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We describe GTApprox — a new tool for medium-scale surrogate modeling in industrial design. Compared

to existing software, GTApprox brings several innovations: a few novel approximation algorithms, several

advanced methods of automated model selection, novel options in the form of hints. We demonstrate the

efficiency of GTApprox on a large collection of test problems. In addition, we describe several applications

of GTApprox to real engineering problems.
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. Introduction

Approximation problems (also known as regression problems)

rise quite often in industrial design, and solutions of such prob-

ems are conventionally referred to as surrogate models [1] . The

ost common application of surrogate modeling in engineering is

n connection to engineering optimization [2] . Indeed, on the one

and, design optimization plays a central role in the industrial de-

ign process; on the other hand, a single optimization step typ-

cally requires the optimizer to create or refresh a model of the

esponse function whose optimum is sought, to be able to come

p with a reasonable next design candidate. The surrogate mod-

ls used in optimization range from simple local linear regression

mployed in the basic gradient-based optimization [3] to com-

lex global models employed in the so-called Surrogate-Based Op-

imization (SBO) [4] . Aside from optimization, surrogate modeling

s used in dimension reduction [5,6] , sensitivity analysis [7–10] ,

nd for visualization of response functions. 

Mathematically, the approximation problem can generally be

escribed as follows. We assume that we are given a finite sam-

le of pairs (x n , y n ) N n =1 
(the “training data”), where x n ∈ R 

d in , y n ∈
 

d out . These pairs represent sampled inputs and outputs of an un-

nown response function y = f (x ) . Our goal is to construct a func-

ion (a surrogate model) ̂ f : R 

d in → R 

d out which should be as close

s possible to the true function f . 

A great variety of surrogate modeling methods exist, with dif-

erent assumptions on the underlying response functions, data
∗ Corresponding author.
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ets, and model structure [11] . Bundled implementations of di-

erse surrogate modeling methods can be found in many soft-

are tools, for example in the excellent open-source general pur-

ose statistical project R [12] and machine-learning Python library

cikit-learn [13] , as well as in several engineering-oriented frame-

orks [14–16] . Theoretically, any of these tools offers an engineer

he necessary means to construct and use surrogate models cover-

ng a wide range of approximation scenarios. In practice, however,

xisting tools are often not very convenient to an engineer, for two

ain reasons. 

1. Excessively technical user interface and its inconsistency

cross different surrogate modeling techniques. Predictive model-

ng tools containing a variety of different modeling algorithms of-

en provide a common top-level interface for loading training data

nd constructing and applying surrogate models. However, the al-

orithms themselves usually remain isolated; in particular, they

ypically have widely different sets of user options and tunable

arameters. This is not surprising, as there is a substantial con-

eptual difference in the logic of different modeling methods. For

xample, standard linear regression uses a small number of fixed

asis functions and only linear operations; kriging uses a large

umber of basis functions specifically adjusted to the training data

nd involves nonlinear parameters; artificial neural networks may

se a variable set of basis functions and some elements of user-

ontrolled self-validation; etc. 

Such isolation of algorithms requires the user to learn their

roperties in order to pick the right algorithm and to correctly

et its options, and engineers rarely have time for that. An ex-

erienced researcher would know, for example, that artificial neu-

http://dx.doi.org/10.1016/j.advengsoft.2016.09.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.09.001&domain=pdf
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ral networks can produce quite accurate approximations for high-

dimensional data, but when applied in 1D, the plotted results

would almost invariably look very unconvincing (compared to, say,

splines); kriging is a popular choice for moderately sized training

sets, but will likely exhaust the on-board RAM if the training set

has more than a few thousand elements; accurate approximations

by neural networks may take several days to train; etc. In existing

tools such expert knowledge is usually scattered in documentation,

and users quite often resort to trial-and-error when choosing the

algorithm. 

2. Lack of attention to special features of engineering prob-

lems. The bias of the engineering domain is already seen in the

very fact that regression problems in industrial design are much

more common than classification problems (i.e., those where one

predicts a discrete label rather than a continuous value y ∈ R 

d out ),

whereas quite the opposite seems to hold in the more general

context of all commercial and scientific applications of predic-

tive modeling 1 . Moreover, the response function f ( x ) considered in

an engineering problem usually represents some physical quantity

and is expected to vary smoothly or at least continuously with

x . At the same time, widely popular decision-tree-based meth-

ods such as random forests [19] and gradient boosting [20] pro-

duce discontinuous piece-wise constant surrogate models, com-

pletely inappropriate for, say, gradient-based optimization. This ex-

ample is rather obvious and the issue can be solved by simply

ignoring decision-tree-based methods, but, based on our experi-

ence of surrogate modeling at industrial enterprises [21–25] , we

can identify several more subtle elements of this engineering bias

that require significant changes in the software architecture, in

particular: 

