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Abstract

Intrusion detection and response has traditionally been performed at the network and host
levels. That is, intrusion monitors will typically analyze network packet logs or host machine
audit logs for signs of intrusion activity. More often than not, commercial off the shelf (COTS)
intrusion detection tools use “fingerprints” of known intrusions to detect their presence in these
audit trails. Both these approaches employed by most state-of-the-practice tools have their
drawbacks. In this paper, we describe a method for program-based intrusion detection that is
aimed at detecting novel attacks against systems.

1 Introduction

The field of intrusion detection is now beginning to reach commercial success as evidenced by the
plethora of commercial intrusion detection tools on the market. One contributing factor to the
success of intrusion detection tools is the failure of firewalls to prevent many security intrusions
in practice. Firewalls are vulnerable to errors in configuration, ambiguous security policies, data-
driven attacks through allowed network services, and insider attacks. One of the main problems
with firewalls is not the lack of good technology, but rather the false sense of security it engenders
in organizations that erect them. Once installed, individual host security is often relaxed and
successful intrusions exploit the web of trust between computers to gain increasing levels of privilege.

Intrusion detection software can detect many of the intrusions that slip through or around
firewalls. Defense-in-depth is the most effective strategy for securing systems today rather than
single point solutions. While neither firewalls nor intrusion detection software is a silver bullet
solution to security, together they provide a level of defense-in-depth that by themselves neither
could provide.

Defense-in-depth can also be applied to intrusion detection system themselves. For example,
maintaining multiple, diverse intrusion detection systems is often more effective than employing a
single intrusion detection system.

Intrusion detection techniques are generally classified into one of two approaches: misuse de-
tection and anomaly detection. Misuse detection methods attempt to model attacks on a sys-
tem as specific patterns, then systematically scan the system for occurrences of these patterns
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[4, 5, 6, 9, 12, 13]. This process involves a specific encoding of previous behaviors and actions
that were deemed intrusive or malicious. Anomaly detection assumes that intrusions are highly
correlated to abnormal behavior exhibited by either a user or network traffic. The main advantage
of anomaly detection over misuse detection approaches is that novel attacks against systems can be
detected by noting abnormal behavior. As a result, anomaly detection approaches are particularly
popular among researchers [1, 9, 10, 8, 11].

One of the key problems with commercial intrusion detection tools is that most rely on misuse
detection or signature analysis to detect intrusion attempts. Because these techniques attempt
to match monitored data with patterns stored in databases, attacks that do not conform with
known attack patterns will not be detected. In fact, even slight variants of known attacks often
escape detection using signature analysis. The approach is limited by the breadth and depth of the
knowledge stored in the pattern matching database. Practical constraints on storage of attacks is
one limiting factor. Even more limiting for preventing intrusions, however, is the fact that novel or
unknown intrusions will not be detected. Because new vulnerabilities are found and exploited on a
daily basis, the signature analysis approaches currently on the market are reactionary and behind
the curve pushed by computer crackers.

Desiring the ability to detect novel, unknown attacks against systems, an anomaly detection ap-
proach is employed in this research. Unlike traditional anomaly detection approaches, this research
applies anomaly detection at the system process level. Rather than profiling the normal behavior
of users, the approach here is to profile the normal behavior of executing processes. Monitoring
at the process level abstracts away users’ idiosyncrasies such that abnormal process behavior can
be detected irrespective of individual users’ behavior. Having baselined the normal behavior of a
process, deviations from the normal behavior can be used to detect attempted exploitations of the
program. Other intrusion detection work has been performed on system processes [2, 1, 3, 7].

2 Profiling Program Behavior

In this research, we profile a program’s behavior by studying the set of system calls made by the
program. One of the benefits of performing intrusion detection at the program level over network
or host-based intrusion detection is having the ability to monitor intrusive behavior at a very
fine grain level of accuracy. Computer security intrusions most often occur when programs are
misused. System calls are a key indicator of program misusage. Because programs are only able to
manifest system privileges by making system calls, analyzing the system calls made by a program
is a reasonable approach to detecting intrusions based on program behavior profiles.

Several auditing facilities for a program’s system calls exist on Unix systems including: Solaris’s
Basic Security Module (BSM), ptrace, strace, ltrace, and Solaris /proc interface commands.
For the purposes of this study, we used BSM audit data provided to us under the DARPA 1998
Intrusion Detection Evaluation program!. The data was collected over a period of weeks in a
controlled environment on an internal Air Force Research Laboratory (AFRL) network and provided
to us by MIT’s Lincoln Laboratory, who analyzed the results from each participant’s study.

The data produced by BSM is a compact binary representation of system calls made by a
program to the Solaris kernel. A tool called praudit is distributed with Solaris to convert the BSM
data to human readable ASCII form. Individual sessions are programmatically extracted from the
praudit data and partitioned into the BSM events corresponding to a particular program. For
instance, for a session labeled:

08:39:27_0.0.0.0_in.telnetd,

'See www.11.mit.edu/IST/ideval/index.html for a summary of the program.



the following BSM event files are created corresponding to the programs that make the recorded
system calls:

login pt_chmod sh cat mail quota tcsch
in.telnetd mail.local sendmail.

