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Most algorithms related to association rule mining are designed to discover frequent itemsets from a bin-
ary database. Other factors such as profit, cost, or quantity are not concerned in binary databases. Utility
mining was thus proposed to measure the utility values of purchased items for finding high-utility item-
sets from a static database. In real-world applications, transactions are changed whether insertion or
deletion in a dynamic database. An existing maintenance approach for handling high-utility itemsets
in dynamic databases with transaction deletion must rescan the database when necessary. In this paper,
an efficient algorithm, called PRE-HUI-DEL, for updating high-utility itemsets based on the pre-large con-
cept for transaction deletion is proposed. The pre-large concept is used to partition transaction-weighted
utilization itemsets into three sets with nine cases according to whether they have large (high), pre-large,
or small transaction-weighted utilization in the original database and in the deleted transactions. Specific
procedures are then applied to each case for maintaining and updating the discovered high-utility item-
sets. Experimental results show that the proposed PRE-HUI-DEL algorithm outperforms a batch two-
phase algorithm and a FUP2-based algorithm in maintaining high-utility itemsets.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction The frequency of an itemset is, however, insufficient for identifying
In various mining techniques [1–8], association rule mining is
the most popular method used for knowledge discovery to find
the relationships among items or products. The most common
implementations use the Apriori algorithm [9] for generating and
testing the candidate itemsets level by level. All frequent itemsets
are first found based on a user-defined minimum support thresh-
old and then the association rules are derived from the discovered
frequent itemsets based on the user-defined minimum confidence
threshold. In association rule mining, each item is treated as a bin-
ary variable to discover relationships among itemsets or products.
highly profitable itemsets with small sold quantities.
Utility mining [7,10,11] was thus proposed to solve the limita-

tions of frequent itemsets. It may be thought of as frequent itemset
mining with sold quantities and item profits concerned. In practice,
the utility value of an itemset can be cost, profit, or some other
term defined by the user. For example, itemsets with good profits
or those with low pollution during manufacturing may be of inter-
est. Liu et al. designed a two-phase algorithm [12] for efficiently
extracting high-utility itemsets based on transaction-weighted uti-
lization (TWU) to keep the downward closure property. The TWU
is used as an effective upper bound to reduce the generation of
candidates for later processing. An additional database scan is
performed to determine the real utility values of the remaining
candidates to identify high-utility itemsets. Most approaches
[7,10,13,11] for handling high-utility itemsets are, however,
processed in batch mode with a static database.

In real-world applications, databases tend to be large and
dynamic since their contents are frequently changed whether
the number of transactions are inserted or deleted. Previous
es, Adv.
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discovered information may become invalid, or some new infor-
mation may emerge in the updated database. Dynamic data mining
can be referred as an updating technique to find the up-to-date
information without re-scanning the original database and re-min-
ing the desired information each time. Hong and Lin et al. proposed
maintenance approaches for respectively maintaining the discov-
ered frequent itemsets in dynamic databases based on Fast
UPdated (FUP) [14,15] and pre-large concepts [16,17]. Lin et al.
then extended the FUP concept to handle transaction insertion
[18] for maintaining discovered high-utility itemsets.

Transactions are also frequently deleted in real-world applica-
tions. The FUP2 concept [19,20] for transaction deletion has been
adopted for updating discovered high-utility itemsets [21]. The
database, however, must be rescanned if a high-utility itemset
was not large or pre-large both in the original database and in
the deleted transactions. In this paper, a maintenance algorithm,
called PRE-HUI-DEL, for transaction deletion based on the pre-large
concept [22] and the TWU model [12] is proposed to maintain and
update discovered high-utility itemsets in dynamic databases. The
proposed PRE-HUI-DEL algorithm first partitions transaction-
weighted utilization itemsets into three sets with nine cases
according to whether they have large (high), pre-large, or small
transaction-weighted utilization in the original database and in
the deleted transactions. Specific procedures are then applied to
each case to maintain and update the discovered transaction-
weighted utilization itemsets. The major contributions of this
paper are as follows:

1. Traditional utility mining processes a database in batch
mode no matter whether transactions are deleted. For the
original database, information was already discovered by
data mining approaches. It is thus not efficient to waste
the discovered information for updating the whole database
with a small number of deleted transactions. In this paper,
an efficient approach is proposed to handle transaction
deletion for maintaining the discovered high-transaction-
weighted utilization itemsets.

2. A two-phase model is used as an effective upper bound to
reduce the generation of candidates, thus speeding up the
processing time for updating the discovered information.

3. The upper bound utility and the lower bound utility are
defined as the effective thresholds for respectively deriving
high (large) and pre-large transaction-weighted utilization
itemsets. Based on the two defined thresholds, the original
database must be rescanned only if the transaction-
weighted utilization of deleted transactions is more than
the safety bound calculated from the two thresholds.

4. In the proposed algorithm, only a small number of itemsets
must be rescanned to maintain the transaction-weighted
utilization itemsets, reducing the computational load
compared to those of the batch approach [12] and the
FUP2-based approach [21].

2. Review of related work

In this section, association rule mining, the pre-large concept,
and high-utility mining are briefly reviewed.

2.1. Association rule mining

Traditionally, data mining techniques [1,3] are used to derive
desired information from a database. The most common approach
is to find the association rules [9] from a binary database based on
the fact that the presence of certain items in a transaction imply
the presence of other items. Agrawal and Srikant proposed the
Apriori algorithm [9] to level-wise discover association rules from
Please cite this article in press as: C.-W. Lin et al., Efficient updating of discovere
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a static database. Apriori uses the downward closure property to
prune unpromising candidates, thus improving the efficiency of
discovering frequent itemsets. The Apriori algorithm consists of
two main parts for generating association rules. It first uses the
generate-and-test approach to find all frequent itemsets, whose
counts are larger than or equal to a user-specified threshold (called
the minimum support). Each frequent itemset is then level-wise
combined to form association rules whose confidence values are
larger than or equal to the user-specified threshold (called the min-
imum confidence).

In real-world applications, databases grow over time and asso-
ciation rules are mined in batch mode. Some new association rules
may be generated and some old ones may become invalid when
transactions are inserted or deleted. Traditional batch mining algo-
rithms solve this problem by rescanning the updated database
when transactions are inserted or deleted, discarding previously
discovered knowledge. Cheung et al. thus proposed the FUP [14]
and FUP2 [19] algorithms to respectively handle transaction inser-
tion and transaction deletion for maintaining and updating fre-
quent itemsets. Hong et al. then respectively applied the FUP and
FUP2 concepts to maintain the FP-tree structure for handling trans-
action insertion [15] and transaction deletion [20]. More related
works for mining association rules for transaction insertion are
reviewed elsewhere [23].

