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This paper presents a methodology for comparing the performance of model-reduction strategies to be
used with a diagnostic methodology for leak detection in water distribution networks. The goal is to find
reduction strategies that are suitable for error-domain model falsification, a model based data interpre-
tation methodology. Twelve reduction strategies are derived from five strategy categories. Categories
differ according to the manner in which nodes are selected for deletion. A node is selected for deletion
according to: (1) the diameter of the pipes; (2) the number of pipes linked to a node; (3) the angle of
the pipes in the case of two-pipe nodes; (4) the distribution of the water demand; and, (5) a pair-wise
combination of some categories.

The methodology is illustrated using part of a real network. Performance is evaluated first by judging
the equivalency of the reduced network with the initial network (before the application of any reduction
procedure) and secondly, by assessing the compatibility with the diagnostic methodology. The results
show that for each reduction strategy the equivalency of networks is verified. Computational time can
be reduced to less than 20% of the non-reduced network in the best case. Results of diagnostic perfor-
mance show that the performance decreases when using reduced networks. The reduction strategy with
the best diagnostic performance is that based on the angle of two-pipe nodes, with an angle threshold of
165�. In addition, the sensitivity of the performance of the reduced networks to variation in leak intensity
is evaluated. Results show that the reduction strategies where the number of nodes is significantly
reduced are the most sensitive.

Finally this paper describes a Pareto analysis that is used to select the reduction strategy that is a good
compromise between reduction of computational time and performance of the diagnosis. In this context,
the extension strategy is the most attractive.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Drinking water is one of the most precious resources for
humanity. Annually, 184 billion USD are spent on clean water
supply worldwide: however, collectively, water utilities lose an
estimated 9.6 billion USD each year due to water leakage [42]. In
addition, one third of reporting countries lose more than 40% of
clean water pumped through distribution systems due to leaks,
and worldwide, countries lose 20% of their clean water on average.
Through reducing these leaks by just 5% and pipe bursts by 10%,
utilities could save up to 4.6 billion USD.

The Sensus survey also includes a prediction that leak reductions
can also lead to economies related to producing and purchasing
water as well as reduced energy consumption required to pump
and treat water for distribution. According to this survey, the need
for leak detection services has been recognized by most global
water utilities. However, only 40% of utilities reported having leak
detection services. At this time, most utilities react to leakage on
an ad-hoc basis, responding to obvious leaks and bursts and repair-
ing infrastructure as required. Therefore, there is a need for more
rational and systematic strategies for managing this infrastructure.
This leads to requirements for efficient monitoring of water-supply
networks. Advanced sensor-based diagnostic methodologies have
the potential to provide enhanced management support.

Several studies have involved leak detection in fresh-water
supply networks. Hope [15] studied water losses in public supplies.
Babbitt et al. [3] described examples of leak-detection meth-
ods such as visual observation and sounding through the soil
with a steel rod. Other more advanced techniques, including
v. Eng.
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water-hammer techniques and acoustic measurements were also
examined nearly one hundred years ago.

There are both direct and indirect leak detection techniques.
Various direct techniques were developed such as leak-noise corre-
lation [13,8,9], pig-mounted acoustic sensing [19], and ground
penetrating radar [7]. Although these techniques are considered
the most accurate for leak detection, they are not appropriate for
monitoring large networks due to their high cost. These methods
complement other methods by precisely locating leaks in network
segments that have already been identified.

There are several categories of indirect leak detection tech-
niques. Two common methods are water balance [16] and night
flow measurement at district metered areas (DMA) [20]. The prin-
ciple of water balance is to audit the network in order to force
equality between water placed into the distribution system and
water taken out. In the night flow DMA method, the network is
separated into areas and the water that comes in and out is
metered. Water loss is estimated by taking these measurements
when the demand is minimal, at night.

Another category is the transient-based techniques which use
pressure measurement. These techniques use measured transient
signals to detect leaks. Colombo et al. [6] completed a review of
transient-based leak detection methods and sorted them into three
types: inverse-transient analysis [46,45], frequency-domain tech-
niques and direct transient analysis [48,47,43]. Uncertainties asso-
ciated with these systems affect the accuracy of results. Many
techniques within this category are primarily used on single,
underground pipelines [34]. Most are currently not available to
be used on complex water distribution networks. An exception is
the study presented by Whittle et al. [47]. However, in this case,
slow leak development requires other detection methods.

Other techniques are based on comparisons of measurements
with predictions obtained from hydraulic models. This challenge
is often formulated as an optimization task. The goal is to minimize
the differences between the measurements taken on the network
and predicted values from flow models. Such techniques are often
based on minimization of least-squares [32,2]. Mounce et al.
[22,23] developed a methodology using machine learning and fuzzy
inference. Another methodology is Bayesian inference. Poulakis
et al. [29] have proposed a Bayesian system-identification method-
ology for leakage detection. Other studies were presented by
Rougier [41], Puust et al. [33] and Barandouzi et al. [5]. Romano
et al. [37,38,36] used Bayesian inference in a pipe burst detection
framework. The applicability of these methodologies to real net-
works may be limited under certain circumstances. Hypotheses
made when using either traditional residual minimization or
Bayesian inference techniques are usually impossible to meet due
to systematic modelling errors and the unknown values of correla-
tions that are induced [12].