Data anisotropy. Training data can be very anisotropic with re-

spect to different groups of variables. For example, a com-

mon source of data are experiments performed under differ-

ent settings of parameters with some sort of detectors that

have fixed positions (e.g., air pressure measured on a wing

under different settings of Mach and angle of attack), and

the surrogate model needs to predict the outcome of the ex-

periment for a new setting of parameters and at a new de-

tector position. It can easily be that the detectors are abun-

dant and regularly distributed, while the number of exper-

iments is scarce and their parameters are high-dimensional

and irregularly scattered in the parameter space. If we only

needed a surrogate model with respect to one of these two

groups of input variables, we could easily point out an ap-

propriate standard method (say, splines for detector position

and regularized linear regression for the experiment param-

eters), but how to combine them into a single model? Such

anisotropic scenarios, with different expected dependency

properties, seem to be quite typical in the engineering do-

main [26] . 

Model smoothness and availability of gradients. As men-

tioned above, surrogate models in engineering are (more

often than in other domains) used for optimization and

sensitivity analysis, and are usually expected to reasonably

smoothly depend on the input variables. Moreover, there is

some trade-off between model smoothness and accuracy, so

it is helpful to be able to directly control the amount of

smoothness in the model. If a gradient-based optimization is

to be applied to the model, it is beneficial to have the exact

analytic gradient of the model, thus avoiding its expensive

and often inaccurate numerical approximation. 
1 Note, for example, that classification problems form the majority of the 200 + 

Kaggle data mining contests [17] and the 300 + UCI machine learning repository 

data sets [18] , well reflecting current trends in this area. 
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Local accuracy estimates. Surrogate-based optimization re-

quires, in addition to the approximation of the response

function, a model estimating local accuracy of this approx-

imation [4,27] . This model of local accuracy is very rarely

provided in existing software, and is usually restricted to

the method known in engineering literature as kriging [28] ,

which has been recently paid much attention in machine

learning community under the name of Gaussian process re-

gression [29] . 

Handling multidimensional output. In the literature, main at-

tention is focused on modeling functions with a single scalar

output [1] . However, in engineering practice the output is

very often multidimensional, i.e. the problem in question re-

quires modeling several physical quantities as functions of

input parameters. Especially challenging are situations when

the outputs are highly correlated. An example is the mod-

eling of pressure distribution along the airfoil as a function

of airfoil shape. In such cases one expects the output com-

ponents of a surrogate model to be accordingly correlated

with each other. 

In this note we describe a surrogate modeling tool GTApprox

Generic Tool for Approximation) designed with the goal of over-

oming the above shortcomings of existing software. First, the

ool contains multiple novel “meta-algorithms” providing the user

ith accessible means of controlling the process of modeling in

erms of easily understood options, in addition to conventional

ethod-specific parameters. Second, the tool has additional modes

nd features addressing the specific engineering needs pointed out

bove. 

Some algorithmic novelties of the tool have already been de-

cribed earlier [30–37] ; in the present paper we describe the tool

s a whole, in particular focusing on the overall decision process

nd performance comparison that have not been published before.

he tool is a part of the MACROS library [38] . It can be used as a

tandalone Python module or with a GUI within the pSeven plat-

orm [39] . The trial version of the tool is available at [40] . A very

etailed exposition of the tool’s functionality can be found in its

phinx-based documentation [41] . 

The remainder of the paper is organized as follows. In

ections 2 and 3 we describe the tool’s structure and main algo-

ithms. In particular, in Section 2 we review individual approxima-

ion algorithms of the tool (such as splines, RSM, etc.), with the

mphasis on novel elements and special features. In Section 3 we

escribe how the tool automatically chooses the appropriate indi-

idual algorithm for a given problem. Next, in Section 4 we report

esults of comparison of the tool with alternative state-of-the-art

urrogate modeling methods on a collection of test problems. Fi-

ally, in Section 5 we describe a few industrial applications of the

ool. 

. Approximation algorithms and special features 

.1. Approximation algorithms 

GTApprox is aimed at solving a wide range of approximation

roblems. There is no universal approximation algorithm which

an efficiently solve all types of problems, so GTApprox contains

any individual algorithms, that we hereafter refer to as tech-

iques , each providing the best approximation quality in a par-

icular domain. Some of these techniques are more or less stan-

ard, while others are new or at least contain features rarely found
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Fig. 1. Example of factorization of a three-dimensional DoE consisting of 35 points: 

the DoE is a Cartesian product of its two-dimensional projection to the x 2 x 3 -plane 

(of size 7) with its one-dimensional projection to the x 1 -axis (of size 5). The dotted 

lines connect points with the same projection to the x 2 x 3 -plane. 
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n other software. We will briefly overview main individual tech-

iques, focusing on their novelties useful for engineering design. 

