
Advances in Engineering Software 102 (2016) 14–28

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Research paper

Improved adaptive mesh refinement for conformal hexahedral meshes

Gérald Nicolas a , ∗, Thierry Fouquet b , Samuel Geniaut a , Sam Cuvilliez

a

a EDF Lab Paris-Saclay, 7 boulevard Gaspard Monge, 91120 Palaiseau, France
b EDF – R&D, 6 quai Watier, 78400 Chatou, France

a r t i c l e i n f o

Article history:

Received 2 October 2015

Revised 19 July 2016

Accepted 19 July 2016

Keywords:

H-refinement

Adaptive meshing

Hexahedral mesh refinement

Conformal mesh

Mesh adaptation

Transition element

Pyramid

a b s t r a c t

The h-refinement is a technique to achieve the mesh adaptation during a finite element simulation. Some

elements are selected because the error is higher than a given threshold: they are split. This operation

creates new elements where the size of the edges is divided by 2 in the zone of high error. To produce

a conformal mesh, the connection between two zones with different levels of refinement must be exam-

ined. This paper proposes a solution in the case of meshes made of hexahedra. Depending on the type

of interface, a set of patterns has been designed. In each pattern, the hexahedron is split into pyramids

and tetrahedra. That specific splitting stops the propagation of the refinement and allows h-refinement

in numerical simulations based on hexahedra with a conformal finite element method. At the end, an

application to a crack analysis is shown.

© 2016 Elsevier Ltd. All rights reserved.

n

r

b

m

b

a

y

R

d

t

o

e

a

t

m

w

f

h

l

b

i

w

t
1. Introduction

The numerical analysis is widely used to improve the efficiency

of the industrial activities. These analyses are present in various

stages of the processes: design, optimisation, non-destructive

testing, simulation of accidents, etc. If a physical phenomenon is

involved, the finite element method is often used to simulate the

behaviour of an installation. Important decisions depend on the

quality of the results of the simulations. Of course, many causes

influence the quality of the results. One of these causes is the

appropriateness between the mesh and the resolution. First, the

mesh must be an accurate representation of the model. Then, on

one hand, the number of elements must be as low as possible to

reduce the cost of the simulation; on the other hand, the size of

the elements must be small enough to increase the precision of the

calculation. The mesh adaptation brings solutions to this problem.

The mesh adaptation is based on 2 stages if one wants to get

the optimal size of the elements [1] . Firstly, a numerical analy-

sis gives the indications of the error that is made on every ele-

ment and it often suggests an optimal size of each element. For

more than 3 decades, a large theoretical work has been made

to compute such an error indicator [2–4] . Nevertheless, the def-

inition and the implementation in an industrial software is still

a hard task. This subject will not be discussed here. Secondly, a
∗ Corresponding author.

E-mail addresses: gerald.nicolas@edf.fr (G. Nicolas), thierry.fouquet@edf.fr (T.

Fouquet), samuel.geniaut@edf.fr (S. Geniaut), sam.cuvilliez@edf.fr (S. Cuvilliez).

a

i

e

http://dx.doi.org/10.1016/j.advengsoft.2016.07.014

0965-9978/© 2016 Elsevier Ltd. All rights reserved.
ew mesh is created with these information; it is the so-called h-

efinement. A solution consists in building a new mesh ex nihilo ;

ut only a few mesh generators are able to automatically create a

esh that respects the constraints of size [5] . If the mesh has to

e made of hexahedra, the problem challenges many researchers

nd an automatic procedure for industrial cases is not available

et [6–9] , and many contributions from the International Meshing

oundtable [10] . Considering that difficulties, the h-refinement by

ivision of the elements is a powerful solution [11–13] . The ini-

ial mesh is produced by a mesh generator. A calculation is made

ver this mesh and the error indicator is analysed to select the el-

ments where the size should be smaller. Those elements are cut

nd a special treatment is applied to connect the refined zone and

he unrefined zone to produce a new mesh that has to be confor-

al.

With a hexahedral mesh, the connection between two zones

ith different levels of refinement can be made either by special

unctions during the computation or by the introduction of tetra-

edra and pyramids to avoid any modification of the solver reso-

ution [14–18] . We developed a solution to build such a transition

y a combination of tetrahedra and pyramids [19,20] . After using

t in some industrial studies, we realized that the solution had a

eak point. If the large errors were not localised through a direc-

ion parallel to the faces of the hexahedra, in other words if it were

s a staircase, the refinement would spread too widely. Consider-

ng that drawback, the algorithm was improved and now the influ-

nce of the refinement is similar with a tetrahedral or a hexahedral

http://dx.doi.org/10.1016/j.advengsoft.2016.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.07.014&domain=pdf
mailto:gerald.nicolas@edf.fr
mailto:thierry.fouquet@edf.fr
mailto:samuel.geniaut@edf.fr
mailto:sam.cuvilliez@edf.fr
http://dx.doi.org/10.1016/j.advengsoft.2016.07.014

G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28 15

Fig. 1. Standard refinement of a hexahedron.

Fig. 2. A regularly refined zone inside a block.

Fig. 3. Transition between 2 hexahedra.

Table 1

Procedure for the 3 or 4 pending nodes.

1: Define S as the stack of all the untagged faces.

2: while (S is not empty) do

3: Examine F, the last face of S

4: if (the 4 edges of F are tagged) then

5: Tag F

6: else if (3 edges of F are tagged) then

7: Tag the 4th edge

8: Tag F

9: Add into S all the untagged faces

that share this 4th edge.

10: end if

11: Remove the face F from the stack S

12: end

m

a

d

s

Fig. 4. Patterns for the refinement of a quadrangle.

Fig. 5. A face with 3 tagged edges.

Fig. 6. Impact for the next faces.

Table 2

Number of cases vs number of split edges.

Split edges 1 2 3 4 5 6 7 8 9

Cases 1 4 8 13 9 7 2 2 1
esh. This paper presents the full algorithm to produce conformal

nd adapted meshes with an h-refinement method. The exhaustive

escription of the transition meshes is given. Finally, an example

hows the interest of the method in an industrial application.

16 G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28

A. B. C.

D. E. F.

f3f4

f2

f3f4

g4

g1 g2

g3

g5 g6
g7

g8

f3

g9

g10
f1 f2

f4 f3

Fig. 7. Treatment of the conformity at level > 1.

Table 3

Global algorithm.

1: Transfer the error indicator onto the faces and the edges.

2: Remove all the transition elements

3: for all the levels from the highest to #0 do

4: for all the faces and the edges in the current level do

5: Propagate the refinement to get rid of 3 pending nodes in a face

6: Propagate the refinement to the lower level if an edge is twice split

7: end for

8: end for

9: Apply: standard refinement

10: Apply: transition refinement

Fig. 8. A hexahedron with 2 cut edges.

c

(

a

z
2. The algorithm

2.1. Initialisation of the process

At the end of a calculation over a hexahedral mesh, the solver

computes an error indicator. This indicator can be an evaluation

of the error, in the sense of a numerical analysis, and sometimes

it provides information about the optimal size. But if this analysis

is not available, the indicator may be a field over the mesh that

represents any other data, such as the gradient of the solution, the

distance from an object … It is not as accurate as a real error indi-

cator but the important point is that the indicator is able to iden-

tify the zones where the elements are too large.

