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Abstract This paper presents a proposed approach based on an adaptive fuzzy logic controller for

precise control of the DC motor speed. In this concern, the proposed Direct Adaptive Fuzzy Logic

Controller (DAFLC) is estimated from two levels, where the lower level uses a Mamdani fuzzy con-

troller and the upper level is an inverse model based on a Takagi–Sugeno (T–S) method in which its

output is used to adapt the parameters of the fuzzy controller in the lower level. The proposed con-

troller is implemented using an Arduino DUE kit. From the practical results, it is proved that the

proposed adaptive controller improves, successfully both the performance response and the distur-

bance due to the load in the speed control of the DC motor.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The permanent magnet direct current (PMDC) motor is an
example of electromechanical systems with electrical and
mechanical components. In this concern, this type of motors

is commonly used in many industrial applications such as
robot manipulators, home applications and sun trackers. Not-
ing that, there are many classical and intelligent control tech-
niques [1–5], such as PID, FLC, artificial neural networks,

and many methods of AFLC are applied to control the speed
of DC motor for achieving high performance. Classical math-
ematics and conventional control theory are very limited and

difficult in modeling and controlling complex nonlinear
dynamical systems [6,7]. On the other hand, fuzzy logic con-
troller (FLC) is an alternative tool for PID controller [8,9],

where the motivation for using fuzzy logic technology in con-
trol systems stems from the fact that it allows control designers
to build a controller even when their understanding of the sys-

tem is still in a vague and incomplete [10,11]. It provides a
good tool for the control of nonlinear systems that are difficult
in modeling [12,13]. But, the design of the FLC is not the opti-
mum, where numerous difficulties appear to choose the con-

troller parameters. Also, the presence of noise or any
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changes in the plant parameters, the controller may not be able
to achieve adequate performance level. Finally, an adaptive
controller is one of the controllers that adjust itself to reach

adequate performance [14–16]. In this concern, the main con-
tribution of the present study is the success of the proposed
controller to be implemented on the Arduino DUE board to

control the speed of DC motor using a proposed DAFLC
which uses Takagi–Sugeno (T–S) fuzzy system in the second
level to minimize the effects of the system’s load disturbance.

In the present paper, two-level fuzzy controller (TLFC) is
presented to control and improve the speed of DC motor. In
general, it is considered as an adaptive fuzzy control, where
DAFLC can be adjusted directly with a reference model. This

design is implemented on Arduino DUE kit, applying Arduino
1.5.5-r2 software. Finally, the organization of the paper is as
follows: Section 2 describes the structure and the design of

the fuzzy PI controller, and the DAFLC is explained in Sec-
tion 3. The Arduino implementation is explained in Section 4.
Results and discussions are presented in Section 5. Finally,

conclusion is in the last section.

2. Fuzzy PI controller design

FLC enables control designers to design and build the con-
troller by forming IF–THEN rules which are in the form of
statements [12,17]. The structure of FLC contains four main

parts [14,15] as shown in Fig. 1: Fuzzification, inference mech-
anism, rule base and defuzzification, where fuzzification part is
used for converting real input to fuzzy input. The rule-base
part contains the expert knowledge in the form of a set of rules.

The inference mechanism part evaluates which control rules
are relevant at the current time and then decides what the input
to process should be and defuzzification part is opposite fuzzi-

fication, where it is used for converting fuzzy output to real
output. There are two inputs and one output, where the first
input is error (e) which is the difference between reference

speed of the motor (Wref) and its actual speed of motor (Wact).
The second input is the change of error (Ce) which is defined as
the difference between the present error e(k) and the previous

error e(k � 1) given by Eqs. (1) and (2), respectively, where, k
is the sampling instance. On the other hand, the output is the
change of control signal (DU). For getting control signal (u),
Eq. (3) is applied, as shown in Fig. 2 as follows:

eðkÞ ¼ Wref �Wact ð1Þ

CeðkÞ ¼ eðkÞ � eðk� 1Þ ð2Þ

uðkÞ ¼ uðk� 1Þ þ DUðkÞ ð3Þ
Fuzzy Inference
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Figure 1 Structure of fuzzy logic controller.
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For each of the two inputs and output, there are seven
fuzzy sets on universes with linguistic values; namely: Negative
Big (NB), Negative Medium (NM), Negative Small (NS), Zero