esponse Surface Models (RSM). This is a generalized linear regres-

ion including several approaches to estimation of regression coef-

cients. RSM can be either linear or quadratic with respect to in-

ut variables. Also, RSM supports categorical input variables. There

re a number of ways to estimate unknown coefficients of RSM,

mong which GTApprox implements ridge regression [42] , step-

ise regression [43] and the elastic net [44] . 

plines With Tension (SPLT). This is one-dimensional spline-

ased technique intended to combine the robustness of linear

plines with the smoothness of cubic splines. A non-linear algo-

ithm [45] is used for an adaptive selection of the optimal weights

n each interval between neighboring points of DoE (Design of Ex-

eriment, i.e. the set of input vectors of the training set). 

aussian Processes (GP) and Sparse Gaussian Process (SGP). These

re flexible nonlinear techniques based on modeling training data

s a realization of an infinite-dimensional Gaussian distribution de-

ned by a mean function and a covariance function [29,46] . GP al-

ows us to construct approximations that exactly agree with the

rovided training data. Also, this technique provides local accuracy

stimates based on the a posteriori covariance of the considered

aussian process. Thanks to this important property we can use

P in surrogate-based optimization [27] and adaptive design of ex-

eriments [34] . In GTApprox, parameters of GP are optimized by

 novel optimization algorithm with adaptive regularization [36] ,

mproving the generalization ability of the approximation (see also

esults on theoretical properties of parameters estimates [47–49] ).

P memory requirements scale quadratically with the size of the

raining set, so this technique is not applicable to very large train-

ng sets. SGP is a version of GP that lifts this limitation by using

nly a suitably selected subset of training data and approximating

he corresponding covariance matrices [35] . 

igh Dimensional Approximation (HDA) and High Dimensional Ap-

roximation combined with Gaussian Processes (HDAGP). HDA is a

onlinear, adaptive technique using decomposition over linear and

onlinear base functions from a functional dictionary. This tech-

ique is related to artificial neural networks and, more specif-

cally, to the two-layer perceptron with a nonlinear activation

unction [50] . However, neural networks are notorious for overfit-

ing [51] and for the need to adjust their parameters by trial-and-

rror. HDA contains many tweaks and novel structural elements in-

ended to automate training and reduce overfitting while increas-

ng the scope of the approach: Gaussian base functions in addition

o standard sigmoids, adaptive selection of the type and number

f base functions [52] , a new algorithm of initialization of base

unctions’ parameters [37] , adaptive regularization [52] , boosting

sed to construct ensembles for additional improvement of accu-

acy and stability [33] , post-processing of the results to remove

edundant features. HDAGP [36] extends GP by adding to it HDA-

ased non-stationary covariance functions with the goal of improv-

ng GP’s ability to deal with spatially inhomogeneous dependen-

ies. 

ensor Products of Approximations (TA), incomplete Tensored Approxi-

ations (iTA), and Tensored Gaussian Processes (TGP). TA [31] is not

 single approximation method, but rather a general and very flex-

ble construction addressing the issue of anisotropy mentioned in

he introduction. In a nutshell, TA is about forming spatial prod-

cts of different approximation techniques, with each technique

ssociated with its own subset of input variables. The key condi-

ion under which TA is applicable is the factorizability of the DoE:

he DoE must be a Cartesian product of some sets with respect to
ome partition of the whole collection of input variables into sub-

ollections, see a two-factor example in Fig. 1 . If TA is enabled,

TApprox automatically finds the most detailed factorization for

he DoE of the given training set. Once a factorization is found,

o each factor one can assign a suitable approximation technique,

nd then form the whole approximation using a “product” of these

echniques. This essentially means that the overall approximation’s

ictionary of basis functions is formed as the product of the fac-

ors’ dictionaries. The coefficients of the expansion over this dic-

ionary can be found very efficiently [31,53] . 

GTApprox offers a number of possible techniques that can be

ssigned to a factor, including Linear Regression (LR), B-splines

BSPL), GP and HDA, see example in Fig. 2 . It is natural, for exam-

le, to assign BSPL to one-dimensional factors and LR, GP or HDA

o multi-dimensional ones. If not assigned by the user, GTApprox

utomatically assigns a technique to each factor by a heuristic akin

o the decision tree described later in Section 3 . 

Factorizability of the DoE is not uncommon in engineering prac-

ice. Note, in particular, that the usual full-factorial DoE is a special

ase of factorizable DoE with one-dimensional factors. Also, factor-

zation often occurs in various scenarios where some input vari-

bles describe spatial or temporal location of measurements within

ne experiment while other variables describe external conditions

r parameters of the experiment – in this case the two groups of

ariables are typically varied independently. Moreover, there is of-

en a significant anisotropy of the DoE with respect to this parti-

ion: each experiment can be expensive, but once the experiment

s performed the values of the monitored quantity can be read off

f multiple locations relatively easily, so the DoE factor associated

ith locations is much larger than the factor associated with ex-

eriment’s parameters. The advantage of TA is that it can over-

ome this anisotropy by assigning to each DoE factor a separate

echnique, most appropriate for this particular factor. 

