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a b s t r a c t 

A novel semi-analytic method for interval-based uncertainty analysis is suggested to calculate the un- 

certainty measure index in this study. As nonlinear problems commonly cannot be solved analytically,

an analytic interval-based uncertainty analysis method for linear problems is deduced, and an explicit

expression of the measure index of uncertainty is given. To extend this form to nonlinear analysis, a

semi-analytic uncertainty analysis (SAUA) method is suggested by integrating gradient-based optimiza- 

tion methods and Taylor expansion. Initially, a pseudo optimal solution is obtained. Sequentially, a Taylor

expansion is used to calculate the performance function based on the pseudo optimal solution. In this

way, the uncertainty measure index can be obtained analytically. Considering the bottleneck of surrogate

model, an efficient reanalysis assisted material nonlinear analysis (RAMNA) method is integrated. Thus,

the efficiency and accuracy of the suggested method are both enhanced. The SAUA method has been ap- 

plied to large-scale reliability analysis of vehicle components. The results show that the SAUA is effective

and efficient, especially for large-scale problems. Furthermore, the SAUA method can also be extended for

other mechanical design, and contribute to shortening the design period.

© 2016 Elsevier Ltd. All rights reserved.
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. Introduction

Material nonlinear analysis is an important research area of

tructure design. Generally, material nonlinear analysis is an iter-

tive process with large scale simulations. Therefore, the efficiency

s an important property of material nonlinear analysis methods.

hen uncertainty occurs in material nonlinear problems, the situ-

tion will become even more severe. 

For uncertain analysis, the most popular methods are based

n probability theories. These methods are mainly described in

wo kinds of models: stochastic and fuzzy models. Generally, the

istribution of stochastic variables should be given or assumed.

n practice, the distribution is usually derived from experiments

r prior information. Due to the booming of probability theories,

he stochastic models are well developed and have been used in

ultidisciplines [1–4] . The uncertainty formulized using stochas-

ic models is also known as ‘reliability’. In stochastic models,

onte–Carlo simulation (MCS) [5] is one of the most popular

ethods. It achieves accurate solution regardless of dimension of

roblems [6 , 7] . The major bottleneck is that the MCS requires a
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arge number of samples to achieve the reliability index. There-

ore, many applications of MCS are based on surrogates. Besides

CS, stochastic finite element (SFE) [4 , 8] is also a useful tool in

tructural reliability analysis. Compared to stochastic models, fuzzy

odels pay more attention on subjective probability. The fuzzy

heory was initially used for mathematical programming problems

9 , 10] . Then, it was introduced for uncertainty analysis [11–14] .

imilarly, the major bottleneck of fuzzy-based methods is also

xpensive computational cost. To overcome this challenge, convex

odels are developed [15] . 

Convex models form a convex set of functions or vectors, and

he uncertainties of system or structure can be represented by

xamining the failure function on the convex. The applications of

onvex model in structure analysis can be found in many studies

16–18] . As a special case of convex models, the interval model,

ecause of its concise description of theory and low requirement

f input information, has attracted more and more attentions.

iu and Elishakoff developed an interval analysis method for

nti-optimization of structures with large uncertain-but-non-

andom parameters [19] . Sengupta et al. defined a satisfactory

risp equivalent system of an inequality constraint with interval

oefficients [20] , and the system was solved via an interval linear

rogramming method. Guo and Lü proposed a static linear interval

nite element method (IFEM) by combining interval analysis and

EM to solve the non-random uncertain structures [21] . Jiang et al.

http://dx.doi.org/10.1016/j.advengsoft.2016.08.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.08.008&domain=pdf
mailto:wanghu@hnu.edu.cn
mailto:wanghuenying@hotmail.com
mailto:enyasteven@hotmail.com
http://dx.doi.org/10.1016/j.advengsoft.2016.08.008


2 G. Huang et al. / Advances in Engineering Software 102 (2016) 1–13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

f  

[  

s  

a  

i  

r  

[  

c  

I  

s  

s  

a  

fi  

t

 

a  

i  

p  

n  

n  

m  

i

2

 

t  

c  

w

x  

w  

T

G  

 

c  

o  

s  

s

x  

w  

 

b  

d

G  

 

t  

h  

g∥∥
 

 

i  

0  

t  

(  

p  

0  

a  

t  
suggested an optimization method for uncertain structures using

interval analysis as an extension of convex models [22] . Then the

method is applied to U-shaped forming [23] and composite lam-

inated plate [24] uncertainty analysis. Jiang et al. also presented

a sequential nonlinear interval number programming (SNINP)

method to deal with uncertain optimizations [25] . Wu et al.

proposed an interval uncertainty analysis method for multi-body

dynamics of mechanical systems based on Chebyshev inclusion

functions [26] . Li et al. proposed an uncertain multi-objective

multidisciplinary design optimization methodology by formulating

the design as a nested three-loop optimization [27] . 

Generally, uncertainty problems are usually analyzed via large

amount of evaluations (simulations). For linear problems, with the

increase of complexity and scale of model, the computational cost

of uncertain analysis increases in a geometrical progression. The

computational cost should be much more expensive when it comes

to nonlinear problems due to iterative procedure. Therefore, the ef-

ficiency is the key issue for uncertainty analysis of nonlinear prob-

lems, especially for real engineering problems. To balance the ac-

curacy and efficiency, a trade-off strategy termed as semi-analytic

uncertainty analysis (SAUA), is proposed in this study. To further

improve the efficiency, the reanalysis methods are introduced in

material nonlinear analysis. 

