
Computer Standards & Interfaces 33 (2011) 152–158

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r.com/ locate /cs i
Software automated testing: A solution to maximize the test plan coverage and to
increase software reliability and quality in use

Marcantonio Catelani, Lorenzo Ciani ⁎, Valeria L. Scarano, Alessandro Bacioccola
University of Florence, Department of Electronics and Telecommunications, via S. Marta 3, 50139, Florence, Italy
⁎ Corresponding author.
E-mail addresses: marcantonio.catelani@unifi.it (M. C

(L. Ciani), valeria.scarano@unifi.it (V.L. Scarano).

0920-5489/$ – see front matter © 2010 Elsevier B.V. A
doi:10.1016/j.csi.2010.06.006
a b s t r a c t
a r t i c l e i n f o
Available online 30 June 2010
Keywords:
Software automated testing
Software reliability
Quality in use
Mean time to overflow
Software plays an increasingly important role in complex systems, especially for high-tech applications
involved in important fields, such as transportation, financial management, communication, biomedical
applications and so on. For these systems, performances such as efficient operation, fault tolerance, safety
and security have to be guaranteed by the software structure, whose quality in use is assuming a growing
importance from the industrial point of view. The basic problem is that the complexity of the task which
software has to perform has often grown more quickly than hardware. In addition, unlike hardware,
software cannot break or wear out, but can fail during its life cycle (dynamic defects) [1]. Software problems,
essentially, have to be solved with quality assurance tools such as configuration management, testing
procedures, quality data reporting systems and so on [2]. In this context, the paper proposes a new approach
concerning the automated software testing as an aid to maximize the test plan coverage within the time
available and also to increase software reliability and quality in use [3]. In this paper a method which
combines accelerated automated tests for the study of software regression and memory overflow will be
shown, in order to guarantee software with both a high quality level and a decrease of the testing time. The
software will be tested by using test sequences reproducing the actual operating conditions and accelerated
stress level. Moreover the research wishes to define some parameters of the software life and to show the
generality of the proposed technique.
atelani), lorenzo.ciani@unifi.it

ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

A software system is often subjected to conflicting requirements;
in fact it has to be reliable in its application and, at the same time, has
to follow the needs of the market with competitive costs [1,2]. In this
context the test process, through quantitative planning, tracking and
automation, covers a fundamental role. Software reliability testing
combines the use of quantitative reliability aims with operational
profiles (profiles of system use), that guide developers in the testing
implementation. An important innovation would be the introduction
of the acceleration of the automated test in order to reduce both time
and cost of development without inducing, in the system, different
failures from the ones which we want to analyse.

Inadequate and ineffective testing is responsible for many
problems regarding software reliability faced by computer users. On
the other hand, the complexity of modern software packages makes
exhaustive testing difficult. Nevertheless, automated testing can help
to improve efficiency of the testing process in order to identify areas of
a program that are prone to failure. Automated testing can be applied
in large portions of many applications, with reduction of the workload
on overburdened testers. Until a few years ago, developers considered
software testing as a secondary activity, if compared with the
development phase; nowadays the test represents, in many fields of
application, the starting point for the development of the product and
its cost is often comparable with the cost of the product development.
In fact, it has been estimated that software testing, able to detect
errors in source code, involves more than 50% of software develop-
ment [4]. Time and cost can be significantly reduced through the use
of automated test generators [4].

Among the activities that allow the detection of nonconformity
and potential failures in different phases of the software product,
implementation software Verification and Validation (V&V) plays a
fundamental role. To this aim, some standards and guidelines have
been issued about software as a key component which contributes to
system behaviour and performance; some examples are represented
by the International Standard ISO/IEC 9126 [5], which defines a
quality model for a software product, in order to satisfy the customer
optimizing the product and IEEE Standard 1012 [6] for Software
Verification and Validation, which attempts to establish a common
framework for all activities and tasks in support of software life cycle
steps. In particular, amongst the different steps, the efforts on
improving quality are concerned with V&V phases; these activities
determine whether products of a given activity conform to the
requirements and whether the software satisfies its intended use and

http://dx.doi.org/10.1016/j.csi.2010.06.006
mailto:marcantonio.catelani@unifi.it
mailto:lorenzo.ciani@unifi.it
mailto:valeria.scarano@unifi.it
http://dx.doi.org/10.1016/j.csi.2010.06.006
http://www.sciencedirect.com/science/journal/09205489