Nevertheless, exact factorizability is, of course, a relatively re-

trictive assumption. The incomplete Tensored Approximation (iTA)

echnique of GTApprox relaxes this assumption: this technique is

pplicable if the DoE is only a subset of a full-factorial DoE and

ll factors are one-dimensional. This covers a number of impor-

ant use cases: a full-factorial DoE where some experiments are

ot finished or the solver failed to converge, or a union of several

ull-factorial DoEs resulting from different series of experiments,

r a Latin Hypercube on a grid. Despite the lack of Cartesian struc-

ure, construction of the approximation in this case reduces to a

onvex quadratic programming problem leading to a fast and ac-

urate solution [53] . An example of iTA’s application to a pressure
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Fig. 2. Two TA approximations for the same training set with two one-dimensional factors: (a) the default approximation using splines in both factors; (b) an approximation 

with splines in the first factor and linear regression in the second factor. Note that approximation (b) depends linearly on x 1 . 

Fig. 3. Application of iTA to reconstruction of a pressure distribution on a wing. The distribution was obtained by an aerodynamic simulation. (a) The 200 × 29 grid on 

which the pressure distribution is defined. (b) iTA is applied to a training set of pressure values at 290 randomly chosen points. (c) The resulting approximation is compared 

with the true distribution. 
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distribution on a wing is shown in Fig. 3 . Also, see Section 5.3 for

an industrial example. 

Tensored Gaussian Processes (TGP) [30,32] is yet another incar-

nation of tensored approximations. TGP is fast and intended for

factorized DoE like the TA technique, but is equipped with local

accuracy estimates like GP. 

Mixture of Approximations (MoA). If the response function is

very inhomogeneous, a single surrogate model may not efficiently
over the whole design space (see [21] and Section 5.1 for an en-

ineering example with critical buckling modes in composite pan-

ls). One natural approach to overcome this issue is to perform a

reliminary space partitioning and then build a separate model for

ach part. This is exactly what Mixture of Approximations does.

his technique falls into the family of Hierarchical Mixture Mod-

ls [54,55] . A Gaussian mixture model is used to do the parti-

ioning, and after that other techniques are used to build local
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Fig. 4. Application of MoA to a spatially inhomogeneous response function. (a) The true response function. (b) Approximations by MoA and GP. 
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odels. MoA is implemented to automatically estimate the num-

er of parts; it supports possibly overlapping parts and preserva-

ion of model continuity across different parts [21] . A comparison

f MoA with a standard technique (GP) is shown in Fig. 4 . 

Gradient Boosted Regression Trees (GBRT). This is a well-known

echnique that uses decision trees as weak estimators and com-

ines several weak estimators into a single model, in a stage-wise

ashion [20] . GBRT is suitable for problems with large data sets and

n cases when smooth approximation is not required. 

Piece-wise Linear Approximation (PLA). This technique is based

n the Delaunay triangulation of the training sample. It connects

eighboring points of the given training set into triangles (or tetra-

edrons) and builds a linear model in each triangle. PLA is a sim-

le and reliable interpolation technique. It is suitable for low-

imensional problems (mostly 1D, 2D and 3D) where the approx-

mation is not required to be smooth. In higher dimensions the

onstruction becomes computationally intractable. 

.2. User options and additional features 

GTApprox implements a number of user options and additional

eatures that directly address the issues raised in the Section 1 .

he options are not linked to specific approximation techniques

escribed in the previous subsection; rather, the tool selects and

unes a technique according to the options (see Section 3 ). The for-

ulations of options and features avoid references to algorithms’
etails; rather, they are described by their overall effect on the sur-

ogate model. Below we list a few of these options and features. 

ccelerator. Some techniques contain parameters significantly af-

ecting the training time of the surrogate model (e.g., the num-

er of basic approximators in HDA or the number of decision trees

n GBRT). By default, GTApprox favors accuracy over training time.

he Accelerator option defines a number of “levels”; each level as-

igns to each technique a set of parameters ensuring that the train-

ng time with this technique is increasingly reduced as the level is

ncreased. 

radient/Jacobian matrix. To serve optimization needs, each ap-

roximation produced by GTApprox (except non-smooth models,

.e. GBRT and PLA) is constructed simultaneously with its gradient

or Jacobian matrix in the context of multi-component approxima-

ions). 

ccuracy Evaluation (AE). Some GTAppox’ techniques of Bayesian

ature (mostly GP-based, i.e. GP, SGP, HDAGP, TGP) construct surro-

ate models along with point-wise estimates of deviations of these

odels from true response values [29] . These estimates can be

sed in SBO, to define an objective function taking into account

ocal uncertainty of the current approximation (see an example in

ection 3.2 ). 
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Smoothing. Each approximation constructed by GTApprox can be

additionally smoothed. The smoothing is done by additional regu-

larization of the model; the exact algorithms depends on the par-

ticular technique. Smoothing affects the gradient of the model as

well as the model itself. Smoothing may be useful in tasks for

which smooth derivatives are important, e.g., in surrogate-based

optimization. 