In the research field of reanalysis, several kinds of efficient

methods have been proposed for optimization problems. These

methods can be mainly divided into two categories: Direct meth-

ods (DMs) and approximate methods. DMs are usually suitable for

low-rank or local modifications. Most of DMs can obtain an exact

solution of the modified structure. As stated by Tuckerman [28] ,

any DM that solves a system by modification of an original model

is an explicit or implicit application of the Sherman–Morrison–

Woodbury (SMW) formula [29–31] . Cheikh et al. presented a DM

based on a Moore Penrose generalized inverse for static reanaly-

sis of structures [32] . Huang and Wang, et al. suggested an In-

dependent coefficients (IC) method for large-scale problems [33] .

Song et al. proposed a DM by updating the triangular factoriza-

tion in sparse matrix solution [34] . Compared with DMs, approx-

imate methods can’t obtain an exact solution. However, high-rank

or global modifications can usually be well disposed by these kind

of algorithms. Combined approximation (CA) [35–37] is one of the

most popular approximate reanalysis methods. The CA method is

firstly proposed for linear static problems [38] , and it has been ex-

tended to multidisciplinary. Kirsch and Papalambros presented a

reanalysis approach for geometrical changes in structural systems

based on the CA method [39] . Rong et al. extended Kirsch’s method

to a new effective modal reanalysis method for topological modi-

fication [40] . Kirsch et al. used CA to overcome the difficulty of

repeating eigenproblem solutions for nonlinear dynamic reanalysis

[41] . Chen et al. suggested a universal Iterative Combined Approx-

imation (ICA) approach for all types of topological modifications

[42] . Gao and Wang, et al. proposed an adaptive time-based global

reanalysis (ATGR) for dynamic problems based on CA method [43] .

Zhang et al. applied the CA method to probabilistic analysis and

reliability-based design optimization of large-scale structures [44] .

Zuo et al. integrated the CA and the genetic algorithm (GA) to im-

prove the efficiency of optimization [45] and suggested a sensitiv-

ity analysis based on CA and Taylor expansion [46] . Recently, some

extended CA methods have been proposed and applied to multi-

discipline. For example, Sun et al. suggested an adaptive technique

of Kirsch method for structural reanalysis [47] . Zuo et al. devel-

oped a hybrid Fox and Kirsch’s reduced basis method for struc-

tural static reanalysis [48] . Moreover, other approximate reanalysis

methods have been developed in recent years. Epsilon-algorithm

was presented for both static problems [49] and dynamic prob-

lems [50] . Preconditioned conjugate gradient (PCG) method is a

classical iterative algorithm. Kirsch et al. introduced this method
or structural reanalysis [51] , and Wu et al. developed PCG method

or both removal of Degrees of Freedom (DOF) and added DOFs

52–57] . A matrix perturbation method was used by Yang et al. for

tructural modal reanalysis [58 , 59] . Wu et al. also developed a re-

nalysis method based on rational approximation for large changes

n design variables [60] . Wang et al. integrated several kinds of

eanalysis methods and developed an efficiency parallel platform

54–56] . It can be found that the CA and its alternative methods

an be utilized for several kinds of complicated problems [35 , 37] .

n this study, we hope use the CA method to improve the analy-

is efficiency of material nonlinear problems. Under such circum-

tance, the mesh of a structure keeps fixed, and the nonlinear may

ppear locally or globally, which can be treated as structural modi-

cation on linear work condition. Therefore, the CA can be utilized

o improve the efficiency of material nonlinear analysis. 

The rest of this paper is organized as follows: In Section 2 ,

n uncertainty analysis method using interval model is briefly

ntroduced. In Section 3 , a SAUA method is suggested for general

roblems. In Section 4 , the SAUA method is applied to material

onlinear problems, and an efficient reanalysis assisted material

onlinear analysis (RAMNA) method is proposed. To test perfor-

ances of the SAUA, several numerical examples are demonstrated

n Section 5 . Finally, conclusions are given 

. Uncertainty analysis based on interval model 

Assume that x = { x 1 , x 2 , . . . , x n } is a set of uncertain factor vec-

or that affects the performance of a structure or a system. It also

an be expressed as interval numbers, and x i ( i = 1 , 2 , . . . , n ) can b e

ritten as 

 i = [ x l i , x 
u 
i ] , (1)

here, x l 
i 

and x u 
i 

are lower and upper boundary of x i , respectively.

he performance function can be expressed as 

 x ( x ) = G x ( x 1 , x 2 , . . . x n ) . (2)

G x > 0 indicates that the structure or the system is under safe

riterion and works well, and G x < 0 indicates that the structure

r the system is under failure criterion. G x = 0 is the limit state

urface, which indicates the structure or system works at a limit

tate. 

The interval number can be standardized as 

 i = x c i + x w 

i δi , (3)

here, x c 
i 

= 

x l 
i 
+ x u 

i 
2 is termed as the midpoint value of x i , and x w 

i 
=

x u 
i 
−x l 

i 
2 denotes the radius. δi = [ −1 , 1 ] is a normalized interval num-

er. Therefore, the performance function expressed by using stan-

ardized the interval number can be written as 

 δ

(
δ
)

= G δ

(
δ1 , δ2 , . . . , δn 

)
. (4)

In the space of standardized interval variables, a set of uncer-

ain variables can be regarded as a normalized hypercube. In the

ypercube, the distance between any arbitrary points and the ori-

in can be defined as an infinite norm 

δ
∥∥

∞ 

= max 
(∣∣δ1 

∣∣, ∣∣δ2 

∣∣, . . . , ∣∣δn 

∣∣). (5)

Based on above definition, the boundary of uncertain variables

s ‖ δ‖ ∞ 

= 1 . When the hypercube is within the safe region ( G δ >

), it means the structure or the system is reliable. In this case,

he further the hypercube is away from the limit state surface

 G δ = 0 ), the more reliable the structure or the system is. When a

art or whole of the hypercube is within the failure region ( G δ <

), the structure or the system is unreliable. The limit state surface

nd different kinds of hypercube are shown in Fig. 1 . Therefore,

he minimal distance from the origin to the limit state surface can
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Fig. 1. Limit state surface and range of the interval variables. 
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e used to indicate the uncertainty of the structure or system. The

easure index is defined as 

= sgn ( G δ( 0 ) ) · min 

δ

(∥∥δ
∥∥

∞ 

)
s.t. G δ

(
δ
)

= 0 

, (6) 

here sgn (·) is the sign function. 