This indicator is expressed over the hexahedral elements. A

threshold for the refinement is given together to drive the refine-

ment. The first phase consists in sorting the elements. For each el-

ement, if the value of the error indicator is greater than the thresh-

old, its 6 faces and its 12 edges are tagged. In some configurations,

the error indicator may be expressed over the nodes. The initialisa-

tion is slightly modified. Each edge of the elements is considered. If

the values of the error indicator over the two vertices of the edge

are greater than the threshold, the edge is tagged.

At the end of this phase, some hexahedral elements are ready

to be regularly refined: their 6 faces and their 12 edges are tagged.

By placing a node at its midsection, each edge is equally split. A

new node is added at the centre of each face and the quadrangular

face is split into 4 quadrangles. Lastly, a new node is added at the

centroid of the hexahedron and 8 new hexahedra are created by

h

B
onnecting this central node to the external nodes, edges and faces

see Fig. 1).

Now, a fundamental problem appears in the transition between

 refined hexahedron and an intact one. Imagine a block where a

one has been selected for the refinement by the indicator: all the

exahedra in that zone are going to be regularly refined (Fig. 2).

ut at the interface with the unrefined zone, one or more pending

G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28 17

Fig. 9. Pyramids and tetrahedra - hexahedron with 2 cut edges.

2

3

5

6

7

8

4

1

9

4 pyramids

Fig. 10. With 1 edge subjected to division.

n

e

t

o

i

t

2

t

Table 4

With 1 edge subjected to divi-

sion.

P1 4 1 6 7 9

P2 2 3 8 5 9

P3 3 4 7 8 9

P4 6 5 8 7 9

e

m

t

f

g

o

(

w

p

f

c

I

t

t

b
odes are present (Fig. 3). The extreme solution would be to refine

very hexahedron in such a situation. But this strategy would lead

o a uniform refinement of the mesh, which is obviously not the

bjective of the mesh adaptation. A compromise consists in defin-

ng a special treatment for these zones with the examination of

he status of every face.

.2. The pending nodes on the quadrangular faces

In this phase of the algorithm, the hexahedra are forgotten and

he treatment is concentrated on the quadrangular faces and their
2

3

5

6

7

8

4

1

9

10

2

3

5

6

7

8

4

1

9

10

2

3

2 pyramids
12 tetrahedra
A

2 pyramids
12 tetrahedra
B

Fig. 11. With 2 edges sub
dges. Depending on the distribution of the error indicator, a face

ay have 1, 2, 3 or 4 pending nodes. We decided to use special

emplates for the cases with 1 or 2 pending nodes. Three patterns

or the special refinements are required by dividing the quadran-

ular face into 3 triangles (1 pending node) or 2 quadrangles (2

pposite pending nodes) or 3 quadrangles (2 next pending nodes)

see Fig. 4). Some other solutions could be possible and this choice

ill be discussed in Section 4.1 .

Considering this choice, we have to get rid of the cases of 3 or 4

ending nodes in a quadrangular face. A rule is defined: “tag each

ace where 3 or 4 edges are tagged” . All the untagged faces are

onsidered. If their 4 edges are tagged, the face itself is tagged.

f 3 edges are tagged, the face itself is tagged. The 4th edge is

agged as well. But the situation may have changed for the faces

hat share that 4th edge: they are examined to check their num-

er of pending nodes. This treatment is applied until no face has
5

6

7

8

4

1

9

10

11

2

3

5

6

7

8

4

1

9

10

6 pyramids
6 tetrahedra
C

5 pyramids
6 tetrahedra
D

jected to division.

18 G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28

2

3

5

6

7

8

4

1

9

10 11

2

3

5

6

7

8

4

1

9

10

11

12

13

14

2

3

5

6

7

8

4

1

9

10

11
12

2

3

5

6

7

8

4

1

9

10

1112

2

3

5

6

7

8

4

1

9

10

11

12

13

2

3

5

6

7

8

4

1

9

10

1112

2

3

5

6

7

8

4

1

9

10

11

2

3

5

6

7

8

4

1

9

10

11

18 tetrahedra
A

12 pyramids
B

7 pyramids
6 tetrahedra
C

4 pyramids
12 tetrahedra
D

8 pyramids
6 tetrahedra
E

4 pyramids
12 tetrahedra
F

6 pyramids
6 tetrahedra
G

3 pyramids
12 tetrahedra
H

Fig. 12. With 3 edges subjected to division.

2

3

5

6

7

8

4

1

9

10

11

12

13

2

3

5

6

7

8

4

1

9

10

11

12
13

14

2

3

5

6

7

8

4

1

9

10

111213

14

2

3

5

6

7

8

4

1

9

10

11

1213

14

2

3

5

6

7

8

4

1

9

10

11

12

13

14

2

3

5

6

7

8

4

1

9

10

11 12
13

2

3

5

6

7

8

4

1

9

10

11

12

13

14

2

3

5

6

7

8

4

1

9

10

11

12

13

14

15

5 pyramids
4 tetrahedra
A

12 pyramids
B

9 pyramids
6 tetrahedra
C

6 pyramids
12 tetrahedra
D

9 pyramids
6 tetrahedra
E

5 pyramids
12 tetrahedra
F

6 pyramids
12 tetrahedra
G

10 pyramids
6 tetrahedra
H

Fig. 13. With 4 edges subjected to division (1/2).

2

m

got neither 3 nor 4 pending nodes. Its application is described in

Table 1.

Fig. 5 illustrates a case of a face that belongs to the stack of

the untagged faces but with 3 tagged edges. After the treatment,

the 4th edge and the face itself are tagged. The face is withdrawn

from the stack. At the same time, all the next faces are included

into the stack (Fig. 6).

.3. Back to the hexahedra

At the end of this iterative procedure, each quadrangular face

ay be in one of the following status:

• No edge is tagged: the face is kept
• 1 edge is tagged: the face is split into 3 triangles
• 2 opposite edges are tagged: the face is split into 2 quadrangles
• 2 adjacent edges are tagged: the face is split into 3 quadrangles

G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28 19

2

3

5

6

7

8

4

1

9

10

11

12
13

2

3

5

6

7

8

4

1

9

10

11 1213

14

2

3

5

6

7

8

4

1

9

10

11

1213

14

15

2

3

5

6

7

8

4

1

9

10

11

12

2

3

5

6

7

8

4

1

9

10

11

12

8 pyramids
6 tetrahedra
I

6 pyramids
12 tetrahedra
J

10 pyramids
6 tetrahedra
K

4 pyramids
12 tetrahedra
L

2 hexahedra
M

Fig. 14. With 4 edges subjected to division (2/2).

Table 5

With 2 edges subjected to division.

A B C D

T1 0 9 4 3 T1 0 9 4 3 T1 0 9 5 6 T1 0 9 5 6

T2 0 9 1 4 T2 0 9 1 4 T2 0 9 2 5 T2 0 9 2 5

T3 0 9 3 2 T3 0 9 3 2 T3 0 9 6 1 T3 0 9 6 1

T4 0 9 5 6 T4 0 9 5 6 T4 0 10 6 7 T4 0 10 7 8

T5 0 9 2 5 T5 0 9 2 5 T5 0 10 1 6 T5 0 10 4 7

T6 0 9 6 1 T6 0 9 6 1 T6 0 10 7 4 T6 0 10 8 3

T7 0 10 5 2 T7 0 10 3 4 P1 1 10 11 9 0 P1 1 4 10 9 0

T8 0 10 8 5 T8 0 10 8 3 P2 4 3 11 10 0 P2 3 2 9 10 0

T9 0 10 2 3 T9 0 10 4 7 P3 2 9 11 3 0 P3 4 1 6 7 0

T10 0 10 4 7 T10 0 10 6 5 P4 2 3 8 5 0 P4 2 3 8 5 0

T11 0 10 3 4 T11 0 10 7 6 P5 3 4 7 8 0 P5 6 5 8 7 0

T12 0 10 7 8 T12 0 10 5 8 P6 6 5 8 7 0

P1 4 1 6 7 0 P1 4 1 6 7 0

P2 6 5 8 7 0 P2 2 3 8 5 0

Table 6

With 3 edges subjected to division (1/2).