Componentwise vs. joint approximation. If the response function

has several scalar components, approximation of all components

one-by-one can be lengthy and does not take into account rela-

tions that may connect different components. Most of the GTAp-

prox’ techniques have a special “joint” mode where the most com-

putationally intensive steps like iterative optimization of the basis

functions in HDA or kernel optimization in GP is performed only

once, simultaneously for all output components, and only the last

step of linear expansion over basis functions is performed sepa-

rately for each output [36] . This approach can significantly speed

up training. For example, training of a GP model with m outputs

with a training set of N points requires O ( mN 

3 ) arithmetic oper-

ations in the componentwise mode, while in the joint mode it is

just O (N 

3 + mN 

2 ) . Furthermore, because of the partly shared ap-

proximation workflow, the joint mode better preserves similarities

between different components of the response function (whenever

they exist). 

Exact Fit. Some GTApprox’ techniques (like GP and splines) allow

to construct approximations that pass exactly through the points of

the training set. Note, however, that this requirement may some-

times lead to overfitting and is certainly not appropriate if the

training set is noisy. 

3. Automated choice of the technique 

GTApprox implements two meta-algorithms automating the

choice of the approximation technique for the given problem: a

simpler one, based on hand-crafted rules and hereafter referred

to as the “Decision Tree”, and a more complex one, including

problem-specific adaptation and branded as “Smart Selection”. We

outline these two meta-algorithms below. 

3.1. “Decision tree”

The “decision tree” approach selects an appropriate technique

using predetermined rules that involve size and dimensions of the

data sets along with user-specified features (requirements of model

linearity, Exact Fit or Accuracy Evaluation, enabled Tensor Approx-

imations), see Fig. 5 . The rules are partly based on the factual ca-

pabilities and limitations of different techniques and partly on ex-

tensive preliminary testing and practical experience. The rules do

not guarantee the optimal choice of a technique, but rather select

the most reasonable candidate. 

3.2. “Smart selection”

The main drawbacks of the “decision tree” approach are that it

only takes into account the crudest properties of the data set (size,

dimensions) and cannot adjust parameters of the technique, which

is often important. 

To address both issues, “Smart selection” performs, for each

training set, a numerical optimization of the technique as well as

its parameters [56,57] , by minimizing the cross-validation error. 

This is a quite complex optimization problem: the search space

is tree-structured, parameters can be continuous or categorical, the

objective function is noisy and expensive to evaluate. 
We first describe how we optimize the vector of parameters for

 given technique. To this end we use Surrogate Based Optimiza-

ion (SBO) [27,58] . Recall that SBO is an iterative algorithm that can

e written as follows: 

1. Pick somehow an initial candidate λ1 for the optimal vector of

parameters. 

2. Given the current candidate λk for the optimal vector of pa-

rameters, find the value c k of the objective function (cross-

validation error) on it. 

3. Using all currently available pairs R = ( λi , c i ) 
k 
i =1 

, construct an

acquisition function a ( λ; R ) reflecting our preference for λ to be

the next candidate vector. 

4. Choose the new candidate vector of parameters λk +1 by numer-

ically optimizing the acquisition function and return to step 2. 

The acquisition function used in step 3 must be a reasonably

ightweight function involving not only the current estimate of the

bjective function c ( λ), but also the uncertainty of this estimate,

n order to make incentive for the algorithm to explore new re-

ions of the parameter space. A standard choice for the acquisition

unction that we use is the Expected Improvement function 

 EI ( λ; R ) = E ((c ′ − c( λ)) + ) , 

here c ′ = min 1 ≤i ≤k c i is the currently known minimum and (c ′ −
( λ)) + = max (0 , c ′ − c( λ)) is the objective function’s improvement

esulting from considering a new vector λ. The expectation here

an be approximately written, under assumption of a univariate

ormal distribution of error, in terms of the expected value ̂ c ( λ)

f c ( λ) and the expected value ̂ σ ( λ) of the deviation of c ( λ) from
 

 ( λ) . The function 

̂ c ( λ) is found as a GTApprox surrogate model

onstructed from the data set R , and the accompanying uncertainty

stimate ̂ σ ( λ) is found using the Accuracy Evaluation feature. 

The described procedure allows us to choose optimal parame-

ers for a particular technique. In order to choose the technique

e perform SBO for each technique from some predefined set, and

hen select the technique with the minimal error. 