The mathematical meaning of η is clear: when η > 1, the struc-

ure or system is safe, namely, reliable; when η < −1 , the structure

r system is going to fail, namely, unreliable; when −1 < η < 1 , the

tructure or system might be risk, namely, unreliable. 

. Semi-analytic uncertainty analysis for interval model 

For nonlinear analysis, the performance function usually can-

ot be expressed explicitly by using uncertain variables, thus it

s difficult to calculate the uncertainty measure index ( Eq. (6) )

nalytically. Therefore, expensive computation (such as simulation)

hould be utilized for evaluation. Theoretically, any optimization

lgorithms, such as gradient based methods, simplex method

nd heuristic algorithms [61–63] , can be used to obtain the un-

ertainty measure index. However, the number of evaluations is

sually tremendous. Therefore, an alternative way to save the com-

utation cost is to use surrogate models [64–69] instead of real

valuations. However, when the surrogate model is used, the error

f prediction cannot be avoided due to the fitting model, especially

or complicated physical problems. Therefore, the performance of

nalysis relies heavily on the accuracy of surrogate. For example,

or an optimization problem with equality constrains, the optimum

btained by surrogate often does not strictly satisfy the equal con-

traints. In order to guarantee the accuracy and the efficiency of

ncertainty analysis, the SAUA method is suggested in this study. 

.1. Analytic uncertainty analysis for linear problems 

Because the formula of uncertainty measure index of nonlinear

roblems commonly cannot be deduced directly, the uncertainty

nalysis can be extended from the linear problem which can be ex-

licitly expressed directly. Therefore, a linear analytic uncertainty

nalysis method is primarily suggested in this section. 

For a general linear problem, the performance function can be

ritten as 

 δ

(
δ
)

= a T δ + b. (9) 
The limit state surface 

 δ

(
δ
)

= a T δ + b = 0 (10)

eans a hyperplane in the space of δ. The normal direction of the

yperplane is a . Assume that a straight line, which is in normal

irection, passes through the origin as shown in Fig. 2 , and inter-

ects with the hyperplane Eq. (10) at point P . In this case, P is

he nearest point to the origin on the hyperplane. The straight line

entioned above can be expressed as 

= k a , k ∈ R , (11)

Substitute Eq. (11) into Eq. (10) , k can be obtained as 

 = − b 

a T a 
. (12) 

Substitute Eq. (12) into Eq. (11) , P can be obtained as 

 = k a = − b 

a T a 
a . (13)

Then, the uncertainty measure index is calculated as 

= ‖ 

P ‖ ∞ 

. (14) 

The analytic method is summarized in Fig. 2. 

As an application, for an elastic stiffness uncertainty analysis,

he elasticity modulus and the loads are assumed to be uncertain

s 

 = E c + E w 

δ0 (15) 

nd 

 i = f c i + f w 

i δi , ( i = 1 , 2 , . . . , n ) . (16)

In Eq. (15) , E c is the midpoint value of elasticity modulus E , and

 w 

is the radius of E . f c 
i 

and f w 

i 
are midpoint value and radius of

oad f i , respectively. The stiffness measured by the displacement of

tructure (let’s assume it is the displacement of the j th degree of

reedom, u ( j )) should be less than allowable displacement u s . 

In elastic FEA (finite element analysis), the elasticity modulus

an be extracted from the stiffness matrix, thus the stiffness matrix

orresponding to the midpoint E c can be given as 

 c = E c K 0 . (17) 

here, K c is the stiffness matrix when E equals to E c , and K 0 is the

tiffness matrix when E equals to 1. 
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Fig. 2. An illustration of analytical reliability analysis. 
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Then, the interval stiffness matrix can be given as 

K = 

(
E c + E w 

δ0 

)
K 0 = 

(
1 + 

E w 

E c 
δ0 

)
E c K 0 = 

(
1 + 

E w 

E c 
δ0 

)
K c . (18)

Similarly, the loads can be expressed as 

f i = f c i + f w 

i δi = 

(
1 + 

f w 

i 

f c 
i 

δi 

)
f c i , ( i = 1 , 2 , . . . , n ) . (19)

Solve the equilibrium equation 

K u i = f i , (20)

the displacement can be obtained by Eq. (21) when the i th load is

enforced independently. 

u i = K 

−1 f i = 

1 + 

f w 
i 

f c 
i 

δi 

1 + 

E w 
E c 

δ0 

K 

−1 
c f c i = 

1 + 

f w 
i 

f c 
i 

δi 

1 + 

E w 
E c 

δ0 

u 

c 
i (21)

If all loads are enforced together, the displacement vector can

be given as 

u = 

n ∑ 

i =1 

u i = 

n ∑ 

i =1 

1 + 

f w 
i 

f c 
i 

δi 

1 + 

E w 
E c 

δ0 

u 

c 
i = 

n ∑ 

i =1 

1 + αi δi 

1 + βδ0 

u 

c 
i , (22)

where ⎧ ⎪ ⎨ 

⎪ ⎩ 

αi = 

f w 

i 

f c 
i 

β = 

E w 

E c 

. (23)

According to the stiffness requirement, the performance func-

tion can be calculated as 

G δ

(
δ
)

= G δ

(
δ0 , δ1 , . . . , δn 

)
= u s − u ( j ) = u s −

n ∑ 

i =1 

1 + αi δi 

1 + βδ0 

u 

c 
i ( j ) . 