153M. Catelani et al. / Computer Standards & Interfaces 33 (2011) 152–158
customer needs. Verification and Validation is the activity in software
production that allows production costs to be decreased and, at the
same time, to increase software reliability [3,7]. Verification is the
process of evaluating software to determinewhether the products of a
given development phase satisfy the conditions imposed at the start
of that phase. Validation is the process of checking in order to ensure
compliance with software requirements [6]. V&V activities carry out
the integration test that exposes defects in the interfaces and
interaction between integrated components (modules); progressively
larger groups of tested software components corresponding to
elements of the architectural design are integrated and tested until
the software will work as a system.

It is important to remember that memory leaks and memory
corruption are considered critical software bugs that meaningfully
influence availability and security performances of the system.
Memory leaks and memory overflow in the ‘C’ language are referred
to as an unwanted increase in the program memory occupation. The
memory consumption of the program increases to a great extent by an
unintentional consumption of it. It also means that the memory of the
program is being corrupted and this results in an error. Some of these
errors are not critical but can cause major problems to the program. If
a memory leak is present, the system may stop functioning and may
violate some of the files of the operating system. A memory overflow
is also known as stack overflow or buffer overflow [8–10]. When this
kind of error occurs, the program can terminate itself; particularly
during saving beyond the limit. Consequently the program can
produce wrong results and this leads to a fault in the execution of
the program and the operating system. In this case, memory leaks,
caused through the inaccessibility of some allocated memory, can
cumulatively degrade overall system performances increasing mem-
ory paging or, in the worst case, generating the program crash. The
system memory, allocated by the processes, is managed by the
developer with set rules; these rules are often optimized for many
applications but not for all [2]. In order to evaluate the memory leaks
during test regression, the software automatic test proposed in this
paper can be classified as a dynamic test [4], being able to stimulate
the software under test with a stress level accelerated in time. To this
aim, we considered a list of processes that have to be observed and, for
each of them, two parameters to be analysed are selected: Private
bytes and Working set, as defined in Section 2. In this paper an
approach that takes into account, simultaneously, the regression tests
execution and thememory overflow evaluation are proposed; the aim
is to demonstrate a decrease of testing costs and an increase of
software reliability in terms of Mean Time to Overflow (MTOF) [11–
14]. MTOF parameter, that allows to estimate the failure of the system
due to overflow, is defined in Section 2. Its evaluation for specific tasks
and applications is shown in Section 3. The automatic monitoring of
Fig. 1. Block diagram o
this parameter during regression test can be considered as a software
product aid in order to plan the rightmaintenance operations and cost
reduction.

With the aim of proving the general validity of the proposed
approach, an industrial application, concerning an automatic distri-
bution petrol station, is considered. For this complex plant the role
covered by the software is fundamental; in fact it allows the global
management of the petrol station, from the fuel sale to its supplying,
from the warehouse management to the accounts department.

In the following, after the description of the main steps of the
automated test method, the proposed improvements are shown,
supported by detailed consideration for experimental data.

2. Proposed test methodology

Several well-known methodologies for testing general purpose
software exist in literature [15,16]. Such techniques follow a structural
or a functional approach, also identified as the white-box and the
black-box approach respectively. The proposed methodology can be
classified as a black-box approach, where the software under test has
to be verified with a suitable studied set of inputs whose expected
outputs are known only on the basis of the functional specifications. In
addition to the black-box approach, we propose a test method with
test sets well representative of the field behaviour of the system,
according to the block diagram shown in Fig. 1. One can observe that
“test parameters” and “field data statistical distribution” are inputs;
“test results”, “expected results”, “MTOF” and “final results” are
outputs. The “software under test” is the object of the analysis and
“test cases generation”, “test cases execution”, “input data elabora-
tion”, “memory occupiedmonitoring” and “comparison” are activities.