2.2. Pre-large concept

Most data mining techniques have been proposed to mine the
desired information based on a minimum threshold. An itemset
is considered as a frequent itemset if its ratio in database is larger
than or equal to the minimum support threshold. When the ratio of
an itemset is nearly close to but smaller than the minimum sup-
port threshold, it is still considered as an infrequent itemset. For
example, a minimum support threshold is set at 50%, an itemset
is concerned as an infrequent itemset if its support ratio is 49%,
which is lower than 50%. When the transactions are changed in
the database whether insertion or deletion, new information may
be arisen or discovered information may be missed. It is a trivial
way to handle the above situation by keeping all information from
the transactional database. However, it is not an efficient mecha-
nism to keep all information from a very large database for
dynamic database based on the perspective of data mining. The
FUP [14] and FUP2 [19] concepts were respectively proposed to
update the discovered information with transaction insertion and
transaction deletion. Although FUP2 concept can be used to effi-
ciently update the discovered information, the original database
is still required to be rescanned for handling the itemsets in case
4. Pre-large concept was proposed to keep more unpromising
information as the buffer to avoid the limitations of database
rescan for dynamic data mining with transaction insertion [16]
and transaction deletion [22]. A pre-large itemset is not really large
(frequent), but has a highly probability of becoming large (fre-
quent) after data insertion [16] or deletion [22]. Two support
thresholds are used to respectively find large and pre-large item-
sets for reducing the number of database rescans. The pre-large
itemset acts like a buffer to reduce the movement of an itemset
directly from small to large and vice versa. Lin et al. then adopted
the FP-tree structure [24] and the pre-large concept for maintain-
ing discovered frequent itemsets [17,25,26] without candidate
generation. Algorithms [16,22] based on this concept rescan the
database only when a certain number of transactions are changed
(inserted or deleted), thus improving the performance of knowl-
edge maintenance. When transactions are deleted from the data-
base, nine cases arise, as shown in Fig. 1 [22].

In Fig. 1, cases 2, 3, 4, 7, and 8 do not change the final frequent
itemsets. Case 1 may remove some existing frequent itemsets, and
d high-utility itemsets for transaction deletion in dynamic databases, Adv.
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Fig. 1. Nine cases that arise due to transaction deletion with pre-large concept.
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cases 5, 6, and 9 may generate new frequent itemsets. If all large
and pre-large itemsets are already mined from the original data-
base, then cases 1, 5, and 6 can be handled easily. In the mainte-
nance process, the ratio of deleted transactions to all transactions
in the database is usually very small. Case 9 cannot possible be
large for the updated databases as long as the number of deleted
transactions is smaller than the safety number f:

f ¼ ðSu � SlÞ � d
Su

� �
; ð1Þ

where Su is the upper threshold, Sl is the lower threshold, and d is
the number of transactions in the original database. A summary
of the nine cases and their merged results are shown in Table 1.

2.3. High utility mining

In this sub-section, high-utility itemsets and their algorithms
are described.

2.3.1. Problem definition
Let I = {i1, i2, . . . , im} be a finite set of items in database D, with

each item ij having corresponding profit p(ij). An itemset X 2 I with
k distinct items has length k and is referred to as a k-itemset. The
transitional database is denoted as D = {T1, T2, . . . , Tn}, where
Td 2 D. A quantity q(ij,Td) is the sold quantity of item ij in transac-
tion Td.
Table 1
Summary of nine cases for transaction deletion.

Case Original/Deleted Results

Case 1 Large/Large Large, pre-large, or small, decided
from existing information

Case 2 Large/Pre-large Large
Case 3 Large/Small Large
Case 4 Pre-large/Large Pre-large or small, decided from

existing information
Case 5 Pre-large/Pre-large Large, pre-large, or small, decided

from existing information
Case 6 Pre-large/Small Large or pre-large, decided from

existing information
Case 7 Small/Large Small
Case 8 Small/Pre-large Small
Case 9 Small/Small Pre-large or small when the number

of deleted transactions is small

Please cite this article in press as: C.-W. Lin et al., Efficient updating of discovere
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Definition 1. The utility of item ij in Td is defined as:

uðij; TdÞ ¼ qðij; TdÞ � pðijÞ: ð2Þ
Definition 2. The utility of itemset X in transaction Td is denoted as
u(X,Td), which can be defined as:

uðX; TdÞ ¼
X

ij2X^X # Td

uðij; TdÞ: ð3Þ
Definition 3. The transaction utility of transaction Td is denoted as
TU(Td), which can be defined as:

TUðTdÞ ¼
Xm

j¼1

uðij; TdÞ; ð4Þ

where m is the number of items in Td.
Definition 4. Total utility TUD is the sum of all transaction utilities
in D, which can be defined as:

TUD ¼
X
Td2D

TUðTdÞ: ð5Þ
Definition 5. A high-utility itemset X is denoted as HUI(X), which
can be defined as:

HUIðXÞP r� TUD; ð6Þ

where r is the minimum utility threshold.

Traditional utility mining [11] does not apply the downward
closure property to reduce the number of candidates. Transac-
tion-weighted utilization in the two-phase model [12] was thus
proposed to keep the downward closure property for reducing
the number of candidates.

Definition 6. The transaction-weighted utilization of an itemset X
is the sum of all transaction utilities TU(Td) containing itemset X,
which is defined as:

TWUðXÞ ¼
X

X # Td^Td2D

TUðTdÞ: ð7Þ
Definition 7. A high-transaction-weighted utilization itemset X,
denoted as HTWUI(X), is defined as:

HTWUIðXÞP r� TUD: ð8Þ
2.3.2. High-utility itemset algorithms

Utility mining, an extension of frequent itemset mining, is
based on the measurement of local transaction utility and external
utility [10,11,27]. Chan et al. proposed top-k high utility closed pat-
terns for deriving both positive and negative utilities [27]. Yao et al.
proposed an algorithm for efficiently mining high-utility itemsets
based on the mathematical properties of utility constraints [11].
Two pruning strategies were respectively used to reduce the search
space based on the utility upper bounds and expected utility upper
bounds. Liu et al. proposed a two-phase model [12] for efficiently
discovering high-utility itemsets based on the downward closure
property. In the first phase, the transaction-weighted utility is used
as an effective upper bound for preserving the downward closure
property and in the second phase, the real utility values of the
remaining candidate itemsets are calculated for discovering
d high-utility itemsets for transaction deletion in dynamic databases, Adv.
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high-utility itemsets. Lin et al. proposed the high utility pattern
(HUP)-tree algorithm [7] for discovering high-utility itemsets
without candidate generation. The algorithm keeps the transac-
tion-weighted utilization 1-itemsets and uses the occurrence fre-
quency to sort the itemsets to form a condensed tree structure.
Vincent et al. proposed the UP-tree structure and UP-growth and
UP-growth + mining algorithms to efficiently derive high-utility
itemsets from a static database [13]. Liu et al. proposed the HUI-
Miner algorithm [28] that stores both the utility information of
an itemset and heuristic information for pruning the search space,
thus reducing the computations required for candidate generation.
Lan et al. proposed an efficient utility mining approach based on
the indexing mechanism to reduce the memory consumption and
speed up the performance for mining high-utility itemsets. A prun-
ing strategy is also adopted to reduce the number of unpromising
itemsets in mining process [29]. Fournier-Viger et al. proposed a
novel strategy to analysis the co-occurrences among items to
speed up the performance by reducing the numerous join opera-
tions. For mining high-utility itemsets. Based on the designed
mechanism, it outperforms the HUI-Miner with six times faster
[30]. Lin et al. proposed several approaches to handle transaction
insertion [18] and transaction deletion [21] for updating discov-
ered high-utility itemsets in dynamic databases. Asha et al. also
designed a Utility Pattern Tree without examining the entire data-
base to generate the itemsets [31]. An incremental mechanism is
also proposed to update the discovered HUIs in dynamic databases,
which is similar to Lin’s approach [18].