(24)

After simplification, the limit state surface is 

n ∑ 

i =1 

αi u 

c 
i ( j ) δi − βu s δ0 + �u = 0 , (25)

where 

�u = 

n ∑ 

i =1 

u 

c 
i ( j ) − u s , (26)

where 
∑ n 

i =1 u 

c 
i 
( j) is the displacement when all loads work as the

midpoint value, termed as u c ( j ). 

Eq. (25) represents a hyperplane in a dimension n + 1 space,

and the normal direction of the hyperplane is 

a = 

(
α1 u 

c 
1 ( j ) 

m 

, 
α2 u 

c 
2 ( j ) 

m 

, · · · , 
αn u 

c 
n ( j ) 

m 

, −βu s 

m 

)
, (27)

where 
 = 

√ (
α1 u 

c 
1 ( j ) 

)2 + 

(
α2 u 

c 
2 ( j ) 

)2 + · · · + ( αn u 

c 
n ( j ) ) 

2 + ( βu s ) 
2 
. 

(28)

Then the intersection mentioned in Eq. (13) can be obtained as

 = − �u ∑ n 
i =1 

( αi u 
c 
i ( j ) ) 

2 

m 

+ 

( βu s ) 
2 

m 

a . (29)

According to Eq. (14) , the uncertainty measure index can be

chieved. 

.2. Semi-analytic uncertainty analysis 

Generally, the cost for an optimization procedure to find a high-

ccuracy solution is usually much higher than a low-accuracy one.

ased on this assumption, the idea of SAUA method can be de-

cribed as follows: 

(1) For Eq. (6) , a pseudo solution δ̄ with a relaxed converge cri-

terion is obtained using any available optimization method

(Steepest descent method in present study). 

(2) By approximating the performance function with a Taylor

expansion, the uncertainty measure index is calculated an-

alytically in the neighborhood of δ̄. 

An illustration of the SAUA is shown in Fig. 3. 

In the neighborhood of δ̄, the performance function can be ap-

roximated by using a Taylor expansion 

 δ

(
δ
)

= G δ

(
δ̄
)

+ ∇G 

T 
δ · dδ, (30)

here ∇G is the gradient vector of the performance function. Then

q. (6) can be transformed to 

= sgn ( G δ(0) ) · min 

dδ
( ‖ ̄δ + dδ‖ ∞ 

) 

s.t. G δ

(
δ̄
)

+ ∇G 

T 
δ

· dδ = 0 

. (31)

Because 

δ̄ + dδ
∥∥∥

∞ 

≤
∥∥∥δ̄

∥∥∥
∞ 

+ 

∥∥dδ
∥∥

∞ 

, (32)

he uncertainty measure index can be calculated as 

= sgn ( G δ( 0 ) ) ·
∥∥∥δ̄ + d δ∗

∥∥∥
∞ 

, (33)

here d δ∗ is the solution of optimization problem 

min 

dδ

(∥∥dδ
∥∥

∞ 

)
.t. G δ

(
δ̄
)

+ ∇G 

T 
δ

· dδ = 0 

. (34)
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Fig. 3. An illustration of the SAUA method and flowchart. 
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Eq. (34) means the optimal point is the one which satisfies the

onstraint equation and is closest to point δ̄. 

In the space of d δ, the optimal point is closest to the origin

nd the constraint equation represents a hyperplane. The normal

irection of the hyperplane is 

 = 

∇G 

T 
δ

‖ 

∇ G δ‖ 

. (35) 

The straight line, which is along the normal direction and

asses through the origin, can be described as 

δ = k a = k 
∇G 

T 
δ

‖ 

∇ G δ‖ 

, k ∈ R (36)

Substitute Eq. (36) into the constraint equation, k can be writ-

en 

 = −
G δ

(
δ̄
)
‖ 

∇ G δ‖ 

∇ G 

T 
δ
∇ G δ

. (37) 

Then, substitute Eq. (37) into Eq. (36) , obtains 

 δ∗ = −
G δ

(
δ̄
)

∇ G 

T 
δ
∇ G δ

∇ G δ. (38) 

By substituting Eq. (38) into Eq. (33) , the uncertainty measure

ndex is achieved. 

The gradient vector is usually unavailable in practice. As a nu-

erical approximation, the difference quotient is used to calculate

he gradient vector instead of the partial derivative. Thus, the gra-

ient vector is calculated as 

 G δ = 

[
∂ G δ

∂ δ1 

∂ G δ

∂ δ2 

· · · ∂G 

δ

∂ δn 

]T 

≈
[ 

G δ

(
δ + h e 1 

)
− G δ

(
δ
)

h 

G δ

(
δ + h e 2 

)
− G δ

(
δ
)

h 

· · ·

G δ

(
δ + h e n 

)
− G δ

(
δ
)

h 

] T 

, (39) 

here, e i , i = 1 , 2 , . . . , n indicates the unit vector along i th dimen-

ion, and h is a small number. 