The software testing approach is based on a dynamic pseudo-
random generation which mixed the preliminary test parameters,
which ones came from test results, and the statistical distribution of
field data. The combination of possible variables and therefore the
states evolution is random and represents the test case. The proposed
methodology takes advantage of pseudo randomization voted to
increase the number of test sequences and, at the same time, to
simulate better the possible real conditions; it allows the test
sequences to be modified without changing the programming code,
for its high flexibility performances [17–19]. Test case generator
creates quite unlimited sequences that can be iterated on the software
under test. Both the inputs and the outputs can be txt file with
dimension of about 100 kB. The test results, represented by the output
of the software under test, are compared with the expected results
obtained from the test cases, at the end of the testing phase; final
results allow information to be deduced about the quality in use of the
software under test and new data for dynamic test case generation
f the test method.



154 M. Catelani et al. / Computer Standards & Interfaces 33 (2011) 152–158
[20–23]. Detailed steps concerning the comparison between obtained
and expected results are shown in Fig. 2. If no differences between
obtained and expected values are present, the test is stopped; vice
versa, a fault has to be tracked and the software has to come back to
the development team in order to be analysed and correct the bug;
successively the test has to be carried out again. There is also the
possibility of locating unclear values, such as ambiguities that have to
be solved manually by repeating ambiguous sequences.

The key-step introduced in the proposed method (Fig. 1), that
allows important information to be obtained, is the simultaneous
evaluation of the occupied memory of the system during the
execution of the automated tests; in fact, we can estimate the filling
up of the total memory both for a single module and the entire device
on which the software under test runs. In Fig. 1 this step is denoted as
memory occupied monitor. This step, that considers the evaluation of
possible memory overflow on the tested products, is implemented by
a flexible macro, that doesn't induce a decrease of the machine
performances on which it is active.

Through the memory occupied monitor step lists of processes that
have to be observed can be defined; for each of them the parameters
to analyse, and observe also at a later date, are chosen. The potential
memory overflow can be diagnosed through the following
parameters:

• Private bytes: this parameter displays the number of bytes reserved
exclusively for a specific process. If a memory leak occurs, this value
will tend to rise steadily.

• Working set: represents the current size of the memory area used by
the process for tails, threads, and date. The dimension of the
working set grows and decreases as the VMM (Virtual Memory
Manager) can permit. Since it shows the memory that the process
has allocated and deallocated during its life, when the working set is
too large and doesn't decrease correctly it usually indicate amemory
leak.

The parameters above mentioned can be estimated, both on a
single operating task and on the total occupation memory of the
Fig. 2. Automated software testing process realized.
computer, through the software trial with a stress level comparable to
the real use or by repeating accelerated series of normal use
operations in order to reduce the testing time.

The trend of memory filling is monitored: so if the trends of chosen
parameters increase we can deduce that a memory leak affects the
software under test, in this case the program has to come back to the
development team for the fault correction.

The stress produced by a test simulates the real operating
conditions found in the field. At the same time, during a memory
occupation test, a regression test can be performed, be+ing it based
on continuous repetition of the same operations or test sequences
[24]. Since it identifies, in a relatively short time, failures in the field
before the product is realised and then to correct them through
software redesign, the implementation of this kind of automated tests
allows to reduce costs and working time.

It is important to underline that the saturation of available
memory due to memory leaks is a common cause of software failure
[25,26]. Memory leak is the phenomenon of permanent memory
occupation that appears when a module allocates the memory
without ever deallocating it. This behaviour, repeated through time,
wears out the available memory size and induces the block of the
system (fail stop).

A software module is characterized by memory leak if at least one
of the operations (or sequence of operations), that it executes, suffers
frommemory leaks. After the test, the portion of memory occupied by
the program, suffering from this failure cause, can be minimal (some
kB); the phenomenon is generally not appreciable on the single test
but can become considerable by repeating the same test sequences
several times. This type of problem can be studied through the
automated tests method proposed in this work; in fact, repeating a
test sequence and monitoring the trend of the occupied memory
during the test, an estimation of the presence of memory leaks is
possible. It is useful, therefore, to introduce the parameter Mean Time
To Overflow (MTOF) defined as:

MTOF =
Memsize

Δm
ð1Þ

where Memsize denotes the available memory size and Δm represents
the mean increase of memory occupation in an established time
interval. According to the value ofΔm, evaluated in kB per day, hour or
sequence, we can explain the MTOF in number of days, hours or
sequence to the breakdown of the memory resources and, therefore,
to the collapse of the system (system fail stop).