For transaction insertion and transaction deletion, the discov-
ered high-utility itemsets (HUIs) and the high transaction-
weighted utilization itemsets (HTWUIs) are then divided into four
cases based on FUP [14] and FUP2 [19] concepts. The HUIs and
HTWUIs are easily maintained and updated for cases 1, 2, and 4
except case 3 since the database is required to be rescanned for
determining the transaction-weighted utility (TWU) of an itemset
when it was small in the original database but large in the inserted
transactions [18]. For transaction deletion [21], the HUIs and
HTWUIs for cases 1, 2 and 3 are easily maintained and updated
except the HTWUIS in case 4 since the database is required to be
rescanned for determining the TWU of an itemset when it is small
both in the original database and in the deleted transactions. Few
studies have focused on mining high-utility itemsets in dynamic
databases. In this paper, the pre-large concept and the TWU model
are adopted to respectively reduce the number of original database
rescans and the number of candidates of high-utility itemsets after
transaction deletion.

3. Proposed maintenance algorithm for transaction deletion
based on pre-large concept

Based on the FUP and FUP2 concepts, an additional database
rescan is required for respectively handling case 3 with transaction
insertion [18] and case 4 with transaction deletion [21]. This situ-
ation may frequently occur especially when the small number of
transactions are processed. In this paper, the proposed algorithm
is based on the pre-large concept to divide the itemsets into nine
case. Each case can be easily handled to process the updating pro-
cedure. The updated results of nine cases in high-utility mining is
the same as the cases in association-rule mining, which was shown
in Table 1. The proof of each case of the proposed approach in high-
utility mining is given below.

Lemma 1. An itemset X will be large, pre-large or small in the
updated database (U) if twu(X)D P Su � TUD in the original database
(D) and twu(X)d P Su � TUd in the deleted transactions (d) (Case 1).
Please cite this article in press as: C.-W. Lin et al., Efficient updating of discovere
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Proof. Three situations of large, pre-large, and small in case 1 are
proved by the contradiction proof method.

(1) The updated result is large, in which twu(X)D � twu(X)d

P Su � (TUD � TUd). Assume that twu(X)D � twu(X)d < Su �
(TUD � TUd), twu(X)D + Su � TUd < twu(X)d + Su � TUD. Since
Su � TUd

6 twu(X)d, the inequality in twu(X)D < Su � TUD still
holds. However, it contradicts to twu(X)D P Su � TUD. Thus,
twu(X)D � twu(X)d P Su � (TUD � TUd).

(2) The updated result is pre-large, in which Sl � (TUD � TUd) 6
twu(X)D � twu(X)d < Su � (TUD � TUd). To prove this situation,
two parts can be divided as:
d high
(i) For Sl � (TUD � TUd) 6 twu(X)D � twu(X)d, assume that
Sl � (TUD � TUd) > twu(X)D � twu(X), Sl � TUD + twu(X)d >
twu(X)D + Sl � TUd. Since twu(X)d P Su � TUd > Sl � TUd

for Su > Sl, the inequality in Sl � TUD > twu(X)D still holds.
However, it contradicts to twu(X)D P Sl � TUD. Thus,
Sl � (TUD � TUd) 6 twu(X)D � twu(X)d.

(ii) For twu(X)D � twu(X)d < Su � (TUD � TUd), assume that
twu(X)D � twu(X)d P Su � (TUD � TUd), twu(X)D + Su �
TUd P twu(X)d + Su � TUD. Since twu(X)D P Su � TUD >
Sl � TUD for Su > Sl, the inequality in Su � TUd P twu(X)d

still holds. However, it contradicts to twu(X)d P Su � TUd.
Thus, twu(X)D � twu(X)d < Su � (TUD � TUd).

By (i) and (ii), Sl � (TUD � TUd) 6 twu(X)D � twu(X)d < Su �
(TUD � TUd).

(3) The updated result is small, in which twu(X)D � twu(X)d <
Sl � (TUD � TUd). Assume that twu(X)D � twu(X)d P Sl �
(TUD � TUd), twu(X)D + Sl � TUd P twu(X)d + Sl � TUD. Since
twu(X)D P Sl � TUD, the inequality in Sl � TUd P twu(X)d still
holds. However, it contradicts to Sl � TUd

6 twu(X)d. Thus,
twu(X)D � twu(X)d < Sl � (TUD � TUd). h
Lemma 2. An itemset X will be large in the updated database (U) if
twu(X)D P Su � TUD in the original database (D) and Sl � TUd

6

twu(X)d < Su � TUd in the deleted transactions (d) (Case 2).
Proof. The updated result is large, in which twu(X)D � twu(X)d P
Su � (TUD � TUd). By the assumption of twu(X)D P Su � TUD and
Su � TUd > twu(X)d, it can be obtained that twu(X)D + Su � TUd PSu �
TUD + twu(X)d. Thus, twu(X)D � twu(X)d P Su � (TUD � TUd). h
Lemma 3. An itemset X will be large in the updated database (U) if
twu(X)D P Su � TUD in the original database (D) and twu(X)d < Sl -
� TUd in the deleted transactions (d) (Case 3).
Proof. The updated result is large, in which twu(X)D � twu(X)d

P Su � (TUD � TUd). By the assumption of twu(X)D P Su � TUD and
Su � TUd > Sl � TUd > twu(X)d, it can be obtained that twu(X)D +
Su � TUd P Su � TUD + twu(X)d. Thus, twu(X)D � twu(X)d P Su

(TUD � TUd). h
Lemma 4. An itemset X will be pre-large or small in the updated
database (U) if Sl � TUD

6 twu(X)D < Su � TUD in the original database
(D) and twu(X)d P Sl � TUd in the deleted transactions (d) (Case 4).
Proof. Two situations of pre-large or small in case 4 are proved as
follows.
(1) The updated result is pre-large, in which Sl � (TUD � TUd) 6
twu(X)D � twu(X)d < Su � (TUD � TUd). To prove this situation,
two parts can be divided as:
-utility itemsets for transaction deletion in dynamic databases, Adv.
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(i) For Sl � (TUD � TUd) 6 twu(X)D � twu(X)d, since twu(X)D

� Sl � TUD P 0, the inequality in twu(X)D � twu(X)d +
twu(X)d � Sl � TUD P 0 can be thus obtained. Since
twu(X)dvSu � TUd > Sl � TUd for Su > Sl, the inequality in
twu(X)D � twu(X)d � Sl � (TUD � TUd) P 0 still holds.
Thus, Sl � (TUD � TUd) 6 twu(X)D � twu(X)d.

(ii) For twu(X)D � twu(X)d < Su � (TUD � TUd), since twu(X)D

< Su � TUD and Su � TUd
6 twu(X)d, twu(X)D + Su � TUd <

Su � TUD + twu(X)d. Thus, twu(X)D � twu(X)d < Su �
(TUD � TUd).