.3. Benchmark 

Consider a performance function G (x ) = ( x 1 − 1 ) 2 + ( x 2 − 2 ) 2 −
 , with two uncertain variables x i = [ −1 , 1 ] , ( i = 1 , 2 ) . The uncer-

ainty measure index can be expressed as 
η = sgn ( G ( 0 ) ) · min ( ‖ 

x ‖ ∞ 

) 

.t. ( x 1 − 1 ) 
2 + ( x 2 − 2 ) 

2 − 4 = 0 . 
(40) 

The tolerance for both variables and object function are set

o 0.1. The optimum solved by steepest descent method is x̄ =
 0 . 1052 0 . 2107 ] T , and the constraint function value is 0.002276.

y using the SAUA method, the optimum is x ∗ = [ 0 . 1055 0 . 2112 ] T ,

nd the corresponding constraint function value is 2.48e −7. The

xact solution of this problem is x = [ 0 . 1056 0 . 2111 ] T . The shape

f limit state surface and the solution are shown in Fig. 4. 

As a comparison, a classical optimization method – simplex

ethod, and a surrogate assisted optimization – High Dimensional

odel Representation (HDMR) based genetic algorithm (GA) are

lso used to solve this problem. Theoretically, any surrogate as-

isted optimization, such as radial basis function (RBF), Kriging,

oving least square (MLS) methods, can be utilized to test the

erformance in this study. HDMR is recently developed surrogated

odeling method. Compared with these method, HDMR is recently

eveloped surrogated modeling method, the most attractive dis-

inctive characteristic is that the highly accurate model can be

chieved with the limited samples [65 , 66] and can be easily in-

egrated with evolutionary algorithms [67] . Moreover, the distribu-

ion of the initial samples dose not influence the accuracy of the

urrogate [66 , 68 , 69] , it makes the comparison more representative

nd objective. Therefore, an alternative HDMR modeling method,

riging based HDMR modeling [68] is selected for test and this
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Table 1 

Comparison of the performance of different methods for benchmark. 

Algorithm Number of Optimal solution Constraint Wall 

evaluations function time/ s 

SAUA 65 (0 .1055,0.2112) 2 .48E −07 0 .0475 

Simplex 555 (0 .1056,0.2111) 1 .24E −07 0 .0562 

HDMR-GA 12 (0 .1051,0.2113) 4 .55E −04 70 .1196 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Flowchart of RAMNA. 

Fig. 6. Pseudo-elastic analysis. 
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s  
method has been proved to be an efficient and feasible for non-

linear problems. Additionally, since the accuracy of Kriging-HDMR

can be guaranteed with the smaller size of samples, any evolu-

tionary algorithm can be integrated with it. In this test, the GA

is utilized due to its popularity. In our opinion, the performance of

HDMR-GA is good enough to represent such a kind of methods. 

The corresponding results are listed in Table 1 . According to

Table 1 , the simplex method achieves a solution of highest ac-

curacy with the constraint function value of 1.24e −07. While the

HDMR assisted GA method shows the highest efficiency with 12

evaluations. The SAUA method reaches a trade-off between accu-

racy and efficiency, the accuracy is much higher than HDMR-GA

and the efficiency is much higher than the simplex method. How-

ever, the SAUA is the most efficient one according to wall time cri-

terion. Therefore, the SAUA method seems to achieve a solution of

high accuracy with cheap computational cost. 

4. The SAUA for material nonlinear problem integrated with 

reanalysis method 

For a material nonlinear stiffness uncertainty analysis,

Eq. (6) becomes 

η = sgn ( G δ( 0 ) ) · min 

δ

(∥∥δ
∥∥

∞ 

)
s.t. G δ

(
δ
)

= u s − u 

(
δ
)

= 0 

, (41)

where, δ is uncertain variable, including material parameters,

structural parameters and loads, and so on. u s is the limit

displacement. u ( δ) is a displacement function, which is nonlinear,

and usually solved by nonlinear FEM. 

Since the performance function needs to be evaluated repeat-

edly, the uncertainty measure index is usually calculated by using

surrogate instead of real evaluation. Although the efficiency can be

significantly improved, the accuracy of the surrogate is difficult to

be guaranteed, especially for nonlinear problems. To improve ef-

ficiency and accuracy simultaneously, an efficient RAMNA method

is suggested. The method is based on pseudo elastic analysis and

reanalysis method. The flowchart is shown in Fig. 5. 

4.1. Incremental efficient material nonlinear analysis method 

Sethuraman and Reddy developed a pseudo elastic analysis

method for inelastic problems [70] . The elastoplastic deformation

is described by using equivalent material parameters E e and υe .

The procedure of the elastoplastic analysis by using pseudo-elastic

analysis method is described as follows: 

Algorithm 1 ( F , σ 0 , d, ɛ , σ) 

(1) Let k = 1, E (1) 
e = E and υ(1) 

e = υ , set δ to a small value. 

(2) Calculate stiffness matrix K 

( k ) using E (k ) 
e and υ(k ) 

e . 

(3) Solving the equation K 

(k ) d 

(k ) = F and calculate ɛ ( k ) , σ( k ) and

σ (k ) 
eq . 

(4) If σ (k ) 
eq < σ0 , procedure goes to (7), otherwise, it goes to (5). 

(5) Update E e and υe for each element according to the corre-

sponding material model. 
(6) If 

√ ∑ N el 
i =1 

( E k +1 
e −E k e ) 

2 

∑ N el 
i =1 

E k e 

< δ, where N el is the number of elements,

σ0 = σ (k ) 
eq , procedure goes to (7), otherwise, k = k + 1, it goes

back to (2). 

(7) d = d 

(k ) , ε = ε (k ) and σ = σ(k ) , procedure stops. 

The procedure is illustrated in Fig. 6. 