(Z), Positive Small (PS), Positive Medium (PM) and Positive
Big (PB). The motor range of speed is very large, so the error
and change of error ranges are very high, as it is difficult to

handle with large values. The universe of discourse for input
and output is normalized value from �6 to 6, where we can
use gains G1, G2 and G3 for two inputs and output universe

of discourse respectively [18] as shown in Fig. 2. The designers
can choose many different shapes based on their preference
and experience [17]. These are characterized by the Gaussian
membership and are shown in Fig. 3 where, in general the

mathematical expression for Gaussian function is

lðxÞ ¼ exp � 1

2

x� c

r

� �2
� �

ð4Þ

where
c: the center of membership function and

r > 0: determines the spread or width of the function.

Mamdani type rule base structure is used in this controller;
there are 49 rule bases, as given in Table 1. To evaluate the

value of the rule antecedents, one should use the AND opera-
tor (minimum). But, if a given fuzzy rule has multiple conse-
quent, the OR fuzzy operator (maximum) is used to obtain a
single number that represents the result of the consequent eval-

uation [19]. Finally, many defuzzification methods can be used
for leading defuzzification [20]. Finally, weighted average
method (Eq. (5)), is proposed to be applied throughout the

present work. The matter is due to that it is characterized by
its simple calculations and easy for implementation on Ardu-
ino (kit/board). From which, and after compensation of the

DU value into Eq. (3), one can easily get the control signal u
(duty cycle). Hence, this result is transferred to the DC motor.

DU ¼
Pn

i liðDUiÞ � ciPn
i liðDUiÞ ð5Þ

where
li(DUi): values of membership function (MF) for output,
and

ci: values of output MF centers.

3. Direct Adaptive Fuzzy Logic Controller (DAFLC)

DAFLC is called a fuzzy model reference learning controller
(FMRLC). The functional block diagram for the FMRLC

[14,21] is shown in Fig. 4. Basically, it consists of four main
parts: the plant, fuzzy controller to be tuned, the reference
model, and the learning mechanism block (an adaptation

mechanism). Mainly, the fuzzy control system loop (the lower
level of Fig. 4) operates to make "Wact(kT)" track "Wref(kT)"
by manipulating u(kT), while the upper level adaptation con-

trol loop which uses Takagi–Sugeno (T–S) fuzzy controller
as an inverse model (the upper level of Fig. 4) seeks to make
the output of the plant Wact(kT) track the output of the refer-
ence model "Wm(kT)" by manipulating the fuzzy controller

parameters. FLC is explained in Section 2 and we will describe
the other parts of DAFLC.
fuzzy controller for DC motor speed control, Ain Shams Eng J (2015), http://dx.

http://dx.doi.org/10.1016/j.asej.2015.10.003
http://dx.doi.org/10.1016/j.asej.2015.10.003


+

Ce(k)

-

Fu
zz

y 
co

nt
ro

lle
r

Plant

(Motor)Z-1

Z-1

+

+W ref (k)
e(k)

∆ ( ) U(k)
Wact(k)

-

+

G1

G2

G3

Figure 2 Block diagram of fuzzy PI control system.
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3.1. The reference model

One of the priorities is to choose from the reference model that
specifies the desired performance for the overall system. It may
be discrete or continuous time, linear or nonlinear,

time-invariant or time-varying, and so on. The second order
dynamical reference model was used to specify the desired
performance for DC motor. The continuous time and discrete

time models are given in Eqs. (6) and (7), respectively:

GðsÞ ¼ x2
n

s2 þ 2fxnsþ x2
n

ð6Þ

WmðkÞ ¼ d1m�Wmðk�1Þ�d2m�Wmðk�2Þþd3m�WrefðkÞ
ð7Þ
Table 1 Rule base.

e NB NM NS Z PS PM PB

Ce

NB NB NB NB NB NM NS Z

NM NB NB NB NM NS Z PS

NS NB NB NM NS Z PS PM

Z NB NM NS Z PS PM PB

PS NM NS Z PS PM PB PB

PM NS Z PS PM PB PB PB

PB Z PS PM PB PB PB PB
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where
xn: the natural frequency,

f: damping ratio,
d1m, d2m and d3m: discrete model parameters and func-
tions in xn and f.

3.2. Learning mechanism

The FLC parameters are tuned by the learning mechanism that

consists of two main parts: a ‘‘fuzzy inverse model” and a
‘‘knowledge-base modifier”. The fuzzy inverse model is pro-
posed as T–S fuzzy controller, which is called a ‘‘functional

fuzzy system” where, the consequent part is just a mathemat-
ical function of the input variables [22–24]. The general format
of the rule was given in Eq. (8):

Ri : IF Bi1ðx1Þ;Bi2ðx2Þ; . . . ;BinðxnÞ THEN

P ¼ fðx1; x2; . . . ; xnÞ: ð8Þ
where

x1,x2, . . . ,xn: input variables,

Bij (xj) (j= 1,2, . . . ,n): a fuzzy set on Xj.

In this concern, the antecedent part is processed in exactly
the same way as the Mamdani method, and then the conse-
quent part is processed where, P is calculated as the function

of real inputs [18]:

P ¼ a0 þ a1 � x1 þ a2 � x2 þ � � � þ an � xn ð9Þ
In this paper the T–S fuzzy inverse model has two inputs

(x1 and x2), 25 rule base and one output (P is a function of

two real inputs), where, each of the two inputs membership
is triangular, and there are five fuzzy sets on universes with lin-
guistic values; namely: Negative (N), Negative Small (NS),

Zero (Z), Positive Small (PS) and Positive (P). The first input
(x1) is error (em(k)) which is the difference between the output
speed of the motor, Wact(k), and model output speed of the
motor (Wm(k)). The second input (x2) is change of error

(Cem(k)) which is defined as the difference between the present
error em(k) and the previous error em(k � 1) and its output is
P(k) (adaptation factor) which leads em(k) to be zero. The pro-

posed algorithm can be summarized as follows:

� Initialize the FLC parameters.

� Calculate the control signal value (u(k)), as illustrated in
Eq. (3).
fuzzy controller for DC motor speed control, Ain Shams Eng J (2015), http://dx.
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� Measure the speed value (Wact(k)) and calculate the two

inputs of the T–S fuzzy inverse model (error (em(k)) and
change of error (Cem(k)).

� Calculate the adaptation factor (P(k)).

� Find all the rules in the fuzzy controller who the ‘‘active
set” of the rules at time kT � T.

liðeðkT� TÞ; CeðkT� TÞÞ > e ð10Þ
where 0 6 e< 1, because Gaussian membership functions
(MFs) are used in FLC and we will not have to modify all
the output centers at each time step.
Table 2 Parameters of DC motor.

Motor characteristics Parameters Values Units

Terminal resistance Ra 2 O
Terminal inductance La 1.1 mH

Viscous friction Bm 0.2 N m s/rad

Rotor inertia Jm 0.02 kg m2

Back EMF constant Ke 0.1 V/rad/s

Torque constant Km 0.1 N m/A

Please cite this article in press as: Zaki AM et al., Embedded two level direct adaptive
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� The knowledge-base modifier adjusts the centers and the

gains of the output MFs of the FLC as illustrated in
Eqs. (11) and (12) where, Ci (kT) denote the center of
the ith output membership function at time kT and Gj

(kT) denote the gains of the two inputs and output where,
j= 1,2,3.