Due to the size and the complexity of water distribution net-
works in cities, it is advantageous to include network reduction
techniques in diagnostic methodologies. The principle of reducing
a network to a simpler equivalent network is common in electrical
engineering. Analogies between electrical and hydraulic networks
were used to develop an algorithm to simplify water-distribution
networks [44,18].

As has been done for electrical networks by Balabanian and
Bickart [4], the theory of linear graphs has been used to build
mathematical models of water networks. The principle of the
methodology is to linearize the non-linear system and then apply
Gaussian elimination to perform the reduction [14]. The last step
involves transforming the linear reduced system to retrieve
non-linearity. In this way, the reduced equivalent system preserves
the hydraulic behavior and the non-linearity of the initial system.

The reduction algorithm developed by Ulanicki has been used
by several researchers, each varying according to the strategy that
Please cite this article in press as: G. Moser et al., Performance comparison of r
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was used to choose which nodes and pipes to eliminate. Preis et al.
[30,31] used the algorithm to estimate hydraulic state in urban
water networks by deleting pipes under a given diameter. The
reduction algorithm has also been used for water quality analysis
[26–28]. A graph-search algorithm reduced networks by eliminat-
ing the nodes in such a way that the reduced network maintains
water quality properties.

Currently, studies have described only one reduction strategy at
a time. Comparisons among reduction strategies have yet to be
completed. In addition, the gain in computational time when using
a reduced model has not been quantified except in the paper from
Preis et al. [31] (again, for one strategy). Moreover, Ulanicki’s reduc-
tion techniques have not been combined with a data-interpretation
technique to develop a leak detection methodology.

The task of finding a good compromise between two or more
goals involves multi-criteria decision making. A simple way of
solving this challenge is to first find a set of Pareto-optimal solu-
tions [25] and then perform further analysis on a smaller set of
solutions. This type of multi-criteria decision making is used in
many researches. Nouiri [24] developed a tool to optimize water
resource management using the Pareto optimality concept.
Mala-Jetmarova et al. [17] studied the trade-offs between water
quality and pumping cost objectives. No study was found that used
Pareto optimization for selecting network-reduction strategies.

Model falsification for leak detection was developed initially by
Robert-Nicoud et al. [35]. A model-based system-identification
method originally proposed for structures was applied to leak
detection in hydraulic networks. In a subsequent study, Goulet
and Smith [11] developed a model falsification method for infras-
tructure diagnosis. The methodology, called error-domain model
falsification, was developed principally for bridge diagnosis.
Using this methodology, a preliminary study has been carried out
on leak detection [10]. A follow-on study using error-domain
falsification has been performed by Moser and Smith [21]. None
of these studies involve network reduction.

This paper describes a methodology for evaluating network
reduction strategies. The goal is to choose the strategy which is
most compatible with the error-domain model falsification frame-
work. Twelve network reduction strategies for water-network
management are compared using part of the water supply network
in Lausanne, Switzerland for illustration. The reduced network is
then used with a model falsification methodology for detecting
leaks. Gains in computation time are quantified and compared. In
addition, the effect of the leak severity on the effectiveness of
reduction is evaluated. Finally this paper identifies, using Pareto
analysis, strategies that provide good compromises between
performance and computational time.

Section 2 describes the error-domain model falsification
methodology and the principle of the network reduction.
Section 3 presents the reduction strategies studied in this paper.
Finally Section 4 includes an analysis of the results obtained using
the reduction strategies.
2. Methodology

In this section the strategies used for network reduction are
explained. The principle of error-domain model falsification is also
described. Finally, a description of the leak-detection methodology
obtained by combining these two principles is provided.
2.1. Network reduction

The network reduction technique used for this study was devel-
oped by Ulanicki et al. [44]. This section explains the principle of
this technique. More precise explanations, such as the complete
educed models for leak detection in water distribution networks, Adv. Eng.
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mathematical formulation of the methodology can be found in
Ulanicki’s paper. This reduction technique is based on similarities
between electrical networks and hydraulic networks. In the same
way that the Ohm’s law gives a potential difference in the function
of current and resistance, the Hazen-Williams hydraulic model
predicts the head-loss in a pipe as a function of the flow and the
‘‘resistance’’ of the pipe. The Hazen-Williams relation may also
be given in the inverse form (1), the flow (q) as a function of
conductance (g) and headloss (Dh). Conductance is function of pipe
length, pipe diameter and the Hazen-Williams pipe-friction
coefficient.

q ¼ gjDhj0:54signðDhÞ ð1Þ

With the Hazen-Williams relation and node-branch incidence
matrix (K), a mathematical model of the entire network can be
built (2). The incidence matrix, a concept taken from linear graph
theory, represents the topology of the network. For a network of
m nodes and n pipes, the incidence matrix size is m � n. This
matrix (K) provides the link between the pipe flow vector

(Q ðDhÞ ¼ ðq1ðDh1Þ; . . . ; qnðDhnÞÞT ) and the nodal demand vector

(qnod ¼ ðqnod
1 ; . . . ; qnod

m Þ
T
). Each element of the pipe flow vector can

be written as a function of head loss using the Hazen-Williams
relation (1). The resulting mathematical model represents a
relation between the head loss and nodal demand.