The advantages of pseudo-elastic analysis method are that it

an avoid calculating the complex elastoplastic constitutive matrix,

nd the convergence rate is almost the same as the NRM (Newton–

aphson method). This method is not widely used because it is

ased on total deformation theory, and it is not proper for the

roblems which are influenced by the loading path. To overcome

his bottleneck, a pseudo-elastic analysis is extended to load incre-

ent method in this study. 

Assuming that the stress and strain are obtained in the load

tep k as σ( k ) and ɛ ( k ) . A load increment �F (k) is applied to the
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Fig. 7. Pseudo-elastic analysis for load increment method. 
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tructure, and new stress σ(k +1) and strain ε (k +1) need to be re-

olved in the step k + 1. 

A transformation of coordinates for stress and strain is used to

ake the origin of the coordinates move to the current stress and

train as shown in Fig. 7 . The transformation is 

′ = �σ = σ−σ(k ) 

ε 

′ = �ε = ε − ε 

(k ) . (42) 

The current values of σ′ and ɛ ′ are 0, therefore the pseudo-

lastic theory developed for total strain theory can be used. 

By using stress-strain curve, a simple strategy is proposed to

alculate the equivalent elasticity modulus E e . 

As shown in Fig. 7 , the initial stress-strain relation is assumed

o be 

= f ( ε ) . (43) 

It is easy to find that 

 e = 

E�ε e + f ( ε p ) − f ( ε e ) 

�ε 
. (44) 

For linear working hardening material, Eq. (44) becomes 

 e = 

E�ε e + E T �ε p 
�ε 

. (45) 

The procedure of the load increment method using pseudo-

lastic analysis is suggested as follows: 

lgorithm 2 

(1) Initially, k = 1, d 

(k ) = 0 , σ(k ) = 0 , ε (k ) = 0 and σ (k ) 
0 

= σ0 . 

(2) Calculating �F ( k ) . 

(3) Algorithm 1 ( �F (k ) , σ(k ) 
0 

, �d 

(k ) , �ε (k ) , �σ(k ) ) . 

(4) d 

(k +1) = d 

(k ) + �d 

(k ) , ε (k +1) = ε (k ) + �ε (k ) , σ(k +1) = σ(k ) +
�σ(k ) and σ (k +1) 

0 
= σ (k ) 

0 
. 

(5) k = k + 1, if k > N ls , where N ls is the number of load steps,

procedure goes to (6), otherwise it goes to (2). 

(6) Procedure stops. 

.2. Efficient RAMNA method 

In pseudo-elastic analysis, the load vector is fixed in each load

tep. While the change of the equivalent material parameters will

ead to the change of stiffness matrix. If the problems are solved by
omplete analysis, large amount of computational cost will be ex-

ensive. Therefore, a reanalysis method, combined approximation

CA) [35 , 36] , is employed to solve such problems efficiently. 

Assume that the initial equilibrium equation of the structure

s 

 0 d = F , (46) 

nd the solution is d = d 0 . After structural modifications or

hanges of the material parameters (the major issue discussed in

his study), the equilibrium equation becomes 

d = F . (47) 

The solution of Eq. (47) can be expressed as a linear combina-

ion of a series of vectors as 

 = v 1 y 1 + v 2 y 2 + . . . + v s y s = r B y , (48)

here v i , i = 1 , 2 , · · · , s are the basis vectors and y i , i = 1 , 2 , · · · , s

re the corresponding coefficients and s is the number of the basis

ectors. In Eq. (48) , 

 B = [ v 1 v 2 · · · v s ] 

y = [ y 1 y 2 · · · y s ] 
T 
. (49) 

The basis vectors can be calculated as follows: 

 1 = d 0 

v i = −B v i −1 (i = 2 , 3 , . . . , s ) , (50) 

here 

 = K 

−1 
0 �K , �K = K − K 0 . (51)

Substitute Eq. (48) into Eq. (47) and pre-multiplying both side

f Eq. (47) with r T B , obtains 

 R y = F R , (52) 

here 

 R = r T B K r B 

F R = r T B F . (53) 

Solve Eq. (52) , y is obtained. By substituting y into Eq. (48) , the

pproximation of d is achieved. 

For each load step in load increment method, the material pa-

ameters used in the first iterative step are the same (elastic pa-

ameters). Therefore, the stiffness matrices are identical as well.

he advantage is that the stiffness matrix needs to be decomposed

nly once, and it can be reused in all load steps for both initial

nalysis and CA. Theoretically, the CA has potential to improve the

fficiency of pseudo-elastic analysis significantly. For this purpose,

n efficient RAMNA method is proposed. 

The procedure of the RAMNA is described as follows: 

(1) Calculate elastic stiffness matrix K and the decomposition K = LU . 

(2) For k = 1 to N ls 
Calculate the increment of the load vector �F (k ) . 

For i = 1 to N max , where N max is the largest number of iterative step 

If i equals to 1 

Solve Kd 
(k ) 
i = �F (k ) using the decomposition K = LU 

Else 

Calculate elastoplastic stiffness matrix K ep 

Solve K ep d 
(k ) 
i 

= �F (k ) using the CA method 

End if 

Update equivalent material parameters 

If convergence condition meets, break 

End for 

Update state variables 

End for 

(3) Procedure stops. 
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Fig. 8. Plane cantilever beam. 

Fig. 9. Displacement along x -axis. 

Fig. 10. Stress along x -axis. 

 

 

 

 

 

 

 

 

Fig. 11. Plastic strain along x -axis. 

Fig. 12. Tensile plate. 

Fig. 13. Load steps. 