By (i) and (ii), Sl � (TUD � TUd) 6 twu(X)D � twu(X)d

< Su � (TUD � TUd).
(2) The updated result is small, in which Sl � (TUD � TUd) >

twu(X)D � twu(X)d. By the contradiction proof method,
assume that twu(X)D � twu(X)d P Sl � (TUD � TUd), twu(X)D

+ Sl � TUd P twu(X)d + Sl � TUD. Since twu(X)D P Sl � TUD,
the inequality in Su � TUd > Sl � TUd P twu(X)d still holds.
However, it contradicts to twu(X)d P Su � TUd. Thus,
twu(X)D � twu(X)d < Sl � (TUD � TUd). h
Lemma 5. An itemset X will be large, pre-large or small in the
updated database (U) if Sl � TUD

6 twu(X)D < Su � TUD in the original
database (D) and Sl � TUd

6 twu(X)d < Su � TUd in the deleted
transactions (d) (Case 5).
Proof. Three situations of large, pre-large, and small in case 5 are
proved by the contradiction proof method.
(1) The updated result is large, in which twu(X)D � twu(X)d P
Su � (TUD � TUd). Assume that twu(X)D � twu(X)d < Su �
(TUD � TUd), twu(X)D + Su � TUd < twu(X)d + Su � TUD. Since
twu(X)D < Su � TUD, the inequality in Su � TUd < twu(X)d still
holds. However, it contradicts to Su � TUd > twu(X)d. Thus,
twu(X)D � twu(X)d P Su � (TUD � TUd).

(2) The updated result is pre-large, in which Sl � (TUD � TUd) 6
twu(X)D � twu(X)d < Su � (TUD � TUd). To prove this situation,
two parts can be divided as:

(i) For Sl � (TUD � TUd) 6 twu(X)D � twu(X)d, assume that

Sl � (TUD � TUd) > twu(X)D � twu(X)d, twu(X)d + Sl �
TUD > twu(X)D + Sl � TUd. Since twu(X)d > Sl � TUd, the
inequality in Sl � TUD > twu(X)D still holds. However, it
contradicts to Sl � TUD

6 twu(X)D. Thus,
Sl � (TUD � TUd) 6 twu(X)D � twu(X)d.

(ii) For twu(X)D � twu(X)d < Su � (TUD � TUd), assume that
twu(X)D � twu(X)d P Su � (TUD � TUd), twu(X)D + Su �
TUd P twu(X)d + Su � TUD. Since twu(X)d < Su � TUd, the
inequality in twu(X)D P Su � TUD still holds. However, it
contradicts to twu(X)D < Su � TUD. Thus,
twu(X)D � twu(X)d < Su � (TUD � TUd).
By (i) and (ii), the updated result is pre-large.
(3) The updated result is small, in which Sl � (TUD � TUd) <

twu(X)D � twu(X)d. Assume that twu(X)D � twu(X)d P Sl �
(TUD � TUd), twu(X)D + Sl � TUd P twu(X)d + Sl � TUD. Since
twu(X)D P Sl � TUD, the inequality in Sl � TUd P twu(X)d still
holds. However, it contradicts to Sl � TUd < twu(X)d. Thus,
twu(X)D � twu(X)d < Sl � (TUD � TUd). h
Lemma 6. An itemset X will be large or pre-large in the updated data-
base (U) if Sl � TUD

6 twu(X)D < Su � TUD in the original database (D)
and Sl � TUd > twu(X)d in the deleted transactions (d) (Case 6).
cite this article in press as: C.-W. Lin et al., Efficient updating of discovere
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Proof. Two situations of large or pre-large in case 6 are proved as
follows.

(1) The updated result is large, in which twu(X)D � twu(X)d P
Su � (TUD � TUd). By the contradiction proof method, assume
that twu(X)D � twu(X)d < Su � (TUD � TUd), twu(X)D + Su �
TUd < twu(X)d + Su � TUD. Since twu(X)D < Su � TUD, the
inequality in Su � TUd < twu(X)d still holds. However, it con-
tradicts to twu(X)d < Sl � TUd < Su � TUd for Su > Sl. Thus,
twu(X)D � twu(X)d P Su � (TUD � TUd).

(2) The updated result is pre-large, in which Sl � (TUD � TUd) 6
twu(X)D � twu(X)d < Su � (TUD � TUd). To prove this condi-
tion, it can divided into two parts as:
d high
(i) For Sl � (TUD � TUd) 6 twu(X)D � twu(X)d, Sl � TUD +
twu(X)d

6 twu(X)D + Sl � TUd. Thus, Sl � (TUD � TUd) 6
twu(X)D � twu(X)d.

(ii) For twu(X)D � twu(X)d < Su � (TUD � TUd). By the
contradiction proof method, assume that twu(X)D �
twu(X)d P Su � (TUD � TUd), twu(X)D + Su � TUd P
twu(X)d + Su � TUD. Since twu(X)d < Sl � TUd < Su � TUd

for Su > Sl, the inequality in twu(X)D P Su � TUD still
holds. However, it contradicts to twu(X)D < Su � TUD.
Thus, twu(X)D � twu(X)d < Su � (TUD � TUd).
By (i) and (ii), the updated result is pre-large. h
Lemma 7. An itemset X will be small in the updated database (U) if
its twu(X)D < Sl � TUD in the original database (D) and its twu(X)d P
Su � TUd in the deleted transactions (d) (Case 7).
Proof. By the assumption, it can be obtained that twu(X)d P
Su � TUd > Sl � TUd for Su P Sl. twu(X)d + Sl � TUD > Sl � TUd +
twu(X)D. Thus, twu(X)D � twu(X)d < Sl � (TUD � TUd). h
Lemma 8. An itemset X will be small in the updated database (U) if
twu(X)D < Sl � TUD in the original database (D) and Sl � TUd

6

twu(X)d < Su � TUd in the deleted transactions (d) (Case 8).
Proof. By the assumption, it can be obtained that twu(X)D +
Sl � TUd < Sl � TUD + twu(X)d except Sl � TUd = twu(X)d. Thus,
twu(X)D � twu(X)d < Sl � TUD � TUd). h
Lemma 9. An itemset X will be small in the updated database (U) if
twu(X)D < Sl � TUD in the original database (D) and twu(X)d < Sl � TUd

in the deleted transactions (d) (Case 9).
Proof. Two situations of pre-large or small in case 9 are proved by
using the contradiction proof method.

(1) The updated result is pre-large in which Sl � (TUD � TUd) 6
twu(X)D � twu(X)d < � (TUD � TUd). It can divide into two
parts as:

(i) For Sl � (TUD � TUd) 6 twu(X)D � twu(X)d, assume that

Sl � (TUD � TUd) > twu(X)D � twu(X)d, Sl � TUD + twu(X)d >
twu(X)D + Sl � TUd. Since Sl � TUD > twu(X)D, the inequal-
ity in twu(X)d > Sl � TUd still holds. However, it contra-
dicts to twu(X)d < Sl � TUd. Thus, twu(X)D � twu(X)d

6

Su � (TUD � TUd).
-utility itemsets for transaction deletion in dynamic databases, Adv.
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(ii) For twu(X)D � twu(X)d < Su � (TUD � TUd). Assume that
twu(X)D � twu(X)d P Su � (TUD � TUd), twu(X)D + Su �
TUd P twu(X)d + Su � TUD. Since twu(X)d < Sl � TUd < Su �
TUd for Sl < Su, twu(X)D P Su � TUD. However, it contra-
dicts to twu(X)D < Sl � TUD < Su � TUD. Thus, twu(X)D �
twu(X)d < Su � (TUD � TUd).
By (i) and (ii), the updated result is pre-large.
(2) The updated result is small in which twu(X)D � twu(X)d <

Sl � (TUD � TUd). Assume that twu(X)D � twu(X)d P Sl �
(TUD � TUd), twu(X)D + Sl � TUd P Sl � TUD + twu(X)d. Since
Sl � TUd P twu(X)d, the inequality in twu(X)D P Sl � TUD still
holds. However, it contradicts to twu(X)D < Sl � TUD. Thus,
twu(X)D � twu(X)d < Sl � (TUD � TUd). h

When transactions are deleted from the original database, if the
total utility of deleted transactions is small compared to that of the
transactions in the original database, the transaction-weighted
utilization of an itemset that is small (neither large nor pre-large)
both in the original database and in the deleted transactions
cannot become large for the updated database (in Case 9). This is
proven in Theorem 1.