KQðDhÞ ¼ qnod ð2Þ

The second step of the reduction technique is to perform a lin-
earization of the model. In order to linearize the model, the
assumption of small variations under a given operation point,

defined by nodal head (h0) and nodal demand (qnod 0), is made.
This leads to a linear model (3) of the system represented by the
linearized branch conductance matrix (A) that multiplies the vec-

tor of the nodal head variations (dh ¼ h� h0) to obtain the vector
of nodal demand variations (dqnod ¼ qnod � qnod 0).

Adh ¼ dqnod ð3Þ

The linearized branch conductance matrix is a symmetric
matrix with as many rows and columns as nodes. The elements
[k, l] of this matrix (k – l) represent the linearized conductance
of each pipe between Node k and Node l; if it is null then there
is no connection between these two nodes. The elements (k,k) of
the diagonal represent the node conductance which is equal to
the sum of the conductance of all pipes connected to Node k.

The third step is to remove the desired nodes by eliminating the
corresponding rows and columns from the linearized model by
using the Gauss elimination algorithm. For example, when elimi-
nating Node k, each row of the matrix corresponding to a neighbor-
ing node (node connected to Node k) is subtracted from a multiple
of the row k. The constant used in this multiplication is chosen for
each row such that the k-th element of the row becomes zero. Due
to this, the multiple is equal to the linearized conductance of the
pipe between the two nodes divided by the conductance of Node
k. This gives the following relation for each element aij of the
matrix A (4).

aij ¼ aij � akj aik=akk ð4Þ

In the same way, the demand of Node k is redistributed to its
neighboring nodes. For each neighboring node the demand is sub-
tracted from a multiple of the nodal demand of k. Likewise, the lin-
earized conductance of the pipes connected to Node k are either
assigned to the remaining pipes or to a new one. Therefore, for
each demand dqi the following relation is used (5).

dqi ¼ dqi � dqk aik=akk ð5Þ
Please cite this article in press as: G. Moser et al., Performance comparison of re
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The last step is to return to a non-linear model by transforming
the linearized conductance for each pipe into a non-linear conduc-
tance. The length of each pipe is determined by the distance
between the nodes which are connected to each other. For the
diameter and friction coefficients, one of these parameters is fixed
and the other is computed from the definition of the conductance.
For this study, the friction coefficient has been fixed because all the
pipes are considered the same material.

The model of the network used is only constituted of the main
pipes of the network. For this network, the majority of the main
pipes are composed of cast iron. For this reason, it is admissible
to model the network with the same material for all pipes. Since
the non-reduced network is modelled using the same material,
pipes of reduced networks were modelled in the same way by
maintaining the Hazen-Williams friction factor constant.
2.2. Error-domain model falsification

Fig. 1 shows the principle of model falsification. Measurements
of system quantities (y) are compared with predictions of the same
quantities (gðsÞ). Predictions are obtained by simulating scenarios
(s) using the model of the system ðgð ÞÞ. Each scenario is a represen-
tation of a possible state of the system. Scenarios chosen have to
cover the entire range of behavior that the system-identification
method should be able to recognize. To compare measurements
with prediction involves modelling errors and measurement
errors. Measurement errors are mainly due to sensor resolution
(precision of the measure) since noise and sensor bias are usually
negligible. In practice, noise may be reduced by filtering and sensor
bias by sensor calibration. Modelling errors are due to the model
simplification and to the errors included in the model parameters.
Values of these parameters that are usually not known precisely
are based either on the network plans, measurements or
estimations.

Modelling errors and measurement errors may be represented
by random variables (Umodel;Umeas). The random variable ðUcÞ cor-
responds to the combined uncertainty obtained by subtracting
Umeas from Umodel. The probability density function (pdf) of Uc

describes the probability for the possible outcomes of the differ-
ence between predictions and measurements. This pdf is calcu-
lated by using a Monte-Carlo approach. In this way, the
combined uncertainty is obtained by computing a high number
of samples with varied random variables (Umodel;Umeas).
Fig. 1. Scheme of the falsification process.

duced models for leak detection in water distribution networks, Adv. Eng.
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Fig. 2. Step of the leak detection strategy.
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Threshold bounds (Tlow;Thigh) are defined using this pdf by tak-
ing the shortest interval including a probability of u (for example,
95%). In Fig. 1 a simplified case is illustrated for one measurement;
however, multiple measurements are generally used. For these
cases, error-domain model falsification involves multidimensional
pdfs. To ensure a probability of u on the multidimensional pdf, the
target probability, used for computing threshold bounds for each
measurement, is obtained using the Šidák correction and becomes
u1=n where n is the number of measurements obtained [1].