A B C D

T1 0 9 4 3 P1 1 10 12 9 0 T1 0 9 5 6 T1 0 9 5 6

T2 0 9 1 4 P2 4 3 12 10 0 T2 0 9 2 5 T2 0 9 2 5

T3 0 9 3 2 P3 2 9 12 3 0 T3 0 9 6 1 T3 0 9 6 1

T4 0 9 5 6 P4 1 9 13 11 0 T4 0 11 5 8 T4 0 10 6 7

T5 0 9 2 5 P5 2 5 13 9 0 T5 0 11 6 5 T5 0 10 1 6

T6 0 9 6 1 P6 6 11 13 5 0 T6 0 11 8 7 T6 0 10 7 4

T7 0 11 4 1 P7 1 11 14 10 0 P1 1 10 12 9 0 T7 0 11 3 4

T8 0 11 7 4 P8 6 7 14 11 0 P2 4 3 12 10 0 T8 0 11 8 3

T9 0 11 1 6 P9 4 10 14 7 0 P3 2 9 12 3 0 T9 0 11 4 7

T10 0 10 5 2 P10 2 3 8 5 0 P4 1 6 11 10 0 T10 0 11 6 5

T11 0 10 8 5 P11 3 4 7 8 0 P5 7 4 10 11 0 T11 0 11 7 6

T12 0 10 2 3 P12 6 5 8 7 0 P6 2 3 8 5 0 T12 0 11 5 8

T13 0 10 4 7 P7 3 4 7 8 0 P1 1 10 12 9 0

T14 0 10 3 4 P2 4 3 12 10 0

T15 0 10 7 8 P3 2 9 12 3 0

T16 0 11 5 8 P4 2 3 8 5 0

T17 0 11 6 5

T18 0 11 8 7

20 G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28

2

3

5

6

7

8

4

1

9

10

11

12

13

14

15

16
2

3

5

6

7

8

4

1

9

10

11

12

13
14

15
2

3

5

6

7

8

4

1

9

10

11

12

13

14

15

16

2

3

5

6

7

8

4

1

9

10

11

12

13
14

15

2

3

5

6

7

8

4

1

9

10

11

12

13

14

15

2

3

5

6

7

8

4

1

9

10

11

12

1314

15

16
17

2

3

5

6

7

8

4

1

9

10

11

12

13

14

15

16

17
2

3

5

6

7

8

4

1

9

10

11

12

13

14

15

16

2

3

5

6

7

8

4

1

9

10

11

12

13

14

11 pyramids

6 tetrahedra

A

10 pyramids

6 tetrahedra

B

14 pyramids

C

10 pyramids

6 tetrahedra

D

10 pyramids

6 tetrahedra

E

12 pyramids

6 tetrahedra

F

12 pyramids

6 tetrahedra

G

11 pyramids

6 tetrahedra

H

6 pyramids

12 tetrahedra

I

Fig. 15. With 5 edges subjected to division.

Table 7

With 3 edges subjected to division (2/2).

E F G H

T1 0 9 5 6 T1 0 9 5 6 T1 0 10 7 8 T1 0 9 5 6

T2 0 9 2 5 T2 0 9 2 5 T2 0 10 4 7 T2 0 9 2 5

T3 0 9 6 1 T3 0 9 6 1 T3 0 10 8 3 T3 0 9 6 1

T4 0 11 8 3 T4 0 10 6 7 T4 0 11 8 7 T4 0 11 4 1

T5 0 11 7 8 T5 0 10 1 6 T5 0 11 5 8 T5 0 11 7 4

T6 0 11 3 4 T6 0 10 7 4 T6 0 11 7 6 T6 0 11 1 6

P1 1 10 12 9 0 T7 0 11 5 2 P1 1 4 10 9 0 T7 0 10 7 8

P2 4 3 12 10 0 T8 0 11 8 5 P2 3 2 9 10 0 T8 0 10 4 7

P3 2 9 12 3 0 T9 0 11 2 3 P3 2 5 11 9 0 T9 0 10 8 3

P4 4 10 13 11 0 T10 0 11 4 7 P4 6 1 9 11 0 T10 0 11 5 8

P5 1 6 13 10 0 T11 0 11 3 4 P5 4 1 6 7 0 T11 0 11 6 5

P6 7 11 13 6 0 T12 0 11 7 8 P6 2 3 8 5 0 T12 0 11 8 7

P7 2 3 8 5 0 P1 1 10 12 9 0 P1 1 4 10 9 0

P8 6 5 8 7 0 P2 4 3 12 10 0 P2 3 2 9 10 0

P3 2 9 12 3 0 P3 2 3 8 5 0

P4 6 5 8 7 0

G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28 21

2

3

5

6

7

8

4

1

9

10

11

12

13

1415

16

17

18

19

20

2

3

5

6

7

8

4

1

9

10

11

12

13

14
15

16

2

3

5

6

7

8

4

1

9

10

11

12

13

1415

2

3

5

6

7

8

4

1

9

10

11

12

13

1415

16

17

2

3

5

6

7

8

4

1

9

10

11

12

13

1415

16

17

18

19

2

3

5

6

7

8

4

1

9

10

11

12

13

1415

16

17

18

19

20

2

3

5

6

7

8

4

1

9

10

11

12

13

14

15

16

17
18

18 pyramids
A

11 pyramids
6 tetrahedra
B

10 pyramids
6 tetrahedra
C

12 pyramids
6 tetrahedra
D

17 pyramids
E

18 pyramids
F

16 pyramids
G

Fig. 16. With 6 edges subjected to division.

2

3

5

6

7

8

4

1

9

10

11

12

13

14

15

16

17

18

19
2

3

5

6

7

8

4

1

9

10

11

12

13

14

1516

17

18

19

14 pyramids
6 tetrahedra
A

17 pyramids
B

Fig. 17. With 7 edges subjected to division.

2

3

5

6

7

8

4

1

9

10

11

12

13

14

151617

18

2

3

5

6

7

8

4

1

9

10

11

12

13

14

15

1617

18

19

20

4 hexahedra
A

18 pyramids
B

Fig. 18. With 8 edges subjected to division.

m

i

n

c

s

2

3

5

6

7

8

4

1

9

10

11

12

13

14 15

16

17
18

19

20

21

22

23

21 pyramids

Fig. 19. With 9 edges subjected to division.

w

h

1

s

s

w

n

2

t

o

s

t

e

c

i

2

t

m

t

h

t
• 4 edges are tagged: the face is split into 4 quadrangles

Then, these patterns must be used to define the specific refine-

ent of the hexahedra. When all the possible situations are exam-

ned for a given hexahedron, each of the 12 edges may be split or

ot. That means that a priori we have to deal with 2 ∗∗12 = 4096

ases. These numerous cases are sorted firstly by the number of

plit edges, then by the pattern. First, we can remove the extremes
here 0 or 12 edges are split: that corresponds to an intact hexa-

edron or a regularly refined hexahedron. In the same way, 10 or

1 split edges cannot be found because it would violate the rule of

plitting if 3 edges of a face are tagged. If 1 edge is split, 12 pos-

ibilities exist, depending on the split edge. We define a pattern

ith 1 split edge and the others 11 are deduced from this origi-

al pattern by rotations. If 2 edges are split, 4 possibilities exist:

 edges on adjacent faces, 2 opposite edges, 2 adjacent edges on

he same face, 2 opposite edges on the same face. Like in the case

f a single split edge, each of these 4 categories contains similar

ituations that can be deduced one from the other by a set of ro-

ations. The same analysis is made for 3 split edges, 4 split edges,

tc. At the end, the consequence is a set of 47 different equivalence

lasses (see Table 2). All the corresponding patterns are described

n the section #3.