The set of techniques is formed according to hints specified by

he user. The hints are a generalization of options towards less

echnical and more intuitive description of data or of the required

roperties of the surrogate model. In general, hints may be im-

recise, e.g. “IsNoisy” or “ClusteredData”. Hints may play the role

f tags or keywords helping the users to express their domain-

pecific knowledge and serving to limit the range of techniques

onsidered in the optimization. 

The “smart selection” approach is time consuming, since each

BO iteration involves constructing a new auxiliary surrogate

odel. The process can be sped up by a few hints. The “Accel-

rator” hint adjusts parameters of the SBO procedure, making it

aster but less accurate. The “AcceptableQualityLevel” hint allows

he user to specify an acceptable level of model accuracy for an

arly stopping of SBO. 

There exist general-purpose Python frameworks for optimizing

arameters of approximation techniques, e.g. hyperopt [59] . We

ave considered using hyperopt (via HPOlib [60] ,) with GTApprox

s an alternative to “smart selection”, but found the results to be

orse than with “smart selection”. First, being a general frame-

ork, HPOlib/hyperopt does not take into account special prop-

rties of particular techniques. For example, GP-based techniques

ave high computational complexity and cannot be applied in the

ase of large training sets, but HPOlib/hyperopt would attempt

o build a GP model anyway. Second, the only termination crite-

ion in HPOlib/hyperopt is the maximum number of constructed

odels – a criterion not very flexible given that different models

an have very different training times. Finally, we have observed

POlib/hyperopt in some cases to repeatedly construct models
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Fig. 5. The “decision tree” technique selection in GTApprox. Rectangles show individual techniques. Rhombuses show choices depending on properties of the training data 

and user options. Pentagons show exceptional cases with conflicting or unfeasible requirements. 



36 M. Belyaev et al. / Advances in Engineering Software 102 (2016) 29–39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Accuracy profiles of different approximation algorithms. 
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with the same parameters, which is again inefficient since train-

ing times for some of our models are quite large. 

4. Comparison with alternative algorithms on test problems 

We perform a comparison of accuracy between GTApprox and

some of the most popular, state-of-the-art predictive modeling

Python libraries: scikit-learn [13] , XGBoost [61] , and GPy [62] . 2 

We emphasize that there are a few caveats to this comparison.

First, these libraries are aimed at a technically advanced audience

of data analysts who are expected to themselves select appropri-

ate algorithms and tune their parameters. In particular, scikit-learn

does not provide a single entry point wrapping multiple tech-

niques like GTApprox does, as described in Section 3 . We therefore

compare GTApprox, as a single algorithm, to multiple algorithms

of scikit-learn. We also select a couple of different modes in both

XGBoost and GPy. Second, the scope of scikit-learn and XGBoost

is somewhat different from that of GTApprox: the former are not

focused on regression problems and their engineering applications

and, in particular, their most powerful nonlinear regression meth-

ods seem to be ensembles of trees (Random Forests and Gradient

Boosted Trees) that produce piece-wise constant approximations

presumably not fully suitable for modeling continuous response

functions. Keeping these points in mind, our comparison should be

otherwise reasonably fair and informative. 

We describe now the specific techniques considered in the

benchmark. All techniques are used with default settings. 

We consider a diverse set of scikit-learn methods for regression,

both linear and nonlinear: Ridge Regression with cross-validation

(denoted by SL_RidgeCV in our tests), Support Vector Regression

( SL_SVR ), Gaussian Processes ( SL_GP ), Kernel Ridge ( SL_KR ),

and Random Forest Regression ( SL_RFR ). Our preliminary exper-

iments included more methods, in particular common Linear Re-

gression, LassoCV and Gradient Boosting, but we have found their

results to be very close to results of other linear or tree-based

methods. 

We consider two modes of XGBoost: with the gbtree booster

(default, XGB ) and with the gblinear booster ( XGB_lin ). 

We consider two modes of GPy: the GPRegression model

( GPy ) and, since some of our test sets are relatively large, the

SparseGPRegression model ( GPy_sparse ). 

Finally, we consider two versions of GTApprox corresponding to

the two meta-algorithms described in Section 2 : the basic tree-

based algorithm ( gtapprox ) and the “smart selection” algorithm

( gta_smart ). 

Our test suite contains 31 small- and medium-scale problems,

of which 23 are given by explicit formulas and the remaining 8

represent real-world data sets or results of complex simulations.

The problems defined by formulas include a number of functions

often used for testing optimization algorithms [63] , such as Ack-

ley function, Rosenbrock function, etc. Additionally, they include a

number of non-smooth and noisy functions. The real-world data

sets and data of complex simulations are borrowed from the UCI

repository [18] and the GdR Mascot-Num benchmark [64] . Detailed

descriptions or references for the test problems can be found in

the GTApprox documentation ( [41, MACROS User Manual, section

“Benchmarks and Tests”] ). 