CiðkÞ ¼ Ciðk� 1Þ þ PðkÞ ð11Þ

GjðkÞ ¼ Gjðk� 1Þ þ PðkÞ ð12Þ
4. Arduino implementation

Arduino [25] is an open-source electronics platform based on
easy-to-use hardware and software. The Arduino Due is a

microcontroller board based on the Atmel SAM3X8E ARM
Cortex-M3 CPU Fig. 5, and it is the first Arduino board based
on a 32-bit ARM core microcontroller (that allows operations
on 4 bytes wide data within a single CPU clock). It has 54 dig-

ital input/output pins (of which 12 can be used as PWM out-
puts), 12 analog inputs, 4 UARTs (hardware serial ports), a
fuzzy controller for DC motor speed control, Ain Shams Eng J (2015), http://dx.
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Figure 6 Real system of the DC motor speed control using Arduino DUE.
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84 MHz clock, a USB capable connection, 2 DAC (digital to
analog), 96 kBytes of SRAM and 512 kBytes of Flash memory

for the program code. In the proposed Arduino-based speed
control system, FLC and DAFLC will be implemented apply-
ing Arduino hardware using Arduino 1.5.5-r2 software code.
In this concern, Gaussian fuzzifier, Gaussian MF, max of

min inference rule and Weighted average method defuzzifier
method, will be investigated. Finally, the transfer function of
the reference model is chosen by a second order system with

the natural frequency of 2.1 rad/s and the damping ratio of
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Figure 11 (a) Simulation speed response w
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1. The parameters of the discrete equation (Eq. (7)) are given
as follows: d1m= 1.2269, d2m= 0.3763, and d3m= 0.1494.

Considering the motor specification is illustrated in Table 2
where, the motor current can be measured by ACS712 which
has sensitivity of 66 mV/A. The structure of the laboratory
experiment is limited to the maximum 60% load. Its speed is

measured by optical encoder sharp J3 GPIA30R, which is con-
sidered as a digital input of the Arduino (Fig. 5). Hence, this
value was incorporated into the controller algorithm (FLC

or DAFLC), resulting-in the control signal u(k) in the form
of PWM. Following that, it is sent to the drive circuit
MD10C where, one of the features of MD10C is supporting
00 600 700 800 900 1000

k 

onse with two direction  

FLC

DAFLC

00 600 700 800 900 1000

l signal

k

FLC

DAFLC

ith two directions and (b) control signal.
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both the sign-magnitude and locked anti-phase PWM signal,
the matter which means that one can control motor in two dif-

ferent ways [26]. Real system of the DC motor speed control
using Arduino DUE is shown in Fig. 6.
5. Results and discussion

The proposed controller is implemented in Arduino DUE for
practical speed controller of the DC motor. The dynamic per-

formance of the DC motor for FLC and DAFLC is applied. In
order to clear the improvement of the proposed DAFLC con-
troller, the FLC controller also is implemented for comparison
purposes using the same number of the membership functions,

a number of rules, the same universe of discourse and the same
scaling factors at initial of DAFLC. In this concern, to show
the visual indications of the control performance, an objective

measure of an error performance was made using the root
mean square error (RMSE) and the mean absolute error
(MAE) criteria [27,28]. The RMSE and the MAE are defined

in Eqs. (13) and (14), respectively:

MAE ¼ 1

N

XN
i¼1

jeðtÞj ð13Þ
Please cite this article in press as: Zaki AM et al., Embedded two level direct adaptive
doi.org/10.1016/j.asej.2015.10.003
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðeðtÞÞ2

r
ð14Þ

5.1. Task 1: simulation results

5.1.1. Disturbance with 30% and 60% load

During the present part of the work, simulation results for the
FLC and DAFLC responses, under 30% and 60% loads, on

the DC motor at k= 500 were presented, as shown in Figs. 7
and 8. From this, the RMSE values for the proposed controller
and other controllers are shown in Figs. 9 and 10. Besides, the

simulation was extended to include the effect of changing the
set point of the speed response Fig. 11. It is clearly shown that
the DAFLC has better rise time and the priority to respond

when applying load rather than FLC.