.4. Next levels

The algorithm was described for an initial mesh: the compu-

ation and the calculation of the error is made on the very first

esh #0, built by a mesh generator from CAD for example. With

he adaptation procedure, a new mesh #1 is built with a mix of

exahedra, either from the initial mesh or from the standard split-

ing of the initial ones, pyramids and tetrahedra. The calculation

22 G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28

Table 8

With 4 edges subjected to division (1/3).

A B C D

T1 13 9 5 6 P1 1 10 13 9 0 T1 0 9 5 6 T1 0 9 5 6

T2 13 10 6 7 P2 4 3 13 10 0 T2 0 9 2 5 T2 0 9 2 5

T3 13 12 7 8 P3 2 9 13 3 0 T3 0 9 6 1 T3 0 9 6 1

T4 13 11 8 5 P4 2 5 11 9 0 T4 0 12 3 4 T4 0 10 6 7

P1 6 5 8 7 13 P5 6 1 9 11 0 T5 0 12 8 3 T5 0 10 1 6

P2 1 10 13 9 6 P6 1 6 12 10 0 T6 0 12 4 7 T6 0 10 7 4

P3 4 12 13 10 7 P7 7 4 10 12 0 P1 1 10 13 9 0 T7 0 11 2 3

P4 3 11 13 12 8 P8 2 3 8 5 0 P2 4 3 13 10 0 T8 0 11 5 2

P5 2 9 13 11 5 P9 3 4 7 8 0 P3 2 9 13 3 0 T9 0 11 3 8

P10 6 11 14 12 0 P4 1 6 11 10 0 T10 0 12 3 4

P11 5 8 14 11 0 P5 7 4 10 11 0 T11 0 12 8 3

P12 7 12 14 8 0 P6 2 3 8 5 0 T12 0 12 4 7

P7 7 11 14 12 0 P1 1 10 13 9 0

P8 6 5 14 11 0 P2 4 3 13 10 0

P9 8 12 14 5 0 P3 2 9 13 3 0

P4 8 12 14 11 0

P5 7 6 14 12 0

P6 5 11 14 6 0

Table 9

With 4 edges subjected to division (2/3).

E F G H

T1 0 9 5 6 T1 0 9 5 6 T1 0 9 5 6 T1 0 11 3 8

T2 0 9 2 5 T2 0 9 2 5 T2 0 9 2 5 T2 0 11 2 3

T3 0 9 6 1 T3 0 9 6 1 T3 0 9 6 1 T3 0 11 8 5

T4 0 11 5 2 T4 0 11 5 2 T4 0 12 2 3 T4 0 12 8 3

T5 0 11 8 5 T5 0 11 8 5 T5 0 12 5 2 T5 0 12 7 8

T6 0 11 2 3 T6 0 11 2 3 T6 0 12 3 8 T6 0 12 3 4

P1 1 10 13 9 0 T7 0 11 4 7 T7 0 11 8 3 P1 1 10 13 9 0

P2 4 3 13 10 0 T8 0 11 3 4 T8 0 11 7 8 P2 4 3 13 10 0

P3 2 9 13 3 0 T9 0 11 7 8 T9 0 11 3 4 P3 2 9 13 3 0

P4 4 10 14 12 0 T10 0 12 5 8 T10 0 12 7 6 P4 2 11 14 9 0

P5 1 6 14 10 0 T11 0 12 6 5 T11 0 12 8 7 P5 5 6 14 11 0

P6 7 12 14 6 0 T12 0 12 8 7 T12 0 12 6 5 P6 1 9 14 6 0

P7 7 8 11 12 0 P1 1 10 13 9 0 P1 1 10 13 9 0 P7 4 10 15 12 0

P8 3 4 12 11 0 P2 4 3 13 10 0 P2 4 3 13 10 0 P8 1 6 15 10 0

P9 6 5 8 7 0 P3 2 9 13 3 0 P3 2 9 13 3 0 P9 7 12 15 6 0

P4 1 6 12 10 0 P4 4 10 14 11 0 P10 6 5 8 7 0

P5 7 4 10 12 0 P5 1 6 14 10 0

P6 7 11 14 6 0

Table 10

With 4 edges subjected to division (3/3).

I J K L

T1 0 9 5 6 T1 0 9 5 6 T1 0 12 5 2 T1 0 9 5 6

T2 0 9 2 5 T2 0 9 2 5 T2 0 12 8 5 T2 0 9 2 5

T3 0 9 6 1 T3 0 9 6 1 T3 0 12 2 3 T3 0 9 6 1

T4 0 11 2 3 T4 0 10 6 7 T4 0 12 4 7 T4 0 12 4 1

T5 0 11 5 2 T5 0 10 1 6 T5 0 12 3 4 T5 0 12 7 4

T6 0 11 3 8 T6 0 10 7 4 T6 0 12 7 8 T6 0 12 1 6

P1 1 10 13 9 0 T7 0 11 5 2 P1 1 10 13 9 0 T7 0 11 2 3

P2 4 3 13 10 0 T8 0 11 8 5 P2 4 3 13 10 0 T8 0 11 5 2

P3 2 9 13 3 0 T9 0 11 2 3 P3 2 9 13 3 0 T9 0 11 3 8

P4 1 6 12 10 0 T10 0 12 6 5 P4 1 9 14 11 0 T10 0 10 7 8

P5 7 4 10 12 0 T11 0 12 7 6 P5 2 5 14 9 0 T11 0 10 4 7

P6 3 4 7 8 0 T12 0 12 5 8 P6 6 11 14 5 0 T12 0 10 8 3

P7 8 7 12 11 0 P1 1 10 13 9 0 P7 1 11 15 10 0 P1 1 4 10 9 0

P8 6 5 11 12 0 P2 4 3 13 10 0 P8 6 7 15 11 0 P2 3 2 9 10 0

P3 2 9 13 3 0 P9 4 10 15 7 0 P3 8 7 12 11 0

P4 8 11 14 12 0 P10 6 5 8 7 0 P4 6 5 11 12 0

P5 3 4 14 11 0

P6 7 12 14 4 0

M

H1 1 9 10 4 11 6 7 12

H2 9 2 3 10 5 11 12 8

G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28 23

Table 11

With 5 edges subjected to division (1/3).