Theorem 1. Let Su and Sl be respectively the upper and lower utility
thresholds, and let TUD and TUd be respectively the total utilities of the
original database and the deleted transactions. If TUd

6
ðSu�SlÞ

Su
� TUD,

the transaction-weighted utilization of an itemset that is small
(neither large nor pre-large) both in the original database and the
deleted transactions does not become large for the updated database.
Proof. From TUd
6
ðSu�SlÞ

Su
� TUD, the following derivations can be

obtained:

TUd
6
ðSu � SlÞ

Su
� TUD ) Su � TUd

6 ðSu � SlÞ � TUD

) Su � TUd
6 Su � TUD � Sl � TUD ) Sl � TUD

6 Su � ðTUD � TUdÞ ) Sl � TUD

ðTUD � TUdÞ
6 Su: � ð9Þ

Then, if the transaction-weighted utilization of an itemset X is
small (neither large nor pre-large) in the original database D, its
transaction-weighted utilization twuD(X) in the original database
D will be less than Sl � TUD; therefore:

twuDðXÞ < Sl � TUD: ð10Þ
If the transaction-weighted utilization of an itemset X is small in the
deleted transactions d, its transaction-weighted utilization twud(X)
in the deleted transactions d will be less than Sl � TUd; therefore:

twudðXÞ < Sl � TUd: ð11Þ

The ratio of an itemset X in the updated database U is calculated
as twuU ðXÞ

TUDþTUd, thus the updated ratio of an itemset X is always small as
follows:

twuDðXÞ � twudðXÞ
TUD � TUd

6
twuDðXÞ

TUD � TUd
<

Sl � TUD

TUD � TUd
6 Su: ð12Þ

It can be found that the transaction-weighted utilization of
itemset X does not become large for the entire updated database
when the total utility TUd of the deleted transactions is smaller than

or equal to ðSu�SlÞ�TUD

Su
. Thus, the following definition can be given.

Definition 8. An itemset X cannot be large in the updated database
if the total utility in the deleted transactions is less than the safety
bound, which can be denoted as:
cite this article in press as: C.-W. Lin et al., Efficient updating of discovere
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TUd < f ¼ ðSu � SlÞ � TUD

Su
: ð13Þ
Example. Assume that the total utility of the original database is
100 (TUD = 100), and that the lower and upper utility thresholds
are respectively set at 20% and 40% (Sl = 0.2, Su = 0.4). The total util-
ity of the original database does not need to be scanned for rule
maintenance as:

ðSu � SlÞ � TUD

Su
¼ ð0:4� 0:2Þ � 100

0:4
¼ 50:

Thus, if the total utility of deleted transactions is less than or
equal to 50, an itemset X is definitely not large for the entire
updated database. From Theorem 1, the itemsets in case 9 can be
efficiently handled using the total utility of the deleted transac-
tions, the upper and lower utility thresholds based on the pre-large
concept, and the total utility of the original database.

When transactions are deleted from the original database, the
proposed PRE-HUI-DEL algorithm is executed to maintain the dis-
covered high-transaction-weighted utilization itemsets. Firstly, the
candidate 1-itemsets in the deleted transactions are obtained with
their transaction-weighted utilization values and actual utility val-
ues. Three parts with nine cases are then arisen compared to the
original database and the deleted transactions. Each part is then
processed with its own procedure to update the large (high) and
pre-large transaction-weighted utilization 1-itemsets in the
updated database. Note that both the transaction-weighted utiliza-
tions and the actual utility values of the generated candidate 1-
itemsets are updated at the same time. An Apriori-like approach
[9] is then used to generate the next candidate itemsets from the
discovered large (high) and pre-large transaction-weighted utiliza-
tion itemsets level by level until all high-utility itemsets have been
maintained and updated. The notation and the details of the
designed algorithm are illustrated below. The variable buf is
designed to preserve the total utility value of the deleted transac-
tions at the last rescan of the original database.

3.1. Notations
d

I

high-utility
A set of m items, I = {i1, i2, . . . , im}, in which each
item ij has its own profit value p(ij)
D
 Original quantitative database, D = {T1, T2, . . . , Tn},
in which each transaction Td contains several items
with sold quantities
d
 Deleted transactions extracted from the original
database
U
 Entire updated database, i.e., D � d

TUD
 Total utility of the transactions in D

TUd
 Total utility of the deleted transactions in d

TUU
 Total utility of the transactions in U

q(ij, Td)
 Quantity of item ij in transaction Td
u(ij,Td)
 Utility of item ij in transaction Td calculated as q(ij,
Td) � p(ij)
TU(Td)
 Transaction utility of transaction Td
buf
 Stores the total utility of the last processed
transactions for transaction deletion. It is set to 0
when the database is rescanned
X
 An itemset containing k distinct items

Su
 Upper utility threshold for large (high) transaction-

weighted utilization and high-utility itemsets. It is
the same as the high utility threshold in traditional
utility mining
itemsets for transaction deletion in dynamic databases, Adv.
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Lower utility threshold for pre-large transaction-
weighted utilization and pre-large utility itemsets,
Su > Sl
f
 Safety transaction utility bound for deleted
transactions
Cr
 Set of candidate r-itemsets

HTWUID

r

Set of large (high) transaction-weighted utilization
r-itemsets in the original database
PTWUID
r

Set of pre-large transaction-weighted utilization
r-itemsets in the original database
HTWUID
 Set of large (high) transaction-weighted utilization
itemsets in the original database
PTWUID
 Set of pre-large transaction-weighted utilization
itemsets in the original database
HTWUIU
r

Set of large (high) transaction-weighted utilization
r-itemsets in the updated database
PTWUIU
r

Set of pre-large transaction-weighted utilization
r-itemsets in the updated database
HTWUIU
 Set of large (high) transaction-weighted utilization
itemsets in the updated database
PTWUIU
 Set of pre-large transaction-weighted utilization
itemsets in the updated database
HUIU
 Set of high-utility itemsets in the updated database

twuD(X)
 Transaction-weighted utilization of itemset X in the

original database

twud(X)
 Transaction-weighted utilization of itemset X in the

deleted transactions

twuU(X)
 Transaction-weighted utilization of itemset X in the

updated database

auD(X)
 Actual utility of itemset X in the original database

aud(X)
 Actual utility of itemset X in the deleted

transactions

auU(X)
 Actual utility of itemset X in the updated database
3.2. Proposed algorithm

INPUT: A profit table, a quantitative database D, an upper
support threshold Su, a lower support threshold Sl, total
utility TUD in D, a set of large (high) transaction-weighted
utilization itemsets HTWUID with their actual utilities, a set
of pre-large transaction-weighted utilization itemsets
PTWUID with their actual utilities, safety buffer buf, a set of
deleted transactions d from D.