Thus, a set of BSM events for each program in each session is created. The contents of anyone of
these files may look like:

[pid 1387] execve;[pid 1387] open; [pid 1387] mmap; [pid 1387] open;
[pid 1387] mmap; [pid 1387] mmap; [pid 1387] munmap; [pid 1387] mmap;
[pid 1387] close;[pid 1387] open;[pid 1387] mmap; [pid 1387] mmap;[
pid 1387] munmap; [pid 1387] mmap; [pid 1387] close; [pid 1387] open;
[pid 1387] mmap; [pid 1387] mmap; [pid 1387] munmap; [pid 1387] mmap;
[pid 1387] mmap; [pid 1387] close;[pid 1387] open; [pid 1387] mmap; [
pid 13871 close; [pid 1387] open;[pid 1387] mmap; [pid 1387] mmap; [p
id 1387] munmap; [pid 1387] mmap; [pid 1387] close;[pid 1387] close;
[pid 1387] munmap;[pid 1387] open; [pid 1387] mmap; [pid 1387] memcn
tl; [pid 1387] munmap; [pid 1387] close;[pid 1387] close; [pid 1387]
close; [pid 1387] close;[pid 1387] exit;

where BSM events are semi-colon separated and the process ID of the process that creates the
event is recorded. Though this file has only a single process (1387), it is possible for a given file to
contain multiple, interleaved processes.

The session data provided by Lincoln Laboratory was labeled for training purposes such that
intrusive sessions can be distinguished from normal sessions. Using these session labels, the intrusion
sessions are separated from normal sessions. Because our approach is based on anomaly detection,
we use only the normal sessions for training. For instance, to build a normal program behavior
profile for the program 1s, we first combine all the files named “ls” from all non-intrusive session
directories into a single “Is” file.

A database is constructed for each program. The database is simply a table that consists of
every unique N-gram of BSM events that occurred during any execution, as well as a frequency
count for each N-gram. For instance, given the following snippet from a file of BSM events,

[pid 1] A;[pid 1] B;[pid 2] C;[pid 1] D;[pid 1] B;[pid 2] A;
[pid 11 D;[pid 1] B;[pid 21 E;[pid 2] B;[pid 2] D;,

and given an N-gram size of two, the following table would be created.

BSM N-grams | Frequency

A B 1

BD 3

DB 2

CA 1
1
1

AE
EB

Table 1: Table of normal behavior profile for a program for an N-gram size of 2. Total
number of unique N-grams is six, and the total number of N-grams is nine.



The table shows the unique strings that are created from a program’s BSM profile with their
associated frequency. Each table characterizes the normal behavior of the program under non-
intrusive usage. Tables such as this one are built programmatically for all programs under analysis.
In this study, tables for 155 different UNIX programs were constructed. The tables are used by the
intrusion detection algorithm to detect anomalous behavior.

3 A Simple Look Up Approach to Intrusion Detection

The algorithm we use for detecting intrusions is simple but effective. Similar to the approach of [2],
we look up sequences of system calls captured during online usage in the tables of normal behavior
built for each program. If the sequence of BSM events captured during online usage is not found in
the database, then an anomaly counter is incremented. This technique is predicated on the ability
to capture the normal behavior of a program in a database. If the normal behavior of a program
is not adequately captured, then the false alarm rate is likely to be high. On the other hand, if the
normal behavior profile built for a program includes intrusive behavior, then future instances of the
intrusive behavior are likely to go undetected. Finally, it is important that the range of possible
behavior patterns is much larger than the range of normal behavior patterns, because detection of
intrusive events is only made possible when the intrusive behavior patterns are different from the
normal behavior patterns. The more compact the representation of normal behavior and the larger
the range of possible behavior, the better detection capacity this equality matching technique will
have. The ratio of normal behavior patterns to possible behavior patterns provides an indication of
the detection capacity of the technique. The smaller this ratio, the better the detection capacity.

Capturing system calls via the BSM provides a broad range of possible behavior. There are
approximately 200 different BSM events that can be recorded. The N-grams described in Section 2
represent a sequence of N consecutive BSM events. Therefore a single N-gram can have 200"
possible combinations. In practice, however, a program will normally make only about 10 to 20
different system calls.

‘ Interval ‘ Unit Contained ‘ Threshold ‘

session file ST
file window FT
window N-gram wT
N-gram BSM event —

Table 2: Using intervals of fixed sizes and thresholds to exploit temporal locality of
attacks.

The simple table look up approach employed here exploits temporal locality of anomalous se-
quences for detecting intrusions. That is, rather than averaging the number of anomalous sequences
out of the total number of sequences, we employ thresholding functions in fixed-size intervals, where
the fixed-size interval is much smaller than the total execution trace. A session is considered to be
intrusive if it contains an anomalous execution of a program. A program is considered anomalous
if a portion of its windows is anomalous. A window is considered anomalous if a portion of its
N-grams is anomalous. An N-gram is considered anomalous if it cannot be found in the database
corresponding to the program currently being checked.