Threshold bounds are used as criterion to falsify or keep a sce-
nario. The difference between measured and predicted values
(gðsÞ � y) is computed for each scenario. If this number (vector, if
multiple measurements) is outside the interval defined by the
threshold bounds, the scenario is falsified. Otherwise, if this differ-
ence is within the bounds for each measurement, then the scenario
is deemed a candidate solution. Since likelihood distributions are
not well known, no candidate solution is considered to be more
likely than another. This means that each candidate scenario is con-
sidered to have the same probability to be the solution of the diag-
nosis. The methodology does not lead to the most probable solution.

2.3. Application to leak detection

The objective of this research is to combine error-domain model
falsification with a network-reduction strategy in order to develop
an efficient leak-detection methodology for complex water supply
networks. This methodology is capable of considering biased
uncertainties which are typically present in modelling challenges.
In addition by using the reduction process, the leak detection
methodology is applicable to complex water distribution networks.

This methodology includes three steps (Fig. 2). The first step is
to obtain a simpler equivalent configuration of the network in
order to reduce the complexity of the numerical model. The second
step is to compare in situ flow measurements with flow predictions
obtained from a population of leak scenarios. This is done by
observing the difference obtained by subtracting measured values
from predicted values.

Each leak scenario represents a different leak configuration of
the system. For this study, scenarios are constructed following
two hypotheses: (1) there is only one leak; and, (2) it occurs at
the nodes. The configurations are obtained by varying leak position
(the node where the leak occurs) and the leak intensity (the flow
going out through the leak). This means that the number of scenar-
ios is, for this case, equal to the number of nodes multiplied by the
number of intensities considered. It is not necessary to consider
leaks that occur at intermediate points of pipes because due to
uncertainties only leak regions will be identified. In order to com-
pare results from reduced networks with those from the initial net-
work, the leaks are modelled for all the networks at the nodes of
the non-reduced network. This provides a consistent number of
scenarios for each network. When a leak occurs on an eliminated
node, the leakage is distributed to the remaining nodes, following
the reduction technique.

Since leaks occur at the nodes, they are modelled, in the simu-
lation software (EPANET), by varying nodal demands. Due to this,
as the uncertainty of the demand increases, it becomes increas-
ingly difficult to differentiate a leak from a change in nodal
demand. To reduce this error, the measurements are taken when
consumption is the smallest, during the night. Other parameters
may be considered such as tank level, water demand and income
flow at the pumps. Consideration of all parameters is necessary
in a practical case. However, to keep from unnecessarily increasing
the number of scenarios, only leak position and intensity are con-
sidered in this study.

The last step is to eliminate scenarios which are incompatible
with the measurements. Scenarios are falsified using threshold
Please cite this article in press as: G. Moser et al., Performance comparison of r
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values obtained by combining measurement and modelling uncer-
tainties. If the difference between flow measurements and flow
predictions of leak scenarios is outside the threshold then the sce-
nario is falsified. Finally, scenarios that are not falsified are leak
configurations that are capable of explaining the measurements.
Therefore, they are considered to be candidate scenarios.
3. Reduction strategies

In this paper, five categories of water-supply-network-
reduction strategies are presented. Several processes can be
designed to reduce a network according to certain criteria. These
criteria are used to determine the nodes in the network which
are eliminated. This section focuses on the reduction strategies
that are used for this study.

3.1. Study case

In this paper, the reduction processes are tested on one of the
water supply networks of the city of Lausanne. This network is
not connected to the other networks of the city of Lausanne; it is
totally independent. All the networks in Lausanne are isolated from
one another.

This network (Fig. 3) contains 295 pipes and 265 nodes and is
equipped with three flow-meters. In the figure, the demand nodes
are represented by the white circles, the pipes by the black lines
and each of three sensor locations by an ‘x’. A pipe with a sensor
cannot be removed in the reduction process. For this reason, nodes
attached to these pipes are labeled ‘irremovable’. All the studies in
this paper are performed using this network and this sensor
configuration. It assumed that this network contains sufficient
complexity to be able to provide a meaningful test of
reduction-strategy performance.
educed models for leak detection in water distribution networks, Adv. Eng.
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Fig. 3. Initial diagram of the city of Lausanne water supply network.
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For this study case, the distribution of the demand on each node
(nodal demand) is not known; only the demand of the entire net-
work (global demand) is known. Therefore, the nodal demand is
modelled, for each node, using an exponential distribution with
the mean equal to the average nodal consumption. The average
nodal consumption is the global consumption divided by the num-
ber of nodes. The exponential distribution is a good representation
for water demand since there is a high probability to have low con-
sumption and low probability to have high consumption. The pre-
dictions are computed by performing steady state simulations.

The global demand used in this study is the minimum demand
obtained from the hourly averaged demand of the network; this
represents a global demand of 416 l/min.

3.2. Pipe diameter

The first reduction process is based on the diameter of the pipes.
Initially, a pipe diameter limit is defined, and then all the pipes
having a diameter higher than this specified limit are selected.
All nodes which are not linked to the selected pipes are then elim-
inated. The use of the Gaussian process to eliminate the nodes
ensures the connectivity of the reduced network by creating ficti-
tious pipes if necessary. Fig. 4 shows the result of this reduction
procedure, using a pipe diameter limit of 150 mm. For a better
comparison, pipes of the non-reduced network are represented in
gray on the same figure. The reduced network has 224 pipes and
196 nodes.