For a complex system where independent memories are involved
for the operating functions, Eq. (1) can be modified and the System
Mean Time To Overflow is defined as:

MTOFS = min
Memsize i

Δmi

� �
; i = 1…n: ð2Þ

3. Validation of the methodology

The validity of the proposed approach is verified by considering an
industrial application, constituted by a multifunction distribution
petrol station [27] as represented in Fig. 3.

For this application the software suite covers a fundamental role in
all the activities involved in themanagement of the fuel station. In our
case and in its complete version, approximately 40,000 modules and
5.000.000 code lines identify the complexity of the software suite able
to manage important activities such as the fuel sale and storage by
means of Dispenser Management System (DMS) and all operations
that require the use of Card Payment System (CPS).

image of Fig.�2


Fig. 3. Typical components of a standard automatic petrol station.

155M. Catelani et al. / Computer Standards & Interfaces 33 (2011) 152–158
The test suite that reproduces the sequence that will recursively
repeat on the service station has been planned and implemented. Its
dimension is about 8 MB and it is composed of 590 code lines.

Such test suite, shown in Fig. 4, involves real operations with
connection to the Card Payment System that can be summarized as:

a) System login, read card parameters, update or create log;
b) Check purchase restriction and card validity;
Fig. 4. Test suite
c) Random available pump selection;
d) Product selection and delivery (based upon the real products

statistical distribution);
e) Random avoid operation or system logout, close log.

The test suite allows the reproduction of 13,100 test cases
generated according to the proposed test methodology described in
Section 2, without anymodification of the system software under test.
flow chart.

image of Fig.�3
image of Fig.�4


156 M. Catelani et al. / Computer Standards & Interfaces 33 (2011) 152–158
The test suite is then repeated carrying out 2233 sales in 40 h, with
an average of approximately 56 sales/h; four times greater than the
conditions in the field (about 14 sales/h), that are carried out for every
POS (Point of Sale). The test suite stimulates a lot of activities: the
interaction between software and controller, the simulator of the
pumps that recreates the interaction between the system, the
customer and the connection to the service centre of the oil company
for the management of the fidelity, credit and debit card. Only
external hardware devices, pumps and DMS hardware subsystem, are
simulated.

During the tests the filling of the total memory of the computer
and five operations that field feedbacks of the application indicated as
critic, in terms of memory requirements, are monitored.

The trend of the occupied memory grows linearly with time and
sales number; we assume that the sales are uniformly distributed
during the time interval considered for the test. If the performances of
computers are known, the memory variation (Δm1

) can be evaluated
in bytes/h as:

Δm1
=

Memmax−Memminð Þ
t

=
5:877:760

40
= 146:944 bytes = h ð3Þ

where Memmax and Memmin are respectively the maximum
(15.609.856 bytes) and the minimum (9.732.096 bytes) allocated
memory by the application under test; t denotes the sequence
duration in hours (t=40 h).

Considering the memory size equal to 256 MB (268.435.456 byte,
denoted as Memsize) and assuming that such memory is only
dedicated to the exclusive use of this process, it is possible to calculate
the Mean Time to Overflow, according to Eq. (1):

MTOF =
Memsize

Δm1

= 1826;787h≅ 76days ð4Þ

Considering that the distributor server is never off and that the
management software stays on field for a mean time of 3 months
before any maintenance activity, it appears that this process would
lead to a crash of the server after 76 days of operation.

For a more accurate MTOF assessment we can observe that, when
the system's memory value is achieved, the operating system
executes a swap on the hard disk.
Fig. 5. Trend of memory occupation fro
So we can consider the trend of the total occupied machine
memory under investigation and the maximum dimension of the
swap (Memswap) partition as 1 GB (1.073.741.824 byte). Bymeans of
the Performance Monitor we can observe that at login, before
executing any stress, the memory already occupied by all the
processes (named as Memstart) is equal to 327.122.944 bytes;
therefore, in the starting phase, the system is carrying out the
swap on disk. The total memory, Memtot, that the process can
allocate, is:

Memtot = Memswap−Memstart + Memsize = 970:054:336 bytes ð5Þ

consequently

MTOF =
Memtot

Δm
1

= 6601:524h≅ 275days ð6Þ

Remembering the hypothesis that the process under investigation
is the only one that occupies the memory, the swap on the disk allows
the software to carry out nearly three life cycles (90 days is the typical
useful life). However, from Eq. (4), the necessity to expand the device
memory in order to assure a greater reliability appears.

