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Abstract— Association rule mining is a one of the most important technique in data mining. It extracts 
significant patterns from transaction databases and generates rules used in many decision support application. 
Modern organizations are geographically distributed. Using the traditional centralized association rule mining to 
discover useful patterns in such distributed system is not always feasible because merging data sets from 
different sites into a centralized site incurs huge network communication and time costs.  This paper present an 
optimized Distributed Association Rule Mining (D-ARM) based on vertical partitioning. The existing D-ARM 
algorithms have lots of communication overhead, which is a major issue for concerning. The proposed approach 
minimizes this communication overhead and it is based on total count. The papers then discuss the Total Count 
on Vertical Dataset (TCDV) use of this structure which offers significant advantages with respect to existing D-
ARM techniques. 
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I.  INTRODUCTION  

Data mining technology aim to find useful patterns from large amount of data. Data mining is the process of 
analyzing data from different angles & getting useful information about data. The data mining can help in 
predicting a trend or values, classifying, categorizing the data & in finding correlations, patterns from the 
dataset. The overall goal of data mining process is to extract information from a dataset & transform it into an 
understandable structure for future use. 

Consider I = {i1… in} be a set of items. Let D be a set of transactions or database. Each transaction t∊D is an 

item set such that t is a proper subset of I. A transaction t supports X, a set of items in I, if X is a proper subset 
of t. An association rule is an implication of the form X→Y, where X and Y are subsets of I and X∩Y= Ø. The 
support of rule X→Y can be computed by the following equation: Support (X→Y) = |X→Y| / |D|, where |X→Y| 
denotes the number of transactions in the database that contains the itemset XY, and |D| denotes the number of 
the transactions in the database D. The confidence of rule is calculated by following equation: Confidence 
(X→Y) = |X→Y|/|X|, where |X| is number of transactions in database D that contains item set X. A rule XY is 
strong if support(X→Y) ≥ min_support and confidence(X→Y) ≥ min_confidence, where min_support and 
min_confidence are two given minimum thresholds [1]. 

Association rule mining algorithms scan the database of transactions and calculate the support and confidence of 
the rules and retrieve only those rules having support and confidence higher than the user specified minimum 
support and confidence threshold [1]. 

Association rule mining consists of two stages: 

1. The discovery of frequent itemsets. 
2. The generation of association rules. 

It follows, that in the vast majority of cases, the discovery of the frequent set dominates the performance of the 
whole process. Therefore, we explicitly focus the paper on the discovery of such set [2]. 

Need for development of Distributed system for mining of association rules because of its unique properties: 

1. Databases or data warehouses may store a huge amount of data. Mining association rules in such 
databases may require substantial processing power, and distributed system is a possible solution. 

2.  Many large databases are distributed in nature. For example, the huge numbers of transaction records 
of hundreds of Sears’s department stores are likely to be stored at different sites.             
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This observation motivates authors to study efficient distributed algorithms for mining association rules in 
databases.  

This study may also shed new light on parallel data mining. Furthermore, a distributed mining algorithm can 
also be used to mine association rules in a single large database by partitioning the database among a set of sites 
and processing the task in a distributed manner. The high flexibility, scalability, low cost performance ratio, and 
easy connectivity of a distributed system make it an ideal platform for mining association rules [3]. 

Two types of database layouts are employed in association rules mining: horizontal and vertical. In the 
traditional horizontal database layout, each transaction consists of a set of items and the database contains a set 
of transactions. Most Apriori-like algorithms use this type of layout. For vertical database layout, each item 
maintains a set of transaction ids (denoted by tidset) where this item is contained.  Eclat uses vertical data 
layout. It has been shown that vertical layout performs generally better than the horizontal format. Table 1 & 
Table 2 show examples for different types of layouts [4]. 

Table: 1                                                                        Table: 2 
Horizontal Layout                                                          Vertical Layout 

 
                                                                          

 
 
 
 
 
 
 

II. RELATED WORK 

Finding of interesting association rules in databases may disclose some useful patterns for decision support, 
selective marketing, financial forecast, medical diagnosis, and many other applications, it has attracted a lot of 
attention in recent data mining research. Mining association rules may require iterative scanning of large 
transaction or relational databases which is quite costly in processing. Therefore, efficient mining of association 
rules in transaction or relational databases has been studied substantially [3]. 

Since its introduction in 1993, the Association Rule Mining (ARM) has been studied intensively. Many 
algorithms, representing several different approaches, were suggested. Some algorithms, such as Apriori[5], 
DHP [14], FP growth[15] are bottom up & others, like pincer-search use a hybrid approach, trying to guess large 
itemsets at an early stage. Algorithms for D-ARM problem usually can be seen as parallelization of sequential 
ARM algorithm. The CD, FDM & DDM algorithms parallelize Apriori & PDM [13] parallelize DHP [14]. 

Two Basic parallel algorithms, Count Distribution (CD) and Data Distribution (DD) were proposed in [4]. The 
CD algorithm scales linearly and has excellent speedup and sizeup behavior with respect to number of 
transactions. Hence, the CD algorithm, like its sequential counterpart Apriori, is unscalable with respect to the 
increasing size of candidate set. The DD algorithm addresses the memory problem of the CD algorithm by 
partitioning the candidate set assigning a partition to each processor in the system [10]. 