A B C

T1 0 9 5 6 T1 0 9 5 6 P1 1 10 14 9 0

T2 0 9 2 5 T2 0 9 2 5 P2 4 3 14 10 0

T3 0 9 6 1 T3 0 9 6 1 P3 2 9 14 3 0

T4 0 13 7 6 T4 0 11 4 7 P4 2 11 15 9 0

T5 0 13 8 7 T5 0 11 3 4 P5 5 6 15 11 0

T6 0 13 6 5 T6 0 11 7 8 P6 1 9 15 6 0

P1 1 10 14 9 0 P1 1 10 14 9 0 P7 4 10 16 13 0

P2 4 3 14 10 0 P2 4 3 14 10 0 P8 1 6 16 10 0

P3 2 9 14 3 0 P3 2 9 14 3 0 P9 7 13 16 6 0

P4 4 10 15 12 0 P4 1 6 13 10 0 P10 8 5 11 12 0

P5 1 6 15 10 0 P5 7 4 10 13 0 P11 2 3 12 11 0

P6 7 12 15 6 0 P6 8 12 15 11 0 P12 7 8 12 13 0

P7 8 13 16 11 0 P7 5 2 15 12 0 P13 3 4 13 12 0

P8 5 2 16 13 0 P8 3 11 15 2 0 P14 6 5 8 7 0

P9 3 11 16 2 0 P9 8 7 13 12 0

P10 7 8 11 12 0 P10 6 5 12 13 0

P11 3 4 12 11 0

Table 12

With 5 edges subjected to division (2/3).

D E F

T1 0 11 5 2 T1 0 11 5 2 T1 0 11 3 8

T2 0 11 8 5 T2 0 11 8 5 T2 0 11 2 3

T3 0 11 2 3 T3 0 11 2 3 T3 0 11 8 5

T4 0 11 4 7 T4 0 13 8 7 T4 0 13 6 5

T5 0 11 3 4 T5 0 13 5 8 T5 0 13 7 6

T6 0 11 7 8 T6 0 13 7 6 T6 0 13 5 8

P1 1 10 14 9 0 P1 1 10 14 9 0 P1 1 10 14 9 0

P2 4 3 14 10 0 P2 4 3 14 10 0 P2 4 3 14 10 0

P3 2 9 14 3 0 P3 2 9 14 3 0 P3 2 9 14 3 0

P4 2 5 12 9 0 P4 2 5 13 9 0 P4 2 11 15 9 0

P5 6 1 9 12 0 P5 6 1 9 13 0 P5 5 6 15 11 0

P6 1 6 13 10 0 P6 4 10 15 12 0 P6 1 9 15 6 0

P7 7 4 10 13 0 P7 1 6 15 10 0 P7 4 10 16 12 0

P8 6 12 15 13 0 P8 7 12 15 6 0 P8 1 6 16 10 0

P9 5 8 15 12 0 P9 7 8 11 12 0 P9 7 12 16 6 0

P10 7 13 15 8 0 P10 3 4 12 11 0 P10 7 13 17 12 0

P11 8 3 17 13 0

P12 4 12 17 3 0

o

t

t

t

a

d

a

r

i

p

m

q

T

(

o

b

I

f

a

7

2

l

o

r

o

l

t

f

r

s

i

3

m

a

c

t

c

(

i

h

n

t

t

i

p

o
n this mesh #1 will give a new field of error indicator. When

he mesh #1 is going to be refined, a special treatment is applied

o the specific elements that were created to make the conformal

ransition. They are never refined; if they were, that would cause

 degradation of the quality of the mesh because the angles would

ecrease at each iteration. The solution consists in unrefining them

t the beginning of the treatment. Imagine a 2D case with 4 quad-

angles; one is selected for refinement (f1 in Fig. 7 /A). This face

s refined and its two neighbours are split following the adequate

attern (Fig. 7 /B). Imagine that a new calculation is made over this

esh #1 and imagine that the analysis of the error indicator re-

uests the refinement of one of the children (face g2) (Fig. 7 /C).

he first operation consists in removing the transition elements

triangles g5–g10) and then in refining this selected quadrangle g2

f the upper level (Fig. 7 /D). But in the adjacent face (f2), the edge

etween the refined zone and the non-refined zone is split twice.

n this case, we apply the rule: “if an edge is refined twice, the

ace as to be refined” (f2 in Fig. 7 /E). Lastly, the pending nodes

re examined and the specific transition elements are created (Fig.

 /F).

.5. General algorithm

A level is given to every face: the faces of the initial mesh be-

ong to the level #0. The faces built by the standard refinement

f a face of the level #0 belong to the level #1, etc. Due to the 2
ules about the propagation of the refinement in the neighbouring

f the elements, the algorithm can be applied whatever the last

evel of refinement is. Each level is examined, from the highest to

he initial level #0. In a level, if there are 3 pending nodes on a

ace, the 4th edge of the face is tagged. When the level is over, the

efinement is transferred to the upper level where an edge is twice

plit. Then, the upper level is examined. At the end, the refinement

s processed to produce a conformal mesh (See Table 3).

. The specific splitting of the hexahedron

In each equivalence class, the splitting of the hexahedra is

ade with internal pyramids and/or tetrahedra. Most of the time

 node is created at the centroid of the hexahedron; this node is

onnected to the triangular or the quadrangular faces created on

he external faces of the hexahedron. For example, consider the

ase of a hexahedron where 2 edges are cut on 2 adjacent faces

 Fig. 8). Following the previously defined pattern, the faces shar-

ng the split edges are cut into 3 triangles. The last 2 faces of the

exahedron remain intact. A node is inserted at the centroid. 10

ew edges are created from every node on the external faces of

he hexahedron: the 8 initial vertices and the 2 new midpoints of

he split edges. 22 new triangular faces are created: their first edge

s one of the edges on the external faces (10 initial edges, 4 edges

roduced by the splitting of the 2 initial edges and 8 new edges

n the split faces) and the other 2 edges are 2 of the new internal

24 G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28

Table 13

With 5 edges subjected to division (3/3).

G H I

T1 0 12 4 7 T1 0 12 8 5 T1 0 10 6 7

T2 0 12 3 4 T2 0 12 3 8 T2 0 10 1 6

T3 0 12 7 8 T3 0 12 5 2 T3 0 10 7 4

T4 0 13 7 6 T4 0 13 7 8 T4 0 11 8 5

T5 0 13 8 7 T5 0 13 4 7 T5 0 11 3 8

T6 0 13 6 5 T6 0 13 8 3 T6 0 11 5 2

P1 1 10 14 9 0 P1 1 10 14 9 0 T7 0 12 7 8

P2 4 3 14 10 0 P2 4 13 14 10 0 T8 0 12 4 7

P3 2 9 14 3 0 P3 3 12 14 13 0 T9 0 12 8 3

P4 1 9 15 11 0 P4 2 9 14 12 0 T10 0 13 8 7

P5 2 5 15 9 0 P5 1 9 15 11 0 T11 0 13 5 8

P6 6 11 15 5 0 P6 2 5 15 9 0 T12 0 13 7 6

P7 1 11 16 10 0 P7 6 11 15 5 0 P1 1 10 14 9 0

P8 6 7 16 11 0 P8 1 11 16 10 0 P2 4 12 14 10 0

P9 4 10 16 7 0 P9 6 7 16 11 0 P3 3 11 14 12 0

P10 8 13 17 12 0 P10 4 10 16 7 0 P4 2 9 14 11 0

P11 5 2 17 13 0 P11 6 5 8 7 0 P5 2 5 13 9 0

P12 3 12 17 2 0 P6 6 1 9 13 0

Table 14

With 6 edges subjected to division (1/2).