Each problem gives rise to several tests by varying the size of

the training set and the way the training set is generated: for prob-

lems defined by explicit functions we create the training set by

evaluating the response function on a random DoE or on a Latin
2 The code and data for this benchmark are available at https://github.com/ 

yarotsky/gtapprox _ benchmark . The versions of the libraries used in the benchmark 

were GTApprox 6.8, scikit-learn 0.17.1, XGBoost 0.4, and GPy 1.0.9. 

e  

s  

a  

t  

“  
ypercube DoE of the given size; for problems with already pro-

ided data sets we randomly choose a subset of the given size.

s a result, the size of the training set in our experiments ranges

rom 5 to 30,0 0 0. Testing is performed on a holdout set. Some of

he problems have multi-dimensional outputs; in such cases each

calar output is handled independently and is counted as a sep-

rate test. The total number of tests obtained in this way is 430.

nput dimensionality of the problems ranges from 1 to 20. 

In each test we compute the relative root-mean-squared predic-

ion error as 

RMS = 

(∑ M 

n =1 

(
f (x n ) − ̂ f (x n ) 

)2 

∑ M 

n =1 

(
f (x n ) − f 

)2 

)1 / 2 

, 

here 
(
x n , f (x n ) 

)M 

n =1 
is the test set with true values of the re-

ponse function, ̂ f (x n ) is the predicted value, and f is the mean

alue of f on the test set. Note that RRMS essentially compares

urrogate models ̂ f with the trivial constant prediction f , up to

he fact that f is computed on the test set rather than the training

et. 

Each test is run in a separate OS process with available virtual

emory restricted to 6GB. Some of the techniques raise exceptions

hen training on certain problems (e.g., out-of-memory errors). In

uch cases we set RRMS = + ∞ . 

For each surrogate modeling algorithm we construct its accu-

acy profile as the function showing for any RRMS threshold the

atio of tests where the RRMS error was below this threshold. 

The resulting profiles are shown in Fig. 6 . We find that, on the

hole, the default GTApprox is much more accurate than default

mplementations of methods from other libraries, with the excep-

ion of highly noisy problems where RRMS > 1: here gtapprox

erforms just a little worse than linear and tree-based methods.

s expected, gta_smart yields even better results than gtapprox . 

We should, however, point out that this advantage in accu-

acy is achieved at the cost of longer training. Possibly in con-

rast to other tools, GTApprox favors accuracy over training time,

ssuming the user of the default algorithm delegates to it the

xperiments needed to obtain an accurate model. In Fig. 7 we

how profiles for training time. Whereas training of scikit-learn

nd XGBoost algorithms with default settings typically takes a frac-

ion of second, GTApprox may need a few minutes, especially the

smart selection” version. Of course, if desired, training time can be

https://github.com/yarotsky/gtapprox_benchmark


M. Belyaev et al. / Advances in Engineering Software 102 (2016) 29–39 37 

Fig. 7. Training time profiles of different approximation algorithms. 

Fig. 8. A stiffened panel. 
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educed (possibly at the cost of accuracy) by tuning various op-

ions of GTApprox. 

. Applications 

We briefly describe several industrial applications of GTApprox

21–24] to illustrate how special features of GTApprox can help in

olving real world problems. 

.1. Surrogate models for reserve factors of composite stiffened panels 

Aeronautical structures are mostly made of stiffened panels that

onsist of thin shells (or skins) enforced with stiffeners in two or-

hogonal directions (see Fig. 8 ). The stiffened panels are subject

o highly nonlinear phenomena such as buckling or collapse. Most

trength conditions for the structure’s reliability can be formulated

sing so-called reserve factors (RFs). In the simplest case, a reserve

actor is the ratio between an allowable stress (for example, mate-

ial strength) and the applied stress. The whole structure is vali-

ated if all RFs of all the panels it consists of are greater than 1.

F values are usually found using computationally expensive Finite

lement (FE) methods. 

During the sizing process, i.e. optimizing geometry of the struc-

ure with respect to certain criteria (usually minimization of the

eight of the structure), RF values are taken as optimization con-

traints that allow to conclude if the considered geometry would

e reliable. So for all basic structures the RFs and their gradients

ave to be recomputed on every optimization step, which becomes

 very expensive operation in terms of time. 

The goal of this application was to create a surrogate model

hat works orders of magnitude faster than the FE method and at

he same time has a good accuracy: error should be less than 5%
or at least 95% of points with RF values close to 1, and the model

hould reliably tell if the RF is greater or less than 1 for a particu-

ar design. 

The complexity of the problem was exacerbated by several is-

ues. First, the RF values depend on 20 parameters (geometry and

oads), all of which significantly affect the output values. Second,

ome RFs depend on the parameters discontinuously. Third, points

ith RFs close to 1 are scattered across the input domain. 