FDM [3] was the further improvement on the CD algorithm. It gives better performance as compare to CD 
algorithm. In FDM the number of candidate sets generated can be substantially reduced to about 10-25% of that 
generated in CD [3]. 

In most of the above algorithms, the database is divided horizontally, called segmentation between nodes. There 
are also many algorithms that use vertical database. 

Apriori [5] based & inspired algorithms are good with sparse datasets, where frequent patterns are very short. 
For dense datasets such as telecommunications and census data, which have many, long frequent patterns, the 
performance of these algorithms degrades incredibly. TO overcome these problems, a number of vertical mining 
algorithms has been proposed. I.e. Eclat, Dclat. 

Eclat [8] algorithm is better than previous algorithms, but it still need a lot of communication. Dclat [7] is an 
improvement on Eclat, that uses concept of Diffset for generating frequent-itemset. 

There are also many D-ARM algorithms that follow the structure of tree. The FP-growth algorithm is a new 
generation of frequent pattern mining that uses a compressed FP tree structure for mining a complete set of 
frequent itemsets without candidate itemsets generation. It works well if size of FP-tree is typically smaller and 
if all items are ordered from highest to lowest support count. However, for very large DB, a lot of time is 
required to first sort the support of 1-itemsets. 

Item Transaction Id Set 
1 1,3,4,5 
2 1,2,5,6 
3 1,2,4,5 
4 3 
5 1,4 

Transaction Id Items 
1 2,1,5,3 
2 2,3 
3 1,4 
4 3,1,5 
5 2,1,3 
6 2,4 
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To avoid this overhead, the frequent item tree FI-growth also was proposed. This algorithm constructs an FI-tree 
represented by ordering the items by sequence in transactions. 

III. PROPOSED WORK 

Our proposed algorithm is based on a central P-tree structure. In this method, a single pass of database is done 
to perform a partial summation of the support counts. These partial counts are stored in a tree structure that we 
call the P-tree which enumerates item sets counted in lexicographic order. The P-Tree contains all the sets of 
items present as distinct records in the database. Plus some additional sets that are leading subsets of these. 

The Distributed version of P-Tree, PP-Tree was also proposed. It was based on vertical partitioning of item 
sets. This method divides the ordered set of items into subsequences & then for each subsequence it defines a PP-
Tree. The drawback of existing approach is that the later trees in the sequences are of increasing size. For 
construction of complete tree it read the PP trees from all sites into a single site, and applies the Apriori-TFP 
algorithm to build a T-tree that finds the final frequent sets in the partition. As a consequence there is a lot of 
communication overhead because N numbers of PP-trees are passed after each pass. We try to generate the 
frequent item sets by expanding central P-Tree using vertical partitioning of datasets and item sets and having less 
communication. 

This paper presents a approach which have greater efficiency in terms of communication overhead. This 
approach is based on (vertical) partitioning and has different way to partition the database. 

A. Total Count on Vertical Dataset (TCVD) Approach 

Authors have assumed that the items in a transaction or in an item set are sorted in lexicographic order. Firstly 
given Horizontal database as in Table 3 are converted in vertical data layout seen in Table 4. Then we allocate the 
distinct item sets with their Tid set to distinct nodes. During partitioning of database we also calculate L1 and send 
it to each node. Now each node calculate only those candidate item sets C2 that’s according to item set assigned to 
that nodes. 

 

 

 

 

 

 

 

 

 

Figure 1: Algorithm for Total Count on Vertical Dataset 

Example: We are given a horizontal dataset in Table 3. Each transaction t has item set in lexicographic order. 
These items have distinct values in real world. 

Table 3: Horizontal Form of Dataset 

Tid 1 2 3 4 5 6 7 8 9 

Item    set abcde Abce abde abe acde ade ace b bcde 

Tid 10 11 12 13 14 15 16 17 18 

Itemset bce bd bde be cd cde ce d de 

 

 

 

 

 

Input: Database D 
Output: Lk   //K=1to n 
1) Take set of transaction and convert it into vertical layout. 
2) Assign one or more item and their corresponding tid set to distinct nodes. 
3) Now at each node we calculate the candidate item set Ck from L1. 
Generate only those candidates set that start with item assign to that particular node. 

                                                     Ck = Lk-1 ∪ Lk-1 

4) We now calculate the frequent K-item set at individual nodes from their corresponding Ck. 
5) The steps 2 & 3 are repeated until Ck is empty. 
// End of Algorithm for Total Count on Vertical Dataset 
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Table 4: Vertical Form of Dataset 

Item Tidset 

a 1,2,3,4,5,6,7 

b 1,2,3,4,8,9,10,11,12,13 

c 1,2,5,7,9,10,14,15,16 

d 1,3,5,6,9,11,12,14,15,17,18 

e 1,2,3,5,6,7,9,12,13,15,16,18 

We can assign one or more items to a single node if their Tidset is around to similar, for example we assign 
item d & e to a single node because their Tidset is similar. Item a is assign to node 1,item b is assign to node 
2,item c is assign to node 3 and item d,e are to assign to node 4. Here min-sup=2 at all nodes. 