A B C D

P1 1 10 15 9 0 T1 0 11 8 5 T1 0 10 6 7 T1 0 12 8 5

P2 4 3 15 10 0 T2 0 11 3 8 T2 0 10 1 6 T2 0 12 3 8

P3 2 9 15 3 0 T3 0 11 5 2 T3 0 10 7 4 T3 0 12 5 2

P4 1 9 16 11 0 T4 0 12 7 8 T4 0 11 8 5 T4 0 14 6 5

P5 2 5 16 9 0 T5 0 12 4 7 T5 0 11 3 8 T5 0 14 7 6

P6 6 11 16 5 0 T6 0 12 8 3 T6 0 11 5 2 T6 0 14 5 8

P7 1 11 17 10 0 P1 1 10 15 9 0 P1 1 10 15 9 0 P1 1 10 15 9 0

P8 6 7 17 11 0 P2 4 12 15 10 0 P2 4 12 15 10 0 P2 4 13 15 10 0

P9 4 10 17 7 0 P3 3 11 15 12 0 P3 3 11 15 12 0 P3 3 12 15 13 0

P10 8 13 18 12 0 P4 2 9 15 11 0 P4 2 9 15 11 0 P4 2 9 15 12 0

P11 5 2 18 13 0 P5 2 5 13 9 0 P5 2 5 13 9 0 P5 1 9 16 11 0

P12 3 12 18 2 0 P6 6 1 9 13 0 P6 6 1 9 13 0 P6 2 5 16 9 0

P13 8 12 19 14 0 P7 1 6 14 10 0 P7 4 7 14 12 0 P7 6 11 16 5 0

P14 3 4 19 12 0 P8 7 4 10 14 0 P8 8 3 12 14 0 P8 1 11 17 10 0

P15 7 14 19 4 0 P9 6 13 16 14 0 P9 5 8 14 13 0 P9 6 7 17 11 0

P16 8 14 20 13 0 P10 5 8 16 13 0 P10 7 6 13 14 0 P10 4 10 17 7 0

P17 7 6 20 14 0 P11 7 14 16 8 0 P11 4 7 14 13 0

P18 5 13 20 6 0 P12 8 3 13 14 0

t

i

s

o

i

i

w

d

b

s

n

p

c

t

s

w

i

c

T

i

o

c

o
edges. Lastly, with the central node as a common vertex, from the

2 intact faces, 2 pyramids are built and from the triangles of the

split faces, 12 tetrahedra are created (Fig. 9).

The exhaustive description of all the patterns used for the con-

formal refinement of a hexahedron is given in figures from Figs.

10–19 . By convention, the new node that is created at the centre

of the hexahedron is #0. This number is not included into the fig-

ures to increase the readability. The connectivity of every confor-

mal element is given in the tables from Tables 4–18 . Each pattern

is identified firstly by the number of split edges, secondly by a let-

ter A, B, C … This letter plays the same role in the tables and in

the figures. The first column of a table enumerates the transition

element with ‘T’ for tetrahedron, ‘P’ for pyramid, ‘H’ for hexahe-

dron. The number is the rank of the element. A line gives the list

of the nodes that define the element. For example, ‘P3’ introduces

the line of the connectivity of the 3rd pyramid.

4. Comments on the choices for the algorithm

4.1. The patterns for the quadrangular faces

The choice for the patterns for the transition refinement of the

quadrangular faces was guided by this rule: as simple as it could

be. We must keep in mind that the objective is the refinement of
he hexahedron. The more complicated the refinement of the face

s, the more complicated the refinement of the hexahedron is. Con-

idering that point, we decided not to define a special refinement

f a quadrangle with 3 pending nodes. It could have been efficient

n a pure 2D mesh to stop the propagation of the refinement but

t would have been too heavy in 3D. It is the same for the case

ith 1 pending node: we did not consider the template that intro-

uces a node in the centre to make 2 quadrangles and 1 triangle

ecause it would have increased the total number of nodes. Ba-

ically, we think that the shape of the conformal transition does

ot really matter: the differences between the 2 meshes will not

roduce any significant differences for the final results of the cal-

ulation.

On the other hand, it is possible to simplify the variety of pat-

erns and to only keep the faces with 1 pending node. In such a

olution, the faces with 2 pending nodes are treated like the faces

ith 3 pending nodes: all the edges are split and the face itself

s split. The solution has a great advantage: instead of 47 different

ases for the refinement of the hexahedron, only 5 cases remain.

hat was the first method we developed. But there is a drawback:

f the elements where the error indicator is higher than the thresh-

ld are placed like a staircase, the refinement propagates until a

onvex envelope of elements is refined (See Fig. 20). In some of

ur applications, that phenomenon leads to a very heavy refine-

G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28 25

Table 15

With 6 edges subjected to division (2/2).

E F G

P1 1 10 15 9 0 P1 1 10 15 9 0 P1 1 10 15 9 0

P2 4 13 15 10 0 P2 4 3 15 10 0 P2 4 3 15 10 0

P3 3 12 15 13 0 P3 2 9 15 3 0 P3 2 9 15 3 0

P4 2 9 15 12 0 P4 2 11 16 9 0 P4 2 5 13 9 0

P5 1 9 16 11 0 P5 5 6 16 11 0 P5 6 1 9 13 0

P6 2 5 16 9 0 P6 1 9 16 6 0 P6 4 10 16 12 0

P7 6 11 16 5 0 P7 4 10 17 12 0 P7 1 6 16 10 0

P8 1 11 17 10 0 P8 1 6 17 10 0 P8 7 12 16 6 0

P9 6 7 17 11 0 P9 7 12 17 6 0 P9 8 14 17 11 0

P10 4 10 17 7 0 P10 5 11 18 13 0 P10 5 2 17 14 0

P11 3 14 18 12 0 P11 2 3 18 11 0 P11 3 11 17 2 0

P12 8 5 18 14 0 P12 8 13 18 3 0 P12 7 8 11 12 0

P13 2 12 18 5 0 P13 7 14 19 12 0 P13 3 4 12 11 0

P14 3 13 19 14 0 P14 8 3 19 14 0 P14 5 14 18 13 0

P15 4 7 19 13 0 P15 4 12 19 3 0 P15 8 7 18 14 0

P16 8 14 19 7 0 P16 8 14 20 13 0 P16 6 13 18 7 0

P17 6 5 8 7 0 P17 7 6 20 14 0

P18 5 13 20 6 0

Table 16

With 7 edges subjected to division.

A B

T1 0 14 7 8 P1 1 10 16 9 0

T2 0 14 4 7 P2 4 13 16 10 0

T3 0 14 8 3 P3 3 12 16 13 0

T4 0 15 8 7 P4 2 9 16 12 0

T5 0 15 5 8 P5 1 9 17 11 0

T6 0 15 7 6 P6 2 5 17 9 0

P1 1 10 16 9 0 P7 6 11 17 5 0

P2 4 14 16 10 0 P8 1 11 18 10 0

P3 3 12 16 14 0 P9 6 7 18 11 0

P4 2 9 16 12 0 P10 4 10 18 7 0

P5 2 13 17 9 0 P11 3 8 14 12 0

P6 5 15 17 13 0 P12 5 2 12 14 0

P7 6 11 17 15 0 P13 4 7 15 13 0

P8 1 9 17 11 0 P14 8 3 13 15 0

P9 1 11 18 10 0 P15 8 15 19 14 0

P10 6 7 18 11 0 P16 7 6 19 15 0

P11 4 10 18 7 0 P17 5 14 19 6 0

P12 2 12 19 13 0

P13 3 8 19 12 0

P14 5 13 19 8 0

Table 18

With 9 edges subjected to division.