3.3. Extension

The second reduction process is based on the elimination of the
extremity pipes. The decision criterion for this process is the num-
ber of pipes to which each node is connected. Each node that is
Fig. 4. Network reduced through simplifying the pipes with a diameter smaller
than 150 mm.
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linked with only one pipe is eliminated. After the application of
this principle, some other nodes will be linked with only one pipe.
For this reason, this process has to be applied iteratively, as long as
nodes that fill the criterion are found. The principle of this reduc-
tion strategy is described in Fig. 5. This example shows that in
the first step Node 1 is eliminated because it is connected to only
on pipe. After that, Node 2 becomes a node connected to only
one pipe; for this reason, Node 2 is eliminated in the second step.
The result is the elimination of the entire extension. Fig. 6 shows
the result for this reduction procedure, with the non-reduced
network represented in gray. The reduced network has 175 nodes
and 204 pipes.

3.4. Angle

The third reduction process is based on the angle between two
pipes connected to the same node. The goal of this procedure is to
eliminate the nodes that are in series while maintaining the gen-
eral topology of the network. If the reduced network diverges too
much from the initial network (regarding the topology), some
regions of the network may be neglected in the leak detection pro-
cess. The topology is maintained to ensure that the identification
process covers the main regions of the network. First the nodes
connected with only two pipes are selected. Following this, each
node specified by an angle between its pipes larger than a
pre-determined limit is eliminated. The principle of this reduction
strategy is described in Fig. 7. In this scheme, the pipes attached to
the central node form an angle (a) larger than the angle limit. For
this reason, this node is then eliminated. Fig. 8 shows the result of
this reduction process with an angle limit of 150�, with the
non-reduced network represented in gray. The reduced network
has 230 pipes and 201 nodes.

3.5. Consumption

The fourth reduction process presented in this paper considers
the yearly consumption values throughout the water supply net-
work. The goal is to design a procedure which eliminates the nodes
associated with low consumption. Each of the consumption values
are assigned to the nearest node. The highest consumption value is
deemed 100%, and the remainder of the consumption values is
adjusted pro-rata. For this reduction process the criterion for
selecting the nodes to eliminate is the consumption percentage.
All the nodes under a specified limit are deleted. Fig. 10 shows
the result for this reduction process with a limit of 50%, with the
non-reduced network represented in gray. The reduced network
is constituted of 295 pipes and 180 nodes.

This example shows that the reduction strategy does not lead,
in each case, to a reduction of the number of pipes. In this case
Fig. 5. Example of extension elimination.

duced models for leak detection in water distribution networks, Adv. Eng.
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Fig. 6. Network reduced by eliminating all the extension nodes.
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the number of pipes is equal to the non-reduced network. In addi-
tion the network is chaotic with some pipes crossing over each
other. The reason for this behavior is that if a node that is con-
nected with more than three nodes is eliminated, then the number
of pipes increases.

Fig. 9 shows how a node is eliminated in each of the following
four cases: (a) two-pipe nodes, (b) three-pipe nodes, (c) four-pipe
nodes, and (d) five-pipe nodes. In each case, the central node is
deleted. For the two-pipe nodes, the node elimination reduces
the number of pipes by one. In the case of the three-pipe nodes,
the number of pipes remains the same. For the case of four-pipe
nodes, the number of pipes increases from four to six. Finally for
the five-pipe nodes, the number of pipes increases from five to ten.

This explains how it is possible to increase the number of pipes
in instances when the number of nodes is reduced. The same
behavior is observed for reduction using the pipe diameter when
the specified diameter limit is substantially high. Physically, when
a node is eliminated, all the nodes connected to that node have to
be connected to one another in order to maintain the equivalency
of the system. It is similar to the process in electrical engineering
known as the star-mesh transformation [39].

3.6. Combination extension and angle

In the fifth reduction process, the second (extension) and third
(angle) processes are combined. Fig. 11 shows the result of this
combination using the angle limit of 150� on the network of the
city of Lausanne, with the non-reduced network represented in
gray. The reduced network is constituted of 123 pipes and 94
nodes. In this case the extension strategy is applied before the
angle strategy. For the results, both cases are studied, the case
when extension is applied first (Extension & Angle 150�) and the
case when angle is applied first (Angle 150� & Extension).
4. Results

4.1. Reduction

For each of the five reduction strategies described above, the
magnitude of the reduction in size of the network is quantified
Fig. 7. Example of node elimination by angle limit.
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based on the resultant number of nodes and pipes. These values
are displayed in Table 1. These results show that the reduction
strategy that is the most efficient considering only the number of
pipes and nodes eliminated is the Extension & Angle 150�. It sup-
presses 64.5% of the nodes and decreases the number of pipes by
58.3%. In comparison, the second best strategy in terms of node
reduction, with 60.8%, is not as strong for the number pipes – only
a 37.3% reduction. The reason is the same as for reduction strate-
gies based on consumption. These two categories of reduction
strategies lead to elimination of nodes with more than three con-
nections and this increases the number of pipes (Fig. 9).