For every observed task the private bytes and the working set are
alsomonitored as shown in the trend plots of Fig. 5, where the red and
the black lines represent the private bytes and the working set,
respectively. By observing these trends, two transitory spikes can be
noted. We assume that these phenomena are due to an incorrect
process execution event and, in this sense, not considered as
significant.

The software under test has also a database controller where all
information inserted by the customer or employed user interface is
collected. The database is saved on two different disks (main and
secondary); and the Database Management System carries out its
reconstruction. During the test, the trend of the occupied memory
from the database controller is observed by means of measurement of
the private bytes and the working set as shown in the plots in Fig. 6 in
blue line and yellow line, respectively.

The trend of the memory appears constant except for the presence
of some instantaneous peaks during the execution of the database
reconstruction. Every time that the reconstruction is executed,
the process occupies about 35 MB/day (Δm2

) of memory, as shown
m the customer interface manager.

image of Fig.�5


Table 1
Test sequences implemented vs. test methods.

Days Man-hours Machine-hours Manual tests Automated
tests

Accelerated
automated tests

1 8 24 40 336 840
7 56 168 280 2.352 5.880
15 120 360 600 5.040 12.600

The use of terms in italic is only for a graphic choice.
The use of terms in bold is to put in evidence the datamentioned in text above the Table 1.

Fig. 6. Trend of memory occupation from the database controller.

157M. Catelani et al. / Computer Standards & Interfaces 33 (2011) 152–158
in Fig. 6. The total memory value, that the process can allocate, is
evaluated as:

MTOF =
Memtot

Δm2

=
970:054:336
36:700:160

≅26days ð7Þ

The server overflow is reached after 26 days and the server
operates the reconstruction of database every day; consequently
more than 3 crashes due to overflow in one life cycle may occur. As in
the previous application, it's possible to assume that the memory is
occupied by only one process under investigation. If the combined
effect of two tasks were considered, the new occupied memory, ΔTOT,
could be expressed as:

ΔTOT = 24 Δm1
+ Δm2

= 40:226:816 byte
day

ð8Þ

In Eq. (8) Δm1
is multiplied by 24 h in order to obtain the same

measurement unit of the parameterΔm2
. From the result obtained in

Eq. (8), the new value of MTOF can be evaluated as:

MTOF =
Memtot

ΔTOT
≅24days ð9Þ

So, the software Mean Time To Overflow is now decreased to
24 days.

MTOF being an index able to evaluate the software crash, it can be
considered a parameter to estimate the software reliability and, as
consequence, to plan the correct system update and the quality in use
according to ISO/IEC standard 9126.

As an additional advantage, the proposed approach allows the
change of the stress level so testing the software to a high stress level
in the smallest test time. This can lead to faults not detected with low
stress levels increasing the test plan coverage. For example, in 15
working days we can realise 12.600 test cycles (35 test sequences/h) if
we implement accelerated automated tests, instead of 5.040 cycles
(14 tests sequences/h as suggested from field data) with no
accelerated tests and 600 cycles (~5 test sequences/h) with manual
tests. Such considerations are summarized in Table 1 and plotted in
Fig. 7, where automated tests are compared to the traditional one
(manual testing).
4. Conclusions

The proposed approach of dynamic software automated testing
showed the importance of accelerated automated tests for the software
debugandvalidation in a short time interval, beforeproductdistribution,
with the aimof increasing software test plan coverage, quality in use and
reliability. Moreover this research has defined some parameters of
software life and has shown the generality of the proposed technique.