 

 

 

 

 

 

 

 

 

 

 

4.3. Verification 

(1) A plane cantilever beam is shown in Fig. 8 . The left side of

the beam is fixed, and a concentrate force is applied on the

right side with value F = 10 0 0 N. The material parameters are

modulus of elasticity E = 70 GPa, Poisson’s ratio of the ma-

terial is υ = 0 . 3 , tangent modulus E T = 1 . 405 GPa, yield limit

σY = 120 MPa. The structure is analyzed using self-coded

program and a commercial software ANSYS, simultaneously.

The results are shown in Figs. 9–11 , which show that the

self-developed program can obtain similar results to ANSYS. 
(2) A plate and its size are shown in Fig. 12 , and the thickness

of the plate is h = 10 mm. The left side of the plate is fas-

tened and a uniform force is implemented on the right side.

The curve of the total value of the force is shown in Fig. 13 .

Linearly working hardening material is used in this example.

The modulus of elasticity is E = 70 GPa, the Possion’s ratio

is ν = 0 . 3 , the yield limit is σY = 120 MPa, and the tangent

modulus is E T = 1 . 405 GPa. The results obtained by complete

analysis and approximate analysis are shown in Fig. 14 . It

is easy to observe that the result of complete analysis and

approximate analysis are coincident. The error of stress be-
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Fig. 14. Results of plate. 
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Fig. 16. Deformation of midpoint value. 

Fig. 17. Uncertainty of H-steel. 

r  

n

 

u  

i  
tween the two results is 1.17%, and the error of the strain is

1.20%. 

. Numerical examples 

Three examples are shown in this section. The first case is pre-

ented to illustrate the application of analytic uncertainty analy-

is method for the elastic problem. The second and third cases are

aterial nonlinear problems of vehicle parts, in which the SAUA

ethod is used. 

.1. H-steel 

An H-steel cantilever beam is shown in Fig. 15 (a). The shape

nd size of cross section are shown in Fig. 15 (b). The length of this

eam is 10 0 0 mm. The nodes of right side (marked B in Fig. 15 (a))

re clamped, and a concentrated load is enforced on the center

ode of the left side (marked A in Fig. 15 (a)) along the - z direction.

he interval force is F = 40 0 0 × ( 1 + αδ1 ) N. The interval modulus

f elasticity is E = 70 × ( 1 + βδ2 ) GPa. Different uncertain levels of

orce and modulus of elasticity ( α and β) are concerned. Poisson’s
Fig. 15. An illustration 
atio is ν = 0 . 3 . The stiffness constraint is that the displacement of

ode A should be limited within 10 mm. 

The deformation of midpoint value is shown in Fig. 16 , and the

ncertainty measure indexes are shown in Fig. 17 and correspond-

ng results are listed in Table 2 . Both α and β vary from 0.05 to
of H-steel model. 
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Table 2 

Analytic reliability analysis result. 

α\ η\ β 0.050 0.065 0.080 0.095 0.110 0.125 

0 .050 11 .7843 10 .9905 10 .1302 9 .2558 8 .4058 7 .6052 

0 .065 9 .4695 9 .0648 8 .6014 8 .1015 7 .5851 7 .0686 

0 .080 7 .8669 7 .6368 7 .3652 7 .0620 6 .7371 6 .3997 

0 .095 6 .7100 6 .5679 6 .3970 6 .2022 5 .9887 5 .7613 

0 .110 5 .8416 5 .7480 5 .6343 5 .5029 5 .3565 5 .1980 

0 .125 5 .1681 5 .1034 5 .0242 4 .9317 4 .8277 4 .7137 

0 .140 4 .6316 4 .5851 4 .5278 4 .4606 4 .3843 4 .2999 

0 .155 4 .1947 4 .1602 4 .1175 4 .0672 4 .0097 3 .9458 

0 .170 3 .8324 3 .8061 3 .7734 3 .7348 3 .6905 3 .6410 

0 .185 3 .5271 3 .5067 3 .4812 3 .4509 3 .4161 3 .3770 

0 .200 3 .2666 3 .2503 3 .2300 3 .2059 3 .1781 3 .1468 

α\ η\ β 0.140 0.155 0.170 0.185 0.200 

0 .050 6 .8676 6 .5698 6 .5070 6 .4031 6 .2711 

0 .065 6 .5645 6 .0817 5 .6259 5 .2001 5 .0557 

0 .080 6 .0575 5 .7172 5 .3840 5 .0618 4 .7533 

0 .095 5 .5247 5 .2832 5 .0404 4 .7996 4 .5631 

0 .110 5 .0301 4 .8556 4 .6768 4 .4960 4 .3151 

0 .125 4 .5914 4 .4626 4 .3288 4 .1915 4 .0521 

0 .140 4 .2087 4 .1115 4 .0095 3 .9038 3 .7952 

0 .155 3 .8761 3 .8014 3 .7223 3 .6396 3 .5540 

0 .170 3 .5868 3 .5283 3 .4660 3 .4004 3 .3320 

0 .185 3 .3341 3 .2875 3 .2377 3 .1849 3 .1297 

0 .200 3 .1122 3 .0746 3 .0342 2 .9913 2 .9461 

Fig. 18. Truck frame model. 

Table 3 

Uncertain variables of truck frame. 

Uncertain variables Interval expression 

Force F = 150 0 0 × ( 1 + 0 . 05 δ1 ) N 

Elasticity modulus E = 70 × ( 1 + 0 . 05 δ2 ) GPa 

Tangent modulus E T = 1 . 405 × ( 1 + 0 . 1 δ3 ) GPa 

Yield limit σY = 120 × ( 1 + 0 . 1 δ4 ) MPa 

 

 

 

 

 

 

 

 

 

 

Table 4 

Optimal results for truck frame. 