4.2. Hydraulic equivalency

Table 2 shows simulation results for flows at sensor positions in
terms of the difference between the initial network and reduced
networks. The numerical simulations have been carried out using
the water distribution network simulation software EPANET [40].
The flow calculated at each of the three sensor locations is
extracted, and those for the reduced networks are compared with
those for the initial network. These results show that, for most of
the strategies presented in this paper, the relative error is less than
1%. Only the strategies Consumption 50% and Diameter 200 create
an error that is greater than 1%. These two strategies are cases
where many new pipes are added due to elimination of nodes with
more than three connections. The errors present from computing
the conductance of these fictitious pipes influences the pipe mea-
surement predictions due to the way in which the flow is dis-
tributed in the network.

4.3. Computational time

The principal motivation for the use of a reduced network is to
decrease computation time. Table 3 gives the relative computation
time, in comparison with the non-reduced network, for the twelve
reduction strategies. These represent the time necessary to com-
pute the threshold for each pipe of the system. The thresholds
are computed using 105 Monte-Carlo simulations to combine mod-
elling and measurement uncertainties. The modelling uncertainty
is a combination of errors due to the model simplification and
the model parameters. These parameter uncertainties (i.e., pipe
diameter, pipe roughness and node elevation) are computed for
each reduced network using Monte-Carlo simulation. This means
that the errors introduced by using the reduced network will fur-
ther influence the threshold values. Then, the pdf of the combined
uncertainty for each pipe is obtained by simulating a total of 105

samples with varied random variables. Thresholds are determined
by taking 95% of this pdf.
Fig. 8. Network reduced through simplifying two-pipe nodes when the angle
between them is greater than 150�.
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Fig. 9. Example of node elimination for: (a) two pipe node, (b) three pipe node, (c)
four pipe node and (d) five pipe node.
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This is done for each possible sensor location. Results show that
simplifying the network can lead to a computational time as low as
18.2% of that of the initial network.

For reduction strategies that are based on consumption, compu-
tation time may increase. This is due to an increase in the number
of pipes for reduction strategies that lead to elimination of nodes
that are connected to more than three pipes, see Fig. 9.

4.4. Expected identifiability

The performance of the reduced networks is compared using a
cumulative distribution (CDF) function for the expected number
of candidate scenarios. This CDF is built by testing a large number
of simulated leaks on the water supply network. For each leak, the
number of candidate scenarios is computed using the
error-domain model falsification procedure presented above. To
have the same leak scenarios for all the networks, the leaks were
simulated on the same number of nodes as the non-reduced net-
work. When the leak occurs on an eliminated node, it is redis-
tributed to remaining nodes in the same way as the demand. The
leak scenarios are simulated using the same reduced model for
each network strategy. The hypothesis is made that when adding
a leak to the network, the model parameters remain within the
range of validity for the reduced model.

The CDF for the non-reduced network (Fig. 12) provides a refer-
ence for comparison. This graph shows that there is a 95% probabil-
ity to identify less than 127 candidate leak scenarios (or to falsify
Fig. 10. Network reduced by eliminating nodes with a yearly consumption smaller
that 50% in comparison with the highest one.
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more than 138 leak scenarios). This means that, for this three sen-
sor configuration, in 95% of cases it is possible to reduce the popu-
lation of candidate leak scenarios to half, for a leak intensity of
100 l/min. With a 75% probability, it is possible to falsify less than
93 candidate leak scenarios while with a 50% probability, less than
72 candidate leak scenarios are falsified.

In practice, this means that the utility manager only needs to
search for the leak location on half of the network. Even if the net-
work is equipped with only three sensors, these results show that
it should be possible when combined with a pinpointing method
(acoustic correlation) that utility managers already use, to reduce
the search time by half on this network.

The performance of the reduced network is lower than the
reference case if its CDF is positioned to the right of the reference
network CDF. More specifically, when considering the same
probability, the number of candidate leak scenarios becomes
larger.

In Figs. 13 and 14 the CDFs are given for each reduction strategy
studied in this paper for a leak intensity of 100 l/min. As before, the
horizontal axis represents the number of candidate leak scenarios
and the vertical axis is the probability. The values obtained for the
probabilities of 0.95, 0.75 and 0.5 are also given on the horizontal
axis. Furthermore, the cumulative distribution function for the
non-reduced network is displayed on each graph for comparison.

The CDFs for the reduced networks show that the performance
decreases in every case in comparison with the non-reduced net-
work. For each reduced network the expected number of candidate
leak scenarios increases, and thus, the number of scenarios that can
be falsified decreases. Overall, this indicates a decrease in the iden-
tifiability of leaks in the reduced networks in comparison with the
non-reduced network. Such behavior is understandable since a
reduced network leads to some loss of information and conse-
quently, the uncertainty increases. Higher uncertainties imply that
the threshold interval is larger than in the non-reduced case. This
results in fewer falsified scenarios.