OUTPUT: Updated HTWUIU, PTWUIU, and HUIU.
1. Set buf = 0;

2. Calculate safety bound f :¼ ðSu�SlÞ�TUD

Su
.

3. Calculate TUd in d.
4. Calculate updated TUU:= TUD - TUd.
5. IF (buf + TUd) 6 f, THEN

buf += TUd;

Find TWUId
1 as C1.

OTHERWISE
Rescan U to find updated HTWUIU and PTWUIU;
Set HTWUID := HTWUIU, PTWUID := PTWUIU;
Set HUID := HUIU;
Set buf := 0;
Terminate.

6. Scan d to find the transaction-weighted utilization

1-itemsets TWUId
1.

7. Set r := 1.
is article in press as: C.-W. Lin et al., Efficient updating of discovere
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8. FOR each r-itemset X in Cr DO
9. Find twud(X), aud(X).
10. END FOR
11. FOR each r-itemset in HTWUID

r DO //Cases 1, 2, and 3
12. twuU(X) := twuD(X) � twud(X);
13. auU(X) := auD(X) � aud(X).

14. IF twuUðXÞ
TUU P Su THEN

15. Put X in HTWUIU
r .

16. OTHERWISE IF Sl 6
twuUðXÞ

TUU 6 Su THEN

17. Put X in PTWUIU
r .

18. END IF
19. END FOR
20. FOR each r-itemset in PTWUID

r DO //Cases 4, 5, and 6
21. twuU(X) := twuD(X) � twud(X);
22. auU(X) := auD(X) � aud(X).

23. IF twuU

TUU � SU THEN

24. Put X in HTWUIU
r .

25. OTHERWISE IF Sl 6
twuUðXÞ

TUU 6 Su THEN

26. Put X in PTWUIU
r .

27. END IF
28. END FOR
29. Set r += 1.
30. REPEAT STEPS 8 to 29 until no updated large (high) or pre-

large transaction-weighted utilization itemsets are found.
31. Calculate auU(X) in HTWUIU.
32. IF auU(X) P Su DO
33. Put X in HUIU.
34. END IF
35. Set HTWUID := HTWUIU.
36. Set PTWUID := PTWUIU.
4. An example

In this section, an example is provided to illustrate the proposed
PRE-HUI-DEL algorithm step by step. The original database is
shown in Table 2. It consists of 12 transactions with 5 items,
denoted by A to E, respectively.

The upper and lower utility thresholds are respectively set to
30% and 15%. Note that the upper utility threshold is the same as
the minimum high utility threshold in traditional utility mining.
The upper and lower thresholds can be adjusted by use’s prefer-
ence. The gap between upper and lower thresholds should not be
large since only few unpromising itemsets with high probabilities
to be large in the nearly future. The profit table for the items is
given in Table 3.

Firstly, the two-phase algorithm [12] is performed to find large
(high) transaction-weighted utilization itemsets and pre-large
transaction-weighted utilization itemsets with their actual utilities
using the two utility thresholds. The results are respectively shown
in Tables 4 and 5.

Suppose that the last four transactions from Table 2 are chosen
as the deleted transactions from the original database. The
execution process is as follows. Since there were no last processed
transactions in the past, buf is initially set at 0. The safety
transaction utility bound is calculated to evaluate whether the
original database should be rescanned. It is calculated as
Su�Sl

Su
� TUD ¼ 0:3�0:15

0:3 � 560ð¼ 280Þ, where Su and Sl are respectively
the upper and lower utility thresholds, and TUD is the total utility
in the original database D.
d high-utility itemsets for transaction deletion in dynamic databases, Adv.
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Table 3
Profit table.

Item Profit ($)

A 6
B 2
C 15
D 7
E 10

Table 4
HTWUID and their actual utilities.

Itemset twu au

B 287 44
C 320 180
D 267 168
BC 173 89
BD 267 192
CD 173 159
BCD 173 173

Table 5
PTWUID and their actual utilities.

Itemset twu au

A 108 48
E 162 120

Table 6
Transaction utilities for the last four deleted transactions.

TID A B C D E TU

9 0 2 3 7 0 98
10 0 0 0 0 1 10
11 0 5 2 5 0 75
12 0 3 0 3 0 27
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The utility of each item in the last four deleted transactions in
Table 2 is first found. Take transaction 9 as an example. The items
and their quantities in transaction 9 are (B: 2, C: 3, D: 7). The profits
for the three 1-itemsets (B), (C), and (D) are 2, 15, and 7, respec-
tively, from Table 3. The transaction utility for transaction 9 is cal-
culated as TU(9) = (2 � 2) + (3 � 15) + (7 � 7) (= 98). The other
transactions are calculated in the same way. The results are shown
in Table 6. The total utility of the four deleted transactions TUd is
then calculated as 98 + 10 + 75 + 27 = 210.

The total utility of the updated database is updated as
(560 � 210 = 350). Since there were no last processed transactions
in the past, buf is initially set at 0. The total utility in the deleted
transactions TUd was calculated as 210, which is smaller than the
safety transaction utility bound (f = 280). The original database is
thus not rescanned. The following steps are used to find the
high-utility itemsets.

First, the items that appear in the deleted transactions are found
as the candidate 1-itemsets, which are (B, C, D, E). r is initially set at
1. The transaction-weighted utilization and the actual utility of
each candidate 1-itemset in the deleted transactions are thus cal-
culated. Take 1-itemset (B) as an example. 1-itemset (B) appears
in transactions 9, 11, and 12. twud(B) is the sum of the transaction
utilities of the above three transactions (98 + 75 + 27 = 200). The
actual utility of aud(B) is also calculated at the same time, which
is (2 � 2) + (5 � 2) + (3 � 2) = 20. The other items are calculated
in the same way. The results are shown in Table 7.

Each 1-itemset in the set of large (high) transaction-weighted
utilization 1-itemsets HTWUID

1 in the original database is then pro-
cessed. In this example, three 1-itemsets (B, C, D) are next pro-
cessed. The transaction-weighted utilization of 1-itemset (B) in
the original database is (twuD(B) = 287), as shown in Table 4. The
transaction-weighted utilization of 1-itemset (B) in the deleted
transactions is 200. The updated transaction-weighted utilization
of 1-itemset (B) is then updated as (287 � 200 = 87). The actual
utility of 1-itemset (B) in the original database is (auD(B) = 44), as
shown in Table 4. Its actual utility in the deleted transactions is
(aud(B) = 20). The updated actual utility of 1-itemset (B) was thus
calculated as (auU(B) = 44 � 20 = 24). 1-itemsets (C) and (D) are
processed in the same way. The results are shown in Table 8.

In this example, the updated transaction-weighted utilization
ratio of 1-itemset (B) is calculated as (87/350 = 24.8%), which is lar-
ger than the lower utility threshold (15%) but smaller than the
upper utility threshold (30%). 1-itemset (B) is thus concerned as
a pre-large transaction-weighted utilization itemset after the data-
base is updated. 1-itemset (B) is put into the set PTWUIU

1 . The
updated transaction-weighted utilization ratio of 1-itemset (C) is
calculated as (147/350 = 42%), which is larger than the upper util-
ity threshold. 1-itemset (C) is put into the set HTWUIU

1 . The updated
transaction-weighted utilization ratio of 1-itemset (D) is calculated
as (67/350 = 19.1%), which is larger than the lower utility threshold
Table 2
Original database in the example.