The application presented in this paper is able to stimulate the
software under test with an established stress level, comparable in the
sequence operations to the real use but accelerated four times
compared to the manual tests. Information concerning the memory
leaks and fault regression of the new software versions with respect to
the old one can be deduced, as the experimental results proved. In
particular, the automatic tests have been able to detect, locate and
then correct some important software bugs that can be considered
critical for particular industrial application such as, e.g., the manage-
ment of an automatic petrol station. In this context some examples
can be represented by errors in the visualization of the fidelity card
amount, errors in product delivery, paying by credit or debit card, in
the report printed after cash closing and errors in the mapping of the
inter-bank centre services answers. Moreover we observed that the
first task of the application under test had a linear increase of the
occupied memory due to the customer interface manager. The second
task, instead, had an increase of the memory occupation only when
the reconstruction of data base was performed. In order to increase
the software reliability, a hardware upgrade of the RAM memory
becomes necessary. TheMean Time to Overflow parameter, calculated
for the tasks and application, represents a fundamental parameter
that allows the system crash to be estimated due to an overflow. At
the same time, it will allow the estimation of the software availability
in order to plan an effective maintenance operation plan, voted to
induce not only an increase of software quality in use and customer
satisfaction but also a decrease of maintenance costs.

image of Fig.�6


Fig. 7. Trend of number of tests vs. days.

158 M. Catelani et al. / Computer Standards & Interfaces 33 (2011) 152–158
Furthermore, the benefits of such approach based on accelerated
automatic testing compared with the traditional one (manual testing)
can be reached both at a lower cost and a decrease of the testing time
of the software verification and validation. In addition, the possibility
of replicating old test sequences on new future versions (with no
testing cost) can also be considered an important benefit from the
industrial point of view.

Other parameters, such as handle counts for each process and
virtual bytes, could be useful in order to control memory leaks. If a
memory leak is occurring, an application could create additional
handles to identify memory resources, so a rise in handle count might
indicate a memory leak. Virtual bytes, that are the current size of the
virtual address space used by a process, don't necessarily imply
corresponding use of either disk or main memory pages, but virtual
space is however finite and, using too much, the process may limit its
ability to load libraries.
References

[1] Reliability Analysis Center, Introduction to Software Reliability: A State of the Art
Review, Reliability Analysis Center (RAC), 1996.

[2] J.D.Musa, Introduction to software reliability engineering and testing, Proceedings of
the 8th International Symposium on Software Reliability Engineering, 1997.

[3] A. Birolini, Reliability Engineering — Theory and Practice, Springer-Verlag3-540-
40287-X, 2004.

[4] E. Diaz, J. Tuya, R. Blanco, Automated software testing using a metaheuristic
technique based on tabu search, Proceedings of 18th IEEE International
Conference on Automated Software Engineering, 2003, pp. 310–313.

[5] ISO/IEC 9126: Information technology — software product evaluation — quality
characteristics and guidelines for their use, 2001.

[6] ANSI / IEEE Std. 1012, IEEE Standard for Software Verification and Validation
Plans, , 1986.

[7] ANSI / IEEE St. 829, Standard for software test documentation, , 1998.
[8] M. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, A dynamic technique for

eliminating buffer overflow vulnerabilities (and other memory errors), Proceed-
ings of the 20th Annual Computer Security Applications Conference, Tucson,
Arizona, USA, December 6-10 2004.

[9] H. Güneş Kayacık, A. Nur Zincir-Heywood, M. Heywood, Evolving successful stack
overflow attacks for vulnerability testing, Proceedings of the 21st Annual Computer
Security Applications Conference, Tucson, Arizona, USA, December 5–9, 2005.

[10] Y. Wiseman, J. Isaacson, E. Lubovsky, Eliminating the threat of kernel stack
overflows, IEEE IRI 2008, July 13–15, 2008, Las Vegas, Nevada, USA, 2008.

[11] V.V. Mazalov, M. Tamaki, S.V. Vinnichenko, Optimal computer memory allocation
for the poisson flows, Automation and Remote Control (ISSN: 0005-1179) 69 (9)
(2008) 1510–1511.

[12] R.B. Cooper, M.K. Solomon, The average time until bucket overflow, ACM
Transactions on Database Systems 9 (3) (September 1984) 392–408.

[13] G. Copeland, T. Keller, R. Krishnamurthy, M. Smith, The case for safe RAM,
Proceedings of the Fifteenth International Conference on Very Large Data Bases,
Amsterdam, 1989.

[14] S.P. Meynt, M.R. Fraterni, Recurrence times of buffer overflows in jackson
networks, Proceedings of the 29th Conference on Decision and Control Honolulu,
Hawaii, December 1990.