The results show that information loss is not detrimental to the
overall performance of the method. When looking at the 95% prob-
ability, the expected number of candidate scenarios is 141 for the
worst case (Diameter 200). In comparison with 127 candidate sce-
narios for the non-reduced network, such performance is accept-
able in all cases. Since this study is concerned directly with
safety aspects, it may be unnecessary to consider a 95% probability;
a 75% probability can be considered as a good indicator of
performance.

For the reduction strategies based on consumption, the number
of expected candidate models at 75% probability increases as the
demand limit increases. For the reduction strategy, Consumption
5% the expected number of candidate scenarios is 101, and for
Consumption 50%, this value rises to 122. This indicates a decrease
Fig. 11. Network reduced using a combination of angle and extension.
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Table 1
Comparison of the number of nodes and pipes obtained after the reduction following
5 reductions strategies.

Reduction
procedure

Number
of nodes

Node
reduction (%)

Number
of pipes

Pipe
reduction
(%)

Initial network 265 – 295 –
Consumption 5% 222 16.2 278 5.76
Consumption 10% 207 21.9 281 4.75
Consumption 25% 189 28.7 274 7.12
Consumption 50% 180 32.1 295 0
Diameter 150 196 26.0 224 24.1
Diameter 200 104 60.8 185 37.3
Extension 175 34.0 204 30.9
Angle 135� 196 26.0 225 23.7
Angle 150� 201 24.2 230 22.0
Angle 165� 216 18.5 245 17.0
Extension & Angle 150� 94 64.5 123 58.3
Angle 150� & Extension 129 51.3 158 46.4

Fig. 12. CDF for the expected number of candidate leak scenario in the case of a leak
severity of 100 l/min for the non-reduced network.
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in the performance that is inversely related to the increase in the
number of eliminated nodes. The same behavior is observed for
all reduction strategies.

When considering the performance alone, by comparison of the
results of the reduced networks with that of the non-reduced net-
work, the reduction strategy, Angle 165�, appears the most effec-
tive. For 75% probability, the number of candidate scenarios is 93
for the non-reduced network and 97 for this reduction strategy.

In order to choose a reduction strategy that performs well when
using error-domain model falsification for leak detection, the sen-
sitivity of the performance must be analyzed for different leak
intensities, especially for smaller leaks. To reach this goal, the
CDFs described previously have been computed for leak intensi-
ties: 25 l/min, 50 l/min, 75 l/min, 100 l/min, 150 l/min and
200 l/min. Fig. 15 provides the evolution of the expected number
of candidate leak scenarios for 0.5 (graph (a)), 0.75 (graph (b)),
and 0.95 (graph (c)), probability, respectively, when varying the
leak intensity according to this range. In these three graphs the
horizontal axes are the leak intensity in l/min, and the vertical axis
provides the number of expected candidate leak scenarios.

These graphs show that for large leak intensity, the curves are
parallel. Decreasing the leak intensity from 200 l/min to
100 l/min has the same influence on the performance of each net-
work. However, at 75 l/min a difference is visible. For lower leak
intensities, the curves of three reduced networks (Diameter 200,
Angle 150 & Extension and Extension & Angle 150) increase at a
greater rate than those of the other reduction networks, indicating
that the decrease in performance is faster for these three reduction
strategies than for the others when the leak severity decreases.

Such decrease in performance with these three networks is due
to high reductions in node numbers. Also, the demand is modelled
Table 2
Comparison of flows at sensor positions in terms of the difference between the initial
network and reduced networks.

Reduction strategy Flowmeter 1 Flowmeter 2 Flowmeter 3
Difference (%) Difference (%) Difference (%)

Consumption 5% 0.18 0.00 0.04
Consumption 10% 0.08 0.01 0.03
Consumption 25% 0.01 0.01 0.04
Consumption 50% 5.54 0.04 0.04
Diameter 150 0.17 0.00 0.00
Diameter 200 4.76 0.03 1.90
Extension 0.18 0.00 0.00
Angle 135� 0.19 0.01 0.02
Angle 150� 0.19 0.01 0.04
Angle 165� 0.18 0.00 0.02
Extension & Angle 150� 0.19 0.01 0.14
Angle 150� & Extension 0.19 0.01 0.04

Please cite this article in press as: G. Moser et al., Performance comparison of r
Informat. (2015), http://dx.doi.org/10.1016/j.aei.2015.07.003
at each node using the assumptions described below. For this study
case, the nodal demand is modelled, for each node, using an expo-
nential distribution with the mean equal to the average nodal
consumption.

The non-reduced network and all reduced networks have the
same global consumption. For one network, the mean of nodal
demand is equal to the average nodal demand (global demand
divided by the number of nodes). Due to this, the more nodes elim-
inated, the larger the value of the mean nodal demand. This implies
that the critical point – when the leak intensity is along the same
order of magnitude as the mean nodal demand – is reached faster
for the reduced networks with fewer nodes. When this occurs, the
diagnostic process is unable to differentiate a leak from a variation
of the demand.