The Mixture of Approximation (MoA) technique of GTApprox

as used to create a surrogate model based on the train dataset

f 20 0,0 0 0 points that met the accuracy requirements and worked

ignificantly faster than the reference PS3 tool implementing the

E computation. The optimization was further facilitated by the

vailability of the gradients of the GT Approx model. The optimiza-

ion results obtained by GTApprox and the PS3 tool are shown in

ig. 9 . Details on the work can be found in [21,22] . The obtained

TApprox surrogate model was embedded into the pre-sizing op-

imization process of Airbus A350XWB composite boxes. 

.2. Surrogate models for helicopter loads estimation 

In this work GTApprox was used to create surrogate models for

aximum loads acting on various structural elements of the heli-

opter. Knowledge of maximum loads during the flight allows one

o estimate fatigue and thus see when repair is needed. Such data

an only be collected in the flight tests as one needs to install ad-

itional sensors to a helicopter to measure loads, which are too

xpensive to be installed on every machine. 

So the goal of the project was to take data already measured

uring flight tests and create surrogate models that would allow

o estimate loads on every flight as a function of flight parame-

ers and external conditions. The challenge of the project was that

odels for lots of different load types and flight conditions (e.g.

aneuver types) needed to be created. In total one needed to build

152 surrogate models. Such problem scale made it impossible to

une each model “manually”. And at the same time different com-

inations of loads and flight condition could demonstrate very dif-

erent behavior and depend on different set of input parameters.

he input dimension varied in the range from 8 to 10 and the sam-

le size was from 1 to 108 points. 

GTApprox’ capabilities on automatic technique selection and

uality assessment were used to create all 4152 models with the

equired accuracy without manually tweaking their parameters in

ach case. In total, 2877 constant models, 777 RSM models, 440

P models and 58 HDA models were constructed. Only a few most

omplex cases had to be specifically addressed in an individual

anner. More details on the work can be found in [24] . 

.3. Surrogate models for aerodynamic problems 

In this application GTApprox was used to obtain surrogate mod-

ls for aerodynamic response functions of 3-dimensional flight

onfigurations [23] . The training data were obtained either by Eu-

er/RANS CFD simulations or by wind tunnel tests; in either case

xperiments were costly and/or time-consuming, so a surrogate

odel was required to cover the whole domain of interest. 

The training set’s DoE, shown in Fig. 10 , had two important pe-

uliarities. First, the DoE was a union of several (irregular) grids

esulting from different experiments. Second, the grids were highly

nisotropic: variables x 1 , x 3 were sampled with much lower reso-

utions than variable x 2 . 

As explained in Section 2 , this complex structure is exactly

hat the iTA technique is aimed at. The whole DoE can be con-

idered as an incomplete grid, so iTA is directly applicable to the

hole training set without the need to construct and then merge

eparate approximations for different parts of the design space. 
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Fig. 9. RF values at the optimum. Comparison of the optimal result found using the GTApprox surrogate model with that of PS3. 

Fig. 10. Design of experiments in the aerodynamic test case. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. iTA and GP approximations in the aerodynamic problem. 
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In Fig. 11 we compare, on a 2D slice of the region of main in-

terest, the iTA surrogate model with a model obtained using the

scikit-learn Gaussian Process technique [13] , which may be consid-

ered as a conventional approach for this problem (since the full

DoE is not factorizable). We observe physically unnatural “valleys”

in the GP model. This degeneracy results from the GP’s assump-

tions of uniformity and homogeneity of data [29] that do not hold

in this problem due to gaps in the DoE and large gradient of the

response function in a part of the design space. Clearly, the iTA

model does not have these drawbacks. In addition, iTA is much

faster to train on this 2026-point set: it took 10 seconds for the

iTA model and 1800 seconds for the GP model. 3 

6. Conclusion 

We have described GTApprox — a new tool for medium-scale

surrogate modeling in industrial design – and its novel features
3 The experiments were conducted on a PC with Intel(R) Core(TM) i7-2600 CPU 

@ 3.40 GHz and 8GB RAM. 

 

t  

t  

a

hat make it convenient for surrogate modeling, especially for ap-

lications in engineering and for use by non-experts in data analy-

is. The tool contains some entirely new approximation algorithms

e.g., Tensor Approximation with arbitrary factors and incomplete

ensor Approximation) as well as novel model selection meta-

lgorithms. In addition, GTApprox supports multiple novel “non-

echnical” options and features allowing the user to more eas-

ly express the desired properties of the model or some domain-

pecific properties of a data. 

When compared to scikit-learn algorithms in the default mode

n a collection of test problems, GTApprox shows a superior ac-

uracy. This is achieved at the cost of longer training times that,

evertheless, remain moderate for medium-scale problems. 

We have also briefly described a few applications of GTApprox

o real engineering problems where a crucial role was played by

he tool’s distinctive elements (the new algorithms MoA and iTA,

utomated model selection, built-in availability of gradients). 
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