[15] H. Freeman, Software testing, IEEE Instrumentation & Measurement Magazine 5
(3) (September 2002) 48–50.

[16] G. Betta, D. Capriglione, A. Pietrosanto, P. Sommella, A statistical approach for
improving the performance of a testing methodology for measurement software,
IEEE Transactions on Instrumentation and Measurement 57 (6) (June 2008)
1118–1126.

[17] M.A. Bailey, T.E. Moyers, S. Ntafos, An application of random software testing, IEEE
MILCOM, Conf. Rec., vol. 3, November 1995, pp. 1098–1202.

[18] S.C. Ntafos, On comparisons of random, partition, and proportional partition
testing, IEEE Transactions on Software Engineering 27 (10) (October 2001)
949–960.

[19] W. Lingfeng, K.C. Tan, Software testing for safety critical applications, IEEE
Instrumentation & Measurement Magazine 8 (2) (March 2005) 38–47.

[20] I. Burnstein, Practical software testing: a process-oriented approach, Springer-
Verlag, New York, 2003, ISBN:0-387-95131-8.

[21] D. Galin, Software Quality Assurance: From Theory to Implementation, Pearson
Addison Wesley, Harlow, England, 2004.

[22] S.M. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, Englewood
Cliffs, NJ0137451679, 1989.

[23] S. Stoica, Robust test methods applied to functional design verification,
Proceedings of IEEE International Test Conference, September 1999, pp. 848–857.

[24] M. Catelani, L. Ciani, V.L. Scarano, A. Bacioccola, A novel approach to automated
testing to increase software reliability, Proceedings of IEEE International
Instrumentation and Measurement Technology Conference, Vancouver, Canada,
May 12-15 2008.

[25] S. Roohi Shabrin, B. Devi Prasad, D. Prabu, R.S. Pallavi, P. Revathi, Memory leak
detection in distributed system, Proceedings of World Academy of Science,
Engineering and Technology, 1307-6884vol. 16, November 2006.

[26] M. Grottke, K.S. Trivedi, Fighting bugs: remove, retry, replicate, and rejuvenate,
Computer 40 (2) (February 2007) 107–109.

[27] M. Catelani, L. Ciani, V.L. Scarano, A. Bacioccola, An automatic test for software
reliability: the evaluation of the overflow due to memory leaks as failure cause,
Proceedings of 16th IMEKO Symposium TC4, Florence, Italy, September 2008.
Marcantonio Catelani received the degree in electronic
engineering from the University of Florence, Italy. Since
1984, he has been with the Department of Electronics and
Telecommunications, University of Florence, where he is
currently a Full Professor on reliability and quality control.
His current research interests include system reliability

and availability, reliability evaluation test and analysis for
electronic systems and devices, fault detection and
diagnosis, quality control, instrumentation, and measure-
ment, where his publications are focused.
Lorenzo Cianiwas born in Florence, Italy, on July 11, 1977.
He received, in 2005, the M.S. degree in Electronic
Engineering and, in 2009, the Ph.D. degree in Industrial
and Reliability Engineering from the University of Florence,
Italy. His current research concentrates in the fields of
system reliability, availability, maintainability and safety,

reliability evaluation test and analysis for electronic
systems and devices, fault detection and diagnosis,
electrical and electronic instrumentation and measure-
ment.
Valeria L. Scaranowas born in Lucera (Fg), Italy, on June 7,
1980. She received, in 2005, the M.S. degree in Electronic
Engineering and, in 2009, the Ph.D. degree in Industrial and
Reliability Engineering from the University of Florence,
Italy. Her current research interests include system
reliability and availability, reliability evaluation test and

analysis for electronic systems and devices, fault detection
and diagnosis, quality control, electrical and electronic
instrumentation and measurement.
Alessandro Bacioccola received, in 2008, the M.S. degree
in Electronic Engineering from the University of Florence,
Italy. His current research concentrates in the fields of
system reliability, software reliability, testing and devel-
opment.

Unlabelled image
Unlabelled image
Unlabelled image
image of Fig.�7

	Software automated testing: A solution to maximize the test plan coverage and to increase software reliability and quality ...
	Introduction
	Proposed test methodology
	Validation of the methodology
	Conclusions
	References