P1 1 10 18 9 0

P2 4 14 18 10 0

P3 3 12 18 14 0

P4 2 9 18 12 0

P5 2 13 19 9 0

P6 5 16 19 13 0

P7 6 11 19 16 0

P8 1 9 19 11 0

P9 6 17 20 11 0

P10 7 15 20 17 0

P11 4 10 20 15 0

P12 1 11 20 10 0

P13 2 12 21 13 0

P14 3 8 21 12 0

P15 5 13 21 8 0

P16 4 15 22 14 0

P17 7 8 22 15 0

P18 3 14 22 8 0

P19 6 16 23 17 0

P20 5 8 23 16 0

P21 7 17 23 8 0

Table 17

With 8 edges subjected to division.

A B

H1 1 9 17 10 13 6 15 18 P1 1 10 17 9 0

H2 10 17 12 4 18 15 7 16 P2 4 14 17 10 0

H3 17 11 3 12 14 18 16 8 P3 3 12 17 14 0

H4 9 2 11 17 5 14 18 14 P4 2 9 17 12 0

P5 2 13 18 9 0

P6 5 15 18 13 0

P7 6 11 18 15 0

P8 1 9 18 11 0

P9 1 11 19 10 0

P10 6 7 19 11 0

P11 4 10 19 7 0

P12 2 12 20 13 0

P13 3 8 20 12 0

P14 5 13 20 8 0

P15 4 7 16 14 0

P16 8 3 14 16 0

P17 5 8 16 15 0

P18 7 6 15 16 0

26 G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28

Table 19

Comparison of the efficiency.

Strategy Basic Proposed

Number of nodes 106 ,087 40 ,465

Number of elements 134 ,292 65 ,588

CPU time (s) 208 51

1 pending node 1 or 2 pending nodes

Fig. 20. Example of a staircase problem.

P
Front

the crack
Position of

Fig. 21. Semi-elliptical crack in a pipe under internal pressure.

Fig. 22. Refined mesh of the pipe a) old b) new.

4

e

m

t

a

m

b

a

s

a

t

o

1

A

r

t

i

i

a

t

t

t

u

t

5

w

M

c

c

o

c

fi

t

w

e

n

r

t

z

t

h

t

t
ment. The mesh adaptation was useless. Following our experience,

the choice of 1 or 2 pending nodes is a better solution for effi-

ciency and performance.

In some cases, the mesh adaptation is driven by an error esti-

mator that provides the optimal size for every elements. For some

of these elements, splitting the edge into 2 parts may be not the

targeted size. Splitting into 3, 4 … parts would decrease the size of

the elements but the impact on 3D and the implementation would

be very hard. We decided to follow our rule “as simple as possi-

ble”, and we kept the solution of a 2 part splitting. More, if an

error estimator provides information about the optimal size, we

use it by applying several times the algorithm with an increasing

threshold to catch the targeted elements.
.2. Implementation

The HOMARD software is designed to the mesh adaptation of

very mesh we use in our finite element calculations. The mesh

ay be a pure 2D or 3D mesh or it may mix the dimensions. The

ype of elements can be mixed as well. A mesh made of both tri-

ngles and quadrangles may be treated. In 3D, the mesh can be

ade either of tetrahedra, pyramids or hexahedra or their com-

ination. The solution to have the same routines comes from the

lgorithm itself. The initialisation consists in transferring the deci-

ions from the error indicator to the faces and the edges. Then, the

pplication of the rule to the neighbouring and the level is made

hrough the faces, whatever they are, triangles or quadrangles. The

nly difference is the limit for the number of the pending nodes:

 or 2 for a quadrangle as explained in this paper, 1 for a triangle.

t the end, the 3D transition elements are created.

The method described in this paper deals with 47 patterns to

efine a hexahedron and each pattern is used in many situations

hat are deduced by rotations. To prevent the risk of error in cod-

ng this complex part of the adaptation, we built a specific program

n python. This program examines all the 2 ∗∗12 = 4096 situations

nd it sorts them as discussed before. More, it writes the routines

hat effectively create the transition elements for each useful situa-

ion. At the end, these automatically written routines are linked to

he main program HOMARD. Doing that, we guarantee that no sit-

ation has been forgotten and that we did not make error during

he implementation.

. Applications

The following application of the conformal refinement deals

ith fracture mechanics. Crack analyses with the Finite Element

ethod are of great interest in many industrial applications (nu-

lear, aeronautics…) at the design level or in-service. In the classi-

al Griffith’s theory, the mechanical stress field is singular (infinite)

n the crack front (the line delimiting the crack). To be able to pre-

isely describe this high gradient, the mesh must be very well re-

ned near the crack front. The method described in this paper is

herefore well suited to refine the mesh near the crack front. We

ill represent the crack in the framework of the extended finite

lement method (X-FEM) [21,22] . In such a method, the crack is

ot explicitly meshed but it is represented by level set functions

egardless of the mesh. The level set function is the signed dis-

ance to the crack. Then the mesh of the structure is refined in the

ones near the crack: a pseudo-error indicator is built considering

he distance to the crack front and a threshold is given to be co-

erent with the optimal size. The mesh adaptation as described in

his paper refines the mesh until the optimal size is reached in a

orus around the crack front; then the simulation of the mechani-

G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28 27

Fig. 23. Zoom around the crack front a) old b) new.

Fig. 24. Smallest elements a) old b) new.

c

a

c

p

t

z

i

p

n

t

h

t

i

i

e

f

f

2

t

s

o

r

c

T

i

i

o

r

o

c

0 0,1 0,2 0,3
s (m)

6

6,5

7

7,5

8

8,5

9

9,5

10

G
 (

J.
m

-2
)

reference (basic strategy)
strategy proposed in this paper

Fig. 25. Evolution of the energy relase rate G along the crack.

m

c

p

[

T

f

g

c

fi

6

t

t

i

t

o

b

p

a

o

al response on the cracked structure is led to determine the stress

nd displacement fields.

We consider here a longitudinal semi-elliptical planar crack lo-

ated in a pipe submitted to an internal pressure. The crack is per-

endicular to the internal surface of the pipe (see Fig. 21). Due

o symmetry consideration, only one half of the pipe (half-space

 ≥ 0) is considered. The initial mesh is made of hexahedra. This

nitial mesh is too coarse in the vicinity of the crack front, com-

ared to its size, to get accurate results. A mesh refinement is then

ecessary. We will compare two mesh refinement strategies: (i)

he first one is a strategy in which the transition between a refined

exahedron and an intact one is very simple (basic strategy) (ii)

he second one is the strategy described in this paper. As it is said

n the Section 4.1 , the first strategy leads to a uniform refinement

n a large area around the whole crack. On the contrary, the strat-

gy described in this paper limits the refined area near the crack

ront. A comparison of the refined mesh and a zoom near the crack

ront obtained with the two strategies is presented in Figs. 22 and

3 . The smallest elements are shown in Fig. 24: they are concen-

rated near the crack with the new technique. It can be clearly

een that for a given target element size, our strategy gives the

ptimal number of nodes. The computational cost is then strongly

educed. The comparison of the number of nodes, elements and

omputational time of the mechanical resolution is given in

able 19.