Algorithm Number of Optimal solution Constraint 

evaluations function 

SAUA 161 (1 .9514,0.0393,0.1785,1.8766) −1 .12e −4 

HDMR-GA 36 (1 .7690,1.4159,1.5423,1.7690) −2 .71e −1 

Fig. 19. Convergence curves of SAUA. 

Fig. 20. Deformation of truck frame. 
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0.2, and the uncertainty measure index η varies from 2.9461 to

11.7843. Since the values of η are larger than 1, the H-steel is reli-

able under such circumstance. 

It should be noted that the FE analysis is carried out only

once in the process of calculating the uncertainty measure index

by analytic uncertainty analysis method. The analysis process is

efficient. 

5.2. Truck frame 

A truck frame model, as well as the boundary conditions, is

considered as shown in Fig. 18 . The model includes 9752 elements

and 5344 nodes, involving 32,064 degrees of freedom (DOFs).

The uncertain variables are listed in Table 3 and all the uncertain

variables are independently. The Poisson’s ratio of the material is
= 0 . 3 . The stiffness constraint is that the displacement of Node

025 (as shown in Fig. 18 ) should be limited within 20 mm. 

For the complete FE analysis and the suggested RAMNA, the

omputational costs of a single run are 215.567 s and 127.587 s,

espectively. Obviously, the efficiency of the suggested method is

bout twice as FE analysis. 

The optimal results of the SAUA and the HDMR-GA methods

re listed in Table 4 . Although the HDMR-GA has a small number

f evaluations, the optimal solution does not satisfy the constraint

unction with value of −2.71e −1. The SAUA method achieves a fea-

ible solution with a constraint function value of −1.12e −04, and

he number of function evaluations is acceptable. The process does

ot converge based on the simplex method. The convergence curve

f the SAUA method is shown in Fig. 19 . According to the SAUA

ethod, the uncertainty measure index is −1.9514, which indicates

he structure is not reliable. The deformation of the optimal solu-

ion is shown in Fig. 20. 
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Fig. 21. Inner panel of car door. 

Table 5 

Uncertain variables of inner door panel. 

Uncertain variables Interval expression 

Force F = 100 × ( 1 + 0 . 05 δ1 )N 

Plasticity modulus E = 70 × ( 1 + 0 . 05 δ2 ) GPa 

Tangent modulus E T = 1 . 405 × ( 1 + 0 . 1 δ3 ) GPa 

Yield limit σY = 120 × ( 1 + 0 . 1 δ4 ) MPa 

Table 6 

Optimal results for inner panel. 

Algorithm Number of Optimal solution Constraint 

evaluations function 

SAUA 170 (0 .5003,0.0783,0.0847,0.5219) −2 .65e −4 

HDMR-GA 55 (0 .3234,0.3234,0.2706,0.3233) 1 .50e −1 
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Fig. 22. Convergence curves of SAUA. 

Fig. 23. Deformation of inner door panel. 
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.3. Inner panel of car door 

An inner panel of a car door is shown in Fig. 21 . The model in-

ludes 35,308 elements and 18,243 nodes, involving 109,458 DOFs.

or the nodes marked A , three translational DOFs are constrained.

or a node marked B , the translational DOF along y direction is

onstrained, and a concentrated force is enforced along –z direc-

ion. The uncertain variables are listed in Table 5 , and all the un-

ertain variables are independent. The Poisson’s ratio of the mate-

ial is υ = 0 . 3 . The stiffness requirement is that the displacement

f the node marked C should be limited in 10 mm. 

For the proposed RAMNA and complete analysis, the computa-

ional costs of a single run are 13.899 s and 28.688 s, respectively.

he efficiency of the proposed method is over twice as FE analysis.

The optimal results of SAUA method and HDMR-GA method are

isted in Table 6 . The number of evaluations of HDMR-GA method

s 55, which is much smaller than 170 of the SAUA method. How-

ver, the constraint function value of the HDMR-GA method is

.50e −1. The optimal solution does not satisfy the constraint func-

ion. The SAUA method achieves a feasible solution with a con-

traint function value of −2.65e −4. The process does not con-

erge based on the simplex method. The convergence curve of the

AUA method is shown in Fig. 22 . According to the SAUA method,

he uncertainty measure index is 0.5219, meaning the structure is
nreliable. The deformation of the optimal solution is shown in

ig. 23. 

. Conclusions 

This work suggests an efficient interval uncertainty analysis

ethod for material nonlinear problems. Compared with other in-

erval uncertainty analysis methods, the distinctive characteristics

f this method can be summarized as: 

(1) The formulations of an analytic uncertainty analysis for lin-

ear problems are proposed. The numerical example shows

that the analytic method can calculate the uncertainty mea-

sure index efficiently. 

(2) To extend the analytic interval method to nonlinear prob-

lems, a novel SAUA method is developed. The SAUA method

is a combination of gradient-based optimization method

and Taylor expansion. At the beginning of optimization,

gradient-based optimization method is used to obtain a

pseudo solution with a relax convergence criterion. Then

the Taylor expansion is used when the optimization con-

verges to a small region. In this way the optimization

problem can be solved analytically. The numerical examples
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show that the SAUA method can reach a trade-off between

efficiency and accuracy. A highly accurate solution can be

achieved efficiently via the SAUA method. 

(3) An efficient RAMNA method is proposed. Compared with

surrogate-based optimization and real evaluation, the accu-

racy and efficiency of suggested strategy can be promised

simultaneously. 

In conclusion, the proposed SAUA method is effective and effi-

cient, which can contribute to shortening the period of structure

design. 
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