5.2. Task 2: experimental results

5.2.1. Square wave input for the DC motor

In addition to the simulation, experimental investigation was
carried out Fig. 12, where, it is shown that the step response

uses a reference speed square wave with positive and negative
values (600 rpm and �600 rpm), and it is clear that the pro-
posed DAFLC is better than FLC in the rising time.
fuzzy controller for DC motor speed control, Ain Shams Eng J (2015), http://dx.
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Figure 15 Updates of centers for the DAFLC under 60% load:

(a) at initial, (b) at the load and (c) at final.

Table 3 Updates of gains for DAFLC.

30% load 60% load

G1 G2 G3 G1 G2 G3

At initial 6 0.6 0.8 6 0.6 0.8

At load 17.78 5.31 8.34 14.98 4.7 6.43

At final 17.37 5.15 8.08 14.61 4.55 6.19
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Figure 16 RMSE of FLC with DAFLC at 30% load.
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Figure 17 RMSE of FLC with DAFLC at 60% load.

Table 4 MAE and RMSE for FLC and DAFLC.

At 30% load At 60% load

FLC DAFLC with

centers and gains

FLC DAFLC with

centers and gains

RMSE 6.653 3.4336 7.2808 3.2047

MAE 0.2477 0.1691 0.2698 0.1792
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5.2.2. External disturbance with 30% and 60% load

The open loop response of the DC motor, FLC with DAFLC

response under 30% and 60% load, reference speed (600 rpm),
its control signals and current waveform are illustrated as
shown in Figs. 13 and 14, where the centers for DAFLC are
Please cite this article in press as: Zaki AM et al., Embedded two level direct adaptive
doi.org/10.1016/j.asej.2015.10.003
adapted as shown in Fig. 15. After the load is applied at
instant (7.5 s) the updates of gains values are listed in Table 3.

The RMSE values for the proposed controller with FLC at
30% load and 60% load are shown in Figs. 16 and 17. The
RMSE and MAE values for FLC and DAFLC are illustrated

in Table 4. The presented controllers are implemented in
different Arduino boards for computing the computation time
and implemented size memory; this is presented in Tables 5

and 6. From experimental results it becomes clear that the pro-
posed DAFLC is better than FLC in terms of performance and
the priority to respond when applying the load.
fuzzy controller for DC motor speed control, Ain Shams Eng J (2015), http://dx.
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Table 5 Memory size for FLC and DAFLC with different Arduino boards.

Arduino UNO Arduino MEGA Arduino DUE

Maximum memory 32,256 bytes 258,048 bytes 524,288 bytes

FLC 53% (17,164 byte) 7% (19,824 byte) 7% (38,300 byte)

DAFLC 100% (32,460 byte) over size of

memory cannot be implemented

13% (34,352 byte) 8% (45,084 byte)

Table 6 Time of computation for FLC and DAFLC with

different Arduino boards.

Arduino UNO Arduino

MEGA

Arduino

DUE

FLC 2252 ls 2352 ls 989 ls
DAFLC Over size of memory cannot

be implemented

3824 ls 1246 ls

10 A.M. Zaki et al.
6. Conclusions

From the experimental work, results, simulation and discus-

sions, it is proved that the design and implementation of both
the FLC and the DAFLC were successfully approached, where
precise control of the DC motor speed was reported. The

DAFLC was tested under two different load conditions, while
monitoring its ability to control the speed in both directions.
Both FLC and DAFLC are implemented on Arduino DUE
hardware using Arduino 1.5.5-r2 software, which are designed

to achieve as mentioned high performance and to eliminate the
disturbance load. The simulation and practical results show
that the proposed controller is able to respond the disturbance,

and it is clear that the proposed DAFLC had better perfor-
mance than FLC.
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