TID A B C D E

1 6 0 0 0 0
2 0 1 0 5 0
3 0 6 0 0 0
4 0 0 5 0 0
5 0 0 0 0 8
6 2 0 2 0 3
7 0 1 0 4 0
8 0 4 0 0 0
9 0 2 3 7 0

10 0 0 0 0 1
11 0 5 2 5 0
12 0 3 0 3 0

Please cite this article in press as: C.-W. Lin et al., Efficient updating of discovere
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but smaller than the upper utility threshold. 1-itemset (D) is put
into the set PTWUIU

1 . Then, HTWUIU
1 = {C} and PTWUIU

1 = {B, D}.
Each 1-itemset in the set of pre-large transaction-weighted uti-

lization 1-itemsets PTWUID
1 in the original database is then pro-

cessed. In this example, 1-itemsets (A) and (E) are processed. The
transaction-weighted utilization of 1-itemset (A) in the original
database is (twuD(A) = 108), as shown in Table 5. The transaction-
weighted utilization of 1-itemset (A) in the deleted transactions
is 0. The updated transaction-weighted utilization of 1-itemset
(A) is updated as (108 � 0 = 108). The actual utility of 1-itemset
(A) in the original database is (auD(A) = 48), as shown in Table 5.
Its actual utility in the deleted transactions is 0. The updated actual
utility of 1-itemset (A) is thus calculated as (auU(A) = 48 � 0 = 48).
The results are shown in Table 9.

In this example, the updated transaction-weighted utilization
ratio of 1-itemset (A) is calculated as (108/350 = 30.8%), which is
larger than the upper utility threshold (30%). The updated transac-
tion-weighted utilization ratio of 1-itemset (E) is calculated as
(152/350 = 43.4%), which is larger than the upper utility threshold.
Table 7
twu values for deleted transactions of 1-itemsets.

1-Itemset twu au

B 200 20
C 173 75
D 200 105
E 10 10

d high-utility itemsets for transaction deletion in dynamic databases, Adv.
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Table 9
Updated transaction-weighted utilization 1-itemsets in PTWUI1 in D.

1-Itemset twu au Ratio (%) Updated result

A 108 48 30.8 Large
E 152 110 43.4 Large

Table 10
Results for HTWUIU

1 and PTWUIU
1 .

Itemset twu au

HTWUIU
1

{A} 108 48
{C} 147 105
{E} 152 110

PTWUIU
1

{B} 87 24
{D} 67 63

Table 11
Final results for HTWUIU and PTWUIU and their actual utilities.

Itemset twu au

HTWUIU A 108 48
C 147 105
E 152 110

PTWUIU B 87 24
D 67 63
AC 72 42
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1-itemset (E) is put into the set HTWUIU
1 . Then, HTWUIU

1 = {A, C, E}
and PTWUIU

1 = {B, D}.
The large (high) transaction-weighted utilization and the pre-

large transaction-weighted utilization 1-itemsets and their actual
utilities in the updated database are shown in Table 10.

The candidate 2-itemsets are then formed from Table 10 using
an Apriori-like approach [9]. The generated results are (AB, AC,
AD, AE, BC, BD, BE, CD, CE, DE). The variable r is set at 2. The above
steps are repeated until no candidate itemsets are generated. The
final results are shown in Table 11.

Finally, the large (high) transaction-weighted utilization item-
sets in Table 11 are determined to evaluate whether they are
high-utility itemsets in the updated database. Take 1-itemset (A)
as an example. The updated actual utility for 1-itemset (A) is 48;
its ratio in the updated database is calculated as (48/
350 = 13.7%), which is smaller than the lower utility threshold. 1-
itemset (A) is thus not a high-utility itemset after the database is
updated. The other large (high) transaction-weighted utilization
itemsets in Table 11 are processed in the same way. The results
are shown in Table 12.

In this example, the set HTWUIU = {A, C, E} and the set
PTWUIU = {B, D, AB, AC, BD, CE, ACE}. They are considered as the
set of large (high) transaction-weighted utilization HTWUID and
the set of pre-large transaction-weighted utilization PTWUID,
respectively, for the next transaction deletion. The final results
for the high-utility itemsets are thus {C, E}.
AE 72 42
BD 67 67
CE 72 60
ACE 72 72
5. Experimental results

Experiments were implemented in the Java language and exe-
cuted on a PC with a 3.0-GHz CPU and 4 GB of memory. Two dat-
abases were used in the experiments, namely a simulation
database created using the IBM data generator [35] and the real-
world foodmart database [36]. A simulation model was developed
to generate the quantities of the items in the transactions for the
generated database by IBM data generator, which was similar to
that used in Liu et al. [12]. The model is extended to generate
the quantity values of the items in the sequences. Each quantity
ranged among 1–5 following the way described in [12]. In addition,
for each database generated, a corresponding utility table was also
produced in which a profit value in the range from 0.01 to 10.00
was randomly assigned to an item. In real-world databases, most
items are in the low profit range, the log normal distribution is
used to generate the utility values. The foodmart database is a
quantitative database of products sold by an anonymous chain
store. There are 21,556 transactions and 1559 items in the data-
base. In the experiments, the two-phase high utility mining (TP-
HUI) algorithm [12], the high utility mining algorithm based on
the FUP concept for transaction deletion (FUP-HUI-DEL) [21], and
the proposed PRE-HUI-DEL algorithm were compared. When trans-
actions are deleted from the original database, the TP-HUI algo-
rithm has to rescan the updated database to extract the updated
high-utility itemsets in batch mode. The FUP-HUI-DEL algorithm
divides the itemsets into four sets according to whether their
transaction-weighted utilizations are large or small in the original
database and in the deleted transactions. Each set is then processed
separately to update the discovered knowledge. The itemset which
Table 8
Updated transaction-weighted utilization 1-itemsets in HTWUI1 in D.

1-Itemset twu au Ratio (%) Updated result

B 87 24 24.8 Pre-large
C 147 105 42.0 Large
D 67 63 19.1 Pre-large
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has small transaction-weighted utilization both in the deleted
transactions and in the original databases is required to re-scan
the whole database for maintaining the transactions-weighted uti-
lization of the discovered rules.

It is a non-trivial task to set the appropriate thresholds for dif-
ferent characteristics of databases, several top-k [27,32] or bio-
inspired algorithms [33,34] have been developed to mine the
required information without minimum support threshold. Since
it is another research issue in data mining, the upper and lower
utility thresholds are manually set in the conducted experiments.
To show the performance of the proposed PRE-HUI-DEL algorithm,
the gap is set small between the upper and lower utility thresholds.
Only fewer promising itemsets with extremely high probability
will be kept, thus avoiding the memory consumption of the pro-
posed approach.
5.1. Experimental results for simulation database

The IBM data generator was used to generate a simulation data-
base called T10I4N4KD200K (T is the average length of items in a
transaction, I is the average length of maximal potentially frequent
itemsets, N is the total number of items, and D is the total number
of transactions). Firstly, 200,000 transactions were used to initially
mine the large (high) and pre-large transaction-weighted utiliza-
tion itemsets with their actual utility values. Each 2000 transac-
Table 12
Final results.