At node 1: 

L1= {a,b,c,d,e} 

C2= { ab,ac,ad,ae} 

We calculate support of each itemset in C2,and 
discard those itemsets whose support count is less than 
min-sup. 

Here all items of C2 have support more then min-
sup. 

Support: ab-4, ac-4, ad-4, ae-6 

L2= {ab,ac,ad,ae} 

C3= {abc,abd,abe,acd,ace,ade} 

Support: abc-2, abd-2, abe-2, acd-2, ace-4,  

ade-4 

L3= {abc,abd,abe,acd,ace,ade} 

C4= {abcd,abce,abde,acde} 

Support: abcd-1, abce-2, abde-2, acde-2 

L4= {abce,abde,acde} 

C5= {abcde} 

Support: abcde-1 

So L5= {}. 

Now, no more candidate sets can be generated. 

At node 2: 

L1= {a,b,c,d,e} 

C2= {bc,bd,be} 

Support: bc-4, bd-5, be-7 

L2= {bc,bd,be} 

C3= {bcd,bce,bde} 

Support:bcd-2, bce-4,bde-4 

L3= {bcd,bce,bde} 

C4= {bcde} 

Support: bcde-2 

L4= {bcde} 

Now, no more candidate itemsets can be generated. 

 

Figure 2: Computation of Itemsets 

At node 3 and 4 same calculations are performed as shown in figure 2. 

After calculating local itemsets at each node we can exchange with each other if required. So, here 
communication overhead is minimum or zero. Our main aim is to mining the overhead of communication. But 
in this approach, most of the transactions are redundant on every node. Sometime in worst case, size of database 
at an node can be same as central otherwise this algorithm gives good results. This approach is based on total 
support count of items.  

IV. EXPERIMENTAL EVALUATION  

A simulator with GUI was designed & developed with Microsoft Visual Basis in C# language.  Simulator 
accepts text files as input and experiment is performed on test.txt file which contains 18 transactions and each 
transaction contains different numbers and combination of items.  

Assessment of proposed approach was made on the basis of: 

1. Support 
2. Confidence 
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The support is defined as the percentages of transactions containing both X and Y in D. 

                                           Support (X=>Y) = P (X∪Y)      

The confidence is defined as the percentage of transactions containing X that also contain Y in D. 

                                     Confidence(X=>Y) = P(Y/X) = Support (X∪Y)/Support(X)   

Two experiments were performed with different values of support i.e. 2, 4. For the experiments, 30 transactions 
were taken and specification is shown in table 5. 

Table 5: Specification of Dataset 

Specification Dataset 
No of Records 30 
No of Items 10 

Table 6: Summary of Result 

Support threshold value Total Item to be Selected 
                      1                       307 
                       2                        171 
                       3                        88 
                       4                        57 
                      5                        37 
                       6                         24 

For threshold value 2, number of items to be selected are 171 whereas, for threshold value 5, only 37 items are 
selected as shown in Table 6. This concludes that as the value of threshold is increases, number of selected item 
sets to be decreased. Different organization can mine their database at different values of support threshold for 
marketing decisions.  

To test the efficiency of TCVD approach, authors conducted experiment comparing authors’ approach with Tree 
based partitioning approach. The experiment is implemented Microsoft Visual Basic 4.0 using C# and run on a 
2.10 GHz machine with a relatively RAM of 2GB based on an important factor i.e. Communication Overhead.  

Algorithm for total count on vertical dataset is better than the existing approach due to following reasons: 

1. In existing approach, there is a need to generate local PP tree for counting of support of each item, 
which is complex process to generate and have more memory requirement. In proposed approach we 
can directly calculate support from database. 

2. In existing approach for each partition, read the PP trees form all segments into memory, and apply the 
Apriori-TFP algorithm to build a T-tree that finds the final frequent sets in the partition. This stage 
requires the PP trees for each segment of data to be read once only. Here for each pass to be completed, 
passing of tree is performed which creates a lots of communication overhead in network.  

 
Figure 3: Communication Overhead of Tree Based Partitioning and Proposed Approach 

Figure 3 clearly indicates that the proposed TCVD algorithm outperforms in terms of communication overhead 
as compare to tree based partitioning algorithm. In existing approach, after each phase, all nodes communicate 
to transfers PP Tree, where in proposed approach, nodes communicate with each other only after final phase.  
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V. CONCLUSION 

The aim of this research is to achieve efficient methods for association rules mining in distributed environment 
which have less communication overhead in comparison with the previous algorithms. Most of D-ARM 
algorithms aim is to minimize communication overhead which is a major issue in distributed system. The 
approach proposed in this paper use a different method for partitioning of dataset which minimize 
communication overhead.  Experimental result shows the efficiency of proposed approach as compared with 
existing approach. The mining results can provide security for customers’ transaction behavior and also provide 
a reference for the formulation of marketing strategy. The work presented in the research can be extended for 
multi-level and multi-dimensional association rules.  
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