The graphs show that the reduction networks that are least sen-
sitive to the leak intensity variation are the following: Extension,
Angle (135–165), Consumption 5% and 10%.
4.5. Pareto analysis

To select the reduction strategies that are most suited for leak
detection using model falsification, a compromise must be found
between the two criteria: (1) reduction of computational time;
and, (2) diagnostic performance. Pareto analysis is used to focus
the compromise on non-dominated cases. The first step is to find
reduction strategies on the Pareto front. Each compromise on this
front is dominated by no other compromise. The second step is to
select the cases that are the most interesting for this application.
Table 3
Relative computation time for each network reduction strategies.

Relative computational time (%)

Initial network 100
Consumption 5% 74.9
Consumption 10% 89.2
Consumption 25% 89.3
Consumption 50% 108.6
Diameter 150 47.9
Diameter 200 32.4
Extension 40.3
Angle 135� 48.7
Angle 150� 67.4
Angle 165� 76.2
Extension & Angle 150� 18.2
Angle 150� & Extension 30.2
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(a) Consumption 5% (b) Consumption  10%

(c) Consumption 25% (d) Consumption 50% 

(e) Diameter 150 (f) Diameter 200 

Fig. 13. CDFs for the expected number of candidate leak scenarios in the case of a leak severity of 100 l/min for: Consumption 5% (a), Consumption 10% (b), Consumption 25%
(c), Consumption 50% (d), Diameter 150 (e) and Diameter 200 (f).
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(a) Extension (b) Angle 135°

(c) Angle 150° (d) Angle 165°

(e) Extension & Angle 150° (f) Angle 150° & Extension 

Fig. 14. CDFs for the expected number of candidate leak scenarios in the case of a leak severity of 100 l/min for: Extension, (a), Angle 135 (b), Angle 155 (c), Angle 165 (d),
Extension & Angle 150 (e) and Angle 150� & Extension (f).
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(a) Probability = 0.5 (b) Probability = 0.75 (c) Probability = 0.95

Fig. 15. Evolution of the expected number of candidate leak scenarios for: (a) 0.5 probability, (b) 0.75 probability and (c) 0.95 probability.
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Considering the performance, the criteria chosen are the follow-
ing: (1) the expected number of candidate leak scenarios with a
probability of 75%; (2) the leak intensity. Instead of computing
the Pareto front for the performance at all leak intensities at once,
the performances at each intensity are compared separately. Then,
all Pareto analyses are considered, and the front which yields the
highest number of dominated strategies (Fig. 16) is employed to
determine the best reduction strategies.

The case with the lowest number of elements on the Pareto
front is the leak intensity of 75 l/min (Fig. 16). The horizontal axis
gives the relative computational time and the vertical axis the
expected number of candidate leak scenarios. The dashed line is
the Pareto front. The strategies located on the front are: Initial
Network, Angle 165�, Extension, Angle 150� & Extension and
Extension & Angle 150�. All other reduction strategies are domi-
nated in this case. Pareto analyses thus reduce the choice from
twelve strategies to four (excluding the Initial Network).
Please cite this article in press as: G. Moser et al., Performance comparison of re
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In addition, the Angle 150� & Extension and Extension & Angle
150� reduction strategies can be eliminated due to the sensitivity
to leak severity as displayed in Fig. 15. Although Angle 165 has good
performance, the computational time is too high (76.2% in compar-
ison to the initial network), and thus, this strategy can also be elim-
inated. Consequently, the result of this study reveals that the
Extension reduction strategy as well suited for leak detection using
model falsification.
5. Discussion

The methodology described in this paper was illustrated using
one network with one sensor configuration. Increasing the number
of sensors will increase the performance of the diagnosis. This will
result in cumulative distribution functions that are situated more
to the left of the curves presented in this paper. The conclusions
duced models for leak detection in water distribution networks, Adv. Eng.
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of this paper are therefore not expected to be influenced by the use
of more sensors. Such a generalization probably cannot be made
for a significantly different network. This paper provides a method-
ology for determining the best reduction strategy for other net-
works. It is a tool to help a manager of a water supply network
to adapt this leak methodology to his network.

Using other diagnostic methodologies may not lead to the same
conclusions. This study was carried out assuming the use of model
falsification for structural identification. Further work could
involve studies of reduction strategies in combination with other
diagnostic methodologies.

Future work will consist of testing the leak detection methodol-
ogy that combines network reduction and error-domain model fal-
sification with measurements in order to illustrate the strengths
and weakness of the methodology through a detailed study of
full-scale application. The performance of the error-domain model
falsification framework can be improved by increasing the quantity
of information that is available. Increasing information can be in
the form of additional sensors or a decrease in the unknowns of
the system.
6. Conclusions

The analysis of the results leads to the following conclusions.
Reduction strategies used in this paper are useful for reproduc-

ing flows with simplified networks.
Since it is possible to reduce computational time to up to 20% of

the time for the non-reduced network, gains can be significant.
The strategies that reduce computational time the most are also

those which are most sensitive to leak severity. Strong network
reduction may lead to decreased performance for small leaks faster
than networks with lighter reduction.

The reduction procedures that are most suited for leak detec-
tion using model falsification are Consumption 10%, Extension and
Angle 135�. A Pareto analysis shows that a good compromise
between the reduction of computational time and diagnostic per-
formance is given by the Extension reduction strategy.
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