Itemset au Ratio (%) HUI

HTWUIU A 48 13.7 –
C 105 30.0 Yes
E 110 31.4 Yes
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Fig. 3. Execution time for various minimum utility thresholds for simulated
database.

Fig. 4. Execution time for various numbers of deleted transactions in simulated
database.
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tions were then sequential deleted from the original databases bot-
tom up from the transactions at each time. The minimum high util-
ity threshold (upper utility threshold) was set at 0.2% to evaluate
the performance of the TP-HUI and FUP-HUI-DEL algorithms. The
lower utility threshold was set at 0.18%. Fig. 2 shows the execution
times for the TP-HUI, FUP-HUI, and PRE-HUI-DEL algorithms. The
2000 transactions were then sequentially deleted from the original
database to update the database.

As shown in Fig. 2, the TP-HUI algorithm has to process the
updated database in batch mode whenever transactions are
deleted. The FUP-HUI-DEL algorithm rescans the whole database
only if it is necessary to re-calculate the itemsets in case 4. The pro-
posed PRE-HUI-DEL algorithm reduces the rescanning time of ori-
ginal database, and thus ran fastest for transaction deletion. In the
last process (accumulated deleted transactions reaches 18 K) of the
PRE-HUI-DEL algorithm reaches, however, the number of safety
transaction utility bound. The database is rescanned to find the
required high-utility itemsets.

Experiments were also made to evaluate the efficiency of the
proposed PRE-HUI-DEL algorithm for various minimum high utility
threshold values. The results are shown in Fig. 3. The minimum
high utility threshold (upper utility threshold) was varied from
0.2% to 0.6% in 0.1% increments. The lower utility threshold for
the proposed algorithm was varied from 0.18% to 0.058%, decreases
0.02% each time of the upper utility threshold.

The execution time of the proposed PRE-HUI-DEL algorithm is
much less than those of the TP-HUI and FUP-HUI-DEL algorithms
for handling transaction deletion with various minimum high util-
ity thresholds. Experiments were then made to evaluate the effi-
ciency of the proposed PRE-HUI-DEL algorithm for various
numbers of deleted transactions. The upper utility threshold (min-
imum high utility threshold) and the lower utility threshold were
respectively set at 0.2% and 0.18%. The numbers of deleted transac-
tions were 4000, 8000, 12,000, 16,000, and 20,000. The results are
shown in Fig. 4.

The execution time of the proposed PRE-HUI-DEL algorithm is
lower than those of the TP-HUI and FUP-HUI-DEL algorithms for
handling transaction deletion for various numbers of deleted
transactions.
5.2. Experimental results for foodmart database

The foodmart database was also used for comparing the three
algorithms. The first 21,556 transactions were initially used to
mine the large (high) and pre-large transaction-weighted utiliza-
tion itemsets and their actual utility values. The minimum high
utility threshold (upper utility threshold) was set at 0.01%. The
lower utility threshold was set at 0.0095%. Fig. 5 shows the execu-
Fig. 2. Execution times for accumulated deleted transactions in simulated database.
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tion times of the three algorithms. The 100 transactions were then
randomly deleted from the original database.

The proposed PRE-HUI-DEL algorithm is fastest for transaction
deletion. In the experiments, the total utility in foodmart is calcu-
lated as 104,450,739. The total utility for the selected 600 transac-
tions for deletion is calculated as 2,013,024 and the total utility for
the selected 700 transactions for deletion is calculated as
2,636,302. The safety of the proposed PRE-HUI-DEL is calculated
as:

f ¼ ðSu � SlÞ � TUD

Su
¼ ð0:01%� 0:0098%Þ � 104;450;739

0:01%

¼ 2089014:78:
Fig. 5. Execution time for accumulated deleted transactions in foodmart database.
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Fig. 6. Execution time for various minimum utility thresholds for foodmart
database.
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From the experiments, it can be observed that the database is
required to be rescanned at the seventh process since the total util-
ity for the selected 600 deleted transactions is calculated as
2,013,024, and the total utility for the selected 700 deleted trans-
actions is calculated as 2,636,302, thus:
2;013;024 < 2;089;014 < 2;636;302:

Experiments were made to evaluate the efficiency of the pro-
posed PRE-HUI-DEL algorithm for various minimum high utility
threshold values. The results are shown in Fig. 6. The minimum
high utility threshold (upper utility threshold) was set from
0.01% to 0.014% in 0.001% increments. The lower utility threshold
for the proposed algorithm was set from 0.0098% to 0.0138%,
decreases 0.0002% at each time of the upper utility threshold.

The execution time of the proposed PRE-HUI-DEL algorithm is
much lower than those of the TP-HUI and FUP-HUI-DEL algorithms
for handling transaction deletion at various minimum high utility
thresholds for the foodmart database. Experiments were made to
evaluate the efficiency of the proposed PRE-HUI-DEL algorithm
for various numbers of deleted transactions. The minimum high
utility threshold (upper utility threshold) and the lower utility
threshold were respectively set at 0.01% and 0.0098%. The numbers
of deleted transactions were 200, 400, 600, 800, and 1000. The
results are shown in Fig. 7.

The execution time of the proposed PRE-HUI-DEL algorithm is
lower than those of the TP-HUI and FUP-HUI-DEL algorithms for
handling transaction deletion with various numbers of deleted
transactions for the foodmart database. For 1000 deleted transac-
tions, the proposed algorithm had to rescan the database to main-
tain and update the high-utility itemsets.
Fig. 7. Execution time for various numbers of deleted transactions for foodmart
database.
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6. Conclusion and future work

This paper proposed a high utility mining algorithm based on
pre-large concepts for transaction deletion (PRE-HUI-DEL) for effi-
ciently maintaining and updating discovered high-transaction-
weighted utilization itemsets to derive high-utility itemsets. When
transactions are removed from the original database, the proposed
PRE-HUI-DEL algorithm partitions the itemsets in the deleted
transactions into three sets with nine cases according to whether
they have large (high), pre-large, or small transaction-weighted
utilization in the original database and in the deleted transactions.
Each set is then processed separately to maintain the discovered
high-utility itemsets. When the total utility value of the inserted
transactions is smaller than the safety transaction utility bound,
the high-utility itemsets are directly updated without a database
rescan, reducing computational time. Experimental results show
that the proposed PRE-HUI-DEL algorithm outperforms existing
high utility mining algorithms. When the accumulative total utility
in the deleted transactions archives the safety bound of pre-large
concept, the database is required to be rescanned for determining
the TWU values of the itemsets in case 9. From the conducted
experiments, the original database is unnecessary to be rescanned
each time, thus reducing the computations compared to the tradi-
tional two-phase approach and the FUP-HUI-DEL algorithm.

Traditional data mining requires the minimum support thresh-
old to define the number of desired information, which is not prac-
tical in real-world applications. Since it is a non-trivial task to set
an appropriate threshold for mining the desired information, the
maintenance approach for efficiently updating the discovered
information without minimum support threshold should be dis-
cussed in the nearly future. It can help solve the limitations of
the traditional mining approaches especially when the characteris-
tics of the compared databases are widely different. Besides, trans-
action modification is also considered as another research issue in
dynamic data mining. How to efficiently improve the performance
with an efficient tree structure for reducing the computations com-
pared to the level-wise approach will be developed in the nearly
future work.
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