It is now important to be sure that the accuracy of the mechan-

cal simulation with the optimal mesh is not deteriorated. To val-

date the refined mesh obtained with our strategy, a computation

f the energy release rate along the crack front is done. The energy

elease rate (G) is a key parameter in fracture mechanics. The value

f this quantity determines if the crack will propagate or not. The

omputation of G is a post-processing of the stress and displace-
ent fields that are obtained by the mechanical simulation. The

omputation of the stress and displacement fields and the post-

rocessing of the energy release rate are done using Code_Aster

23] . We note s the curvilinear coordinate along the crack front.

he value of the computed energy release rate along the crack

ront is then compared between the two mesh refinement strate-

ies (see Fig. 25). The maximal relative difference on G along the

rack front is less than 0.6%, which validates the optimal mesh re-

nement procedure proposed in this paper.

. Conclusion

In this paper, a method for the conformal mesh refinement if

he initial mesh is made of hexahedra has been presented. The

ransition between two zones with a different level of refinement

s made by a combination of pyramids and tetrahedra. A set of pat-

erns was designed to solve any conflict about the pending nodes

n the faces of the hexahedra. From the first method we presented

efore, we made an important improvement that minimizes the

ropagation of the refinement. Thanks to this new method, we can

pply the mesh adaptation to every structure, whatever the type

f the elements of the initial mesh.

28 G. Nicolas et al. / Advances in Engineering Software 102 (2016) 14–28

[
References

[1] Frey P-J , George P-L . Mesh generation. Applications to finite element methods.

Wiley; 2008 .

[2] Zienkiewicz OC , Zhu JZ . A simple error estimator and adaptive procedure for
practical engineering analysis. Int J Numer Meth Eng 1987;24 .

[3] Prudhomme S , Oden JT . On goal-oriented error estimation for elliptic prob-
lems: applications to the control of pointwise errors. Comput Methods Appl

Mech Eng 1999;176:313–31 .
[4] Ern A , Meunier S . A posteriori error analysis of Euler-Galerkin approximations

to coupled elliptic-parabolic problems. ESAIM: M2AN 2009;43:353–75 .

[5] Frey P-J, Alauzet F. Anisotropic mesh adaptation for CFD computations. Comput
Methods Appl Mech Eng 2005;194:5068–82. doi: 10.1016/j.cma.2004.11.025 .

[6] Ruiz-Girones E, Roca X, Sarrate J, Montenegro R, Escobar JM. Simultane-
ous untangling and smoothing of quadrilateral and hexahedral meshes using

an object-oriented framework. Adv Eng Softw 2015;80:12–24. doi: 10.1016/j.
advengsoft.2014.09.021 .

[7] Kowalski N , Ledoux F , Frey P . Block-Structured Hexahedral Meshes for CAD
Models using 3D Frame Fields. In: Proceedings of the 23rd International Mesh-

ing Roundtable; 2014 .

[8] Tautges TJ. The generation of hexahedral meshes for assembly geometry: sur-
vey and progress. Int J Numer Meth Eng 2001;50:2617–42. doi: 10.1002/nme.

139 .
[9] Huang L, Zhao G, Ma X, Wang Z. Incorporating improved refinement tech-

niques for a grid-based geometrically-adaptive hexahedral mesh generation al-
gorithm. Adv Eng Softw 2013;64:20–32. doi: 10.1016/j.advengsoft.2013.04.010 .

[10] International Meshing Roundtable, http://imr.sandia.gov/papers/mesh.html .

[11] Bank RE . PLTMG, a software package for solving elliptic partial differential
equations, Philadelphia: SIAM; 1990. User’s guide 6.0”.
[12] Bastian P , Birken K , Johannsen K , Lang S , Neuss N , Rentz-Reichert H . UG –
A flexible software toolbox for solving partial differential equations. Comput

Vizual Sci July 1997;1(1) .
[13] Rivara M-C . Local modification of meshes for adaptive and/or multigrid finite

element methods. J Comp Appl Math 1991;36:79–89 .
[14] Sohn D, Lim JH, Im S. An efficient scheme for coupling dissimilar hexahe-

dral meshes with the aid of variable-node transition elements. Adv Eng Softw
2013;65:200–15. doi: 10.1016/j.advengsoft.2013.06.017 .

[15] Kim HG. Development of three-dimensional interface elements for cou-

pling of non-matching hexahedral meshes. Comput Methods Appl Mech Eng
2008;197:3870–82. doi: 10.1016/j.cma.2008.03.023 .

[16] Li Y, Liu GR, Zhang GY. An adaptive NS/ES-FEM approach for 2D contact
problems using triangular elements. Finite Elem Anal Des 2011;47:256–75.

doi: 10.1016/j.finel.2010.10.007 .
[17] Lo SH, Wu D, Sze KY. Adaptive meshing and analysis using transitional quadri-

lateral and hexahedral elements. Finite Elem Anal Des 2010;46:2–16. doi: 10.

1016/j.finel.2009.06.010 .
[18] Owen SJ , Saigal S . Formation of pyramid elements for hexahedra to tetrahedral

transitions. Comput Methods Appl Mech Eng 2001;190:4505–18 .
[19] Nicolas G, Fouquet T. Adaptive mesh refinement for conformal hexahedral

meshes. Finite Elem Anal Des 2013;67:1–12. doi: 10.1016/j.finel.2012.11.008 .
[20] HOMARD web site: / www.code-aster.org/outils/index.en.html or www.

salome-platform.org .

[21] Geniaut S, Galenne E. A simple method for crack growth in mixed mode with
X-FEM. Int J Solids Struct 2012;49:2094–106. doi: 10.1016/j.ijsolstr.2012.04.015 .

[22] Colombo D, Massin P. Fast and robust level set update for 3D non-
planar X-FEM crack propagation modelling. Comput Methods Appl Mech Eng

2011;200:2160–80. doi: 10.1016/j.cma.2011.03.014 .
23] Code_Aster Finite Element software for mechanical issues by EDF, www.

code-aster.org .

http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0004
http://dx.doi.org/10.1016/j.cma.2004.11.025
http://dx.doi.org/10.1016/j.advengsoft.2014.09.021
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0007
http://dx.doi.org/10.1002/nme.139
http://dx.doi.org/10.1016/j.advengsoft.2013.04.010
http://imr.sandia.gov/papers/mesh.html
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0012
http://dx.doi.org/10.1016/j.advengsoft.2013.06.017
http://dx.doi.org/10.1016/j.cma.2008.03.023
http://dx.doi.org/10.1016/j.finel.2010.10.007
http://dx.doi.org/10.1016/j.finel.2009.06.010
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30197-1/sbref0017
http://dx.doi.org/10.1016/j.finel.2012.11.008
http://www.code-aster.org/outils/index.en.html
http://www.salome-platform.org
http://dx.doi.org/10.1016/j.ijsolstr.2012.04.015
http://dx.doi.org/10.1016/j.cma.2011.03.014
http://www.code-aster.org

	Improved adaptive mesh refinement for conformal hexahedral meshes
	1 Introduction
	2 The algorithm
	2.1 Initialisation of the process
	2.2 The pending nodes on the quadrangular faces
	2.3 Back to the hexahedra
	2.4 Next levels
	2.5 General algorithm

	3 The specific splitting of the hexahedron
	4 Comments on the choices for the algorithm
	4.1 The patterns for the quadrangular faces
	4.2 Implementation

	5 Applications
	6 Conclusion
	 References

