meshless nodes that are affected by a cut. 
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