Table 2 shows the fixed-size intervals, the units they contain, and their thresholds that are used
to detect anomalous behavior. When the threshold for a fixed interval — such as a window of
N-grams — is exceeded, the whole interval is marked as anomalous. Then a thresholding function



is applied at the next level up in abstraction using the marked anomalous interval to determine if
an intrusion has occurred. For instance, if a window is marked as anomalous because its threshold,
WT, for anomalous N-grams is exceeded, then this window is used as part of the count for file
intervals to determine if the file threshold FT' is exceeded. Ultimately, the session threshold, ST,
must be exceeded for the session to be labeled as an intrusion. The thresholds are all configurable
and the tuning of the thresholds will impact the performance of the system.

4 Results

The table lookup intrusion detection algorithm was evaluated by MIT’s Lincoln Laboratory under
the DARPA 1998 Intrusion Detection Evaluation program. Unlabeled sessions were sent by Lincoln
Labs and processed by our intrusion detection algorithm. These sessions had an unspecified number
of attacks of the following four types: denial of service (DoS), probe, user to root (u2r), and remote
to local (r2l). Denial of service attacks deny access to resources for legitimate users. Probing
attacks collect information about a host machine that may be used to stage attacks at a later
time. A user to root attack is defined as an attack that elevates the privilege of a user with local
account privileges. Remote to local attacks grant a remote user with no account privileges local
user account privileges.

Attack | Instances | Detections | % Detected
DoS 8 3 37.5
probe 3 2 66.7
u2r 22 19 86.4
r2l 3 2 66.7
| Total [ 36 | 26 \ 72.2 |

Table 3: Performance of table look up intrusion detection algorithm against different
attack types.

Table 3 shows the performance of the table look up intrusion detection algorithm for the different
attack types for a threshold selected by the MIT Lincoln Laboratory. If the threshold for detection
is set too low, then the false alarm rate will be low, but correct detection rate will be low, too.
Similarly, a threshold set too high may end up detecting most intrusions, but suffer from a high
false alarm rate. The results shown here appear to be a reasonable threshold for false alarms and
detections.

False alarm rates are not shown for these different attacks because our algorithm will not label
a particular attack — it only notes when an attack (any attack) is occurring. As a result, false
positives cannot be tracked to particular attack types. However, for the threshold chosen, the total
percentage of false positives for all the sessions evaluated was 2.1%. The table shows the intrusion
detection algorithm detected only 3 out of 8 denial of service attacks. Four of these missed attacks
were a “warez” attack that involved uploading files to an FTP server that permitted this action.
Because no particular flaw in the FTP server was exploited and the FTP server configuration
permitted this action, it is not surprising that our anomaly detection algorithm did not detect
these four DoS attacks. The algorithm performed very well on the other classes of attacks. The
attacks in Table 3 can be broken down into old and new attacks, as well as clear and stealthy
attacks. The following tables show this breakdown.

Table 4 shows the performance of the algorithm for old and new attacks. An old attack is defined
as an attack identical or similar to an attack that was present in the training data. A new attack



OLD NEW
Attack | Instances | Detections | % Detected | Instances | Detections | % Detected
DoS 4 0 0.0 4 3 75.0
probe 0 0 0.0 3 2 66.7
ur 16 13 81.2 6 6 100.0
r2l 1 1 100.0 2 1 50.0
Total 21 14 66.7 15 12 80.0

Table 4: Performance of table look up intrusion detection algorithm for old and new
attacks.

is an attack that was not present in the training data. The results in this table show the power of
the anomaly detection technique in detecting novel attacks against systems. The performance of
the algorithm to novel attacks makes this technique viable in the ever-dynamic world of computer
security intrusions.

CLEAR STEALTHY
Attack | Instances | Detections | % Detected | Instances | Detections | % Detections
DoS 8 3 37.5 0 0 0.0
probe 3 2 66.7 0 0 0.0
ulr 13 11 84.6 9 8 88.9
r2l 3 2 66.7 0 0 0.0
| Total | 27 | 18 \ 66.7 \ 9 \ 8 \ 88.9

Table 5: Performance of table look up intrusion detection algorithm for clear and
stealthy attacks.

Table 5 shows the performance of the algorithm in detecting clear versus stealthy attacks.
Stealthy attacks attempt to hide perpetrator’s actions from someone monitoring the system or
from an intrusion detection system. For example, an attacker may edit the system log files after
an attack to attempt to erase his or her tracks. The anomaly detection approach shows its strong
ability to detect stealthy attacks.

In summary, the table look up intrusion detection approach performed well in all categories
of attacks except denial of service. It correctly classified 72.2% of all attack sessions and 97.9%
of all non-intrusion sessions. The low false positive rate (2.1%) is desirable for any intrusion
detection approach. The intrusion detection algorithm’s strengths are in detecting novel attacks
against systems and in detecting stealthy attacks — both weaknesses of misuse detection or pattern
matching intrusion detection approaches. Combining this approach with other intrusion detection
approaches (such as network-based or misuse detection approaches) will provide a more robust
intrusion detection defense that can detect old as well as novel attacks.
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