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a b s t r a c t

High-utility itemsets mining (HUIM) is a critical issue which concerns not only the occurrence frequen-
cies of itemsets in association-rule mining (ARM), but also the factors of quantity and profit in real-life
applications. Many algorithms have been developed to efficiently mine high-utility itemsets (HUIs) from
a static database. Discovered HUIs may become invalid or new HUIs may arise when transactions are
inserted, deleted or modified. Existing approaches are required to re-process the updated database and
re-mine HUIs each time, as previously discovered HUIs are not maintained. Previously, a pre-large con-
cept was proposed to efficiently maintain and update the discovered information in ARM, which cannot
be directly applied into HUIM. In this paper, a maintenance (PRE-HUI-MOD) algorithm with transaction
modification based on a new pre-large strategy is presented to efficiently maintain and update the dis-
covered HUIs. When the transactions are consequentially modified from the original database, the discov-
ered information is divided into three parts with nine cases. A specific procedure is then performed to
maintain and update the discovered information for each case. Based on the designed PRE-HUI-MOD
algorithm, it is unnecessary to rescan original database until the accumulative total utility of the modified
transactions achieves the designed safety bound, which can greatly reduce the computations of multiple
database scans when compared to the batch-mode approaches.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Data mining is used to reveal meaningful or useful information
from an extensive database. Discovered information or knowledge
can be used to aid mangers or retailers in making efficient deci-
sions or strategies. Association-rule mining (ARM) [2,3,7,22] is a
common way to present the binary relationships between the pur-
chased products in market basket analysis. Agarwal et al. designed
the Apriori algorithm [3] to first mine frequent itemsets (FIs) in a
level-wise way based on the minimum support threshold, and then
combine the discovered FIs to generate association rules (ARs)
based on the minimum confidence threshold. It is insufficient to
mine high profitable itemsets by only considering occurrence fre-
quency in ARM. High-utility itemsets mining (HUIM) was proposed
to find rare itemsets with high profits by considering both profit
and quantity factors [6,25,26]. An item/itemset is considered as a
high-utility itemset (HUI) if its utility is no less than the minimum
utility threshold. Liu et al. presented a Two-Phase model to main-
tain the transaction-weighted downward closure (TWDC) property
of the designed high transaction-weighted utilization itemsets
(HTWUIs) [19]. An additional database scan is required to deter-
mine the actual utilities of the remaining HTWUIs. Many algo-
rithms have been proposed to efficiently mine HUIs from a static
database in batch mode [5,10,15,23]. When the transactions are
frequently changed through insertion [8], deletion [9] or modifica-
tion [13], most approaches discard the previously discovered infor-
mation and then perform a conventional scan on the updated
database to re-mine the required information, which is not practi-
cal in real-life situations.
cation,
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Table 1
A quantitative database.

TID Transaction

1 (A:2), (B:3), (D:1)
2 (A:2), (B:2), (D:1), (E:1)
3 (C:1), (D:2), (G:1)
4 (A:3), (B:2), (D:1), (F:1)
5 (A:1), (B:1), (C:1), (D:1)
6 (A:1), (D:1), (E:1)
7 (B:2), (C:1)
8 (A:1), (B:2), (D:1), (G:1)

Original database

Count difference Negative difference

Prelarge itemsets Large itemsetsSmall itemsets

Zero difference Positive difference

Case 1

Case 2

Case 3

Case 4Case 5Case 6

Case 7

Case 8

Case 9

Fig. 1. Nine cases are created due to transaction modification.

Table 2
Profit table.

Item A B C D E F G

Profit 10 3 5 25 2 3 5
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Since transactions in a real-life environment may change
dynamically, it is a critical issue to efficiently maintain the discov-
ered knowledge without rescanning the original database each
time. In the past, Fast UPdated (FUP) [8], FUP2 [9], and pre-large
[11,12] concepts were proposed to maintain and update the dis-
covered information for transaction insertion and transaction dele-
tion, respectively. For HUIM, it is not an easy task to maintain the
discovered HUIs compared to traditional ARM since quantity and
profit factors are both concerned in HUIM. Fewer maintenance
algorithms for HUIM were proposed to efficiently maintain and
update the discovered HUIs in a dynamic environment with trans-
action insertion [5,16] and transaction deletion [14]. As one of the
three common operations (transaction insertion, deletion, and
modification) in databases, transaction modification is also com-
monly seen in real-life situations since many typos or errors may
occur when the collected data from periodic transactions is
inputted into a computer using a keyboard. For instance, the exam-
ple database as shown in Table 1, when the transaction {6, h(A:1),
(D:1), (E:1)i} in the database needs to be modified as {6, h(A:2),
(B:1), (F:1), (G:9)i} due to the previous typos, the final HUIs of
the updated database will be changed. Thus, some information
may become invalid or new information may arise. Although the
maintenance process of transaction modification can be done by
two procedures which can be performed in either order: first,
delete the incorrect transactions, and second, insert the correct
transactions. It requires twice computations, which is very
time-consuming and impractical. Thus, an efficient maintenance
process for transaction modification is a critical issue and neces-
sary in the dynamic environment. However, the issue of HUIM
with transaction modification has not been proposed, to the best
of our knowledge.

In this paper, a novel PRE-HUI-MOD algorithm is presented to
maintain and update the discovered HTWUIs and HUIs with trans-
action modification. The proposed PRE-HUI-MOD algorithm adopts
a Two-Phase model [19] to set the effective upper bound for dis-
covering HTWUIs and HUIs from the original databases. The dis-
covered HTWUIs and all transaction-weighted utilization
itemsets in the modified transactions are then divided into three
Please cite this article in press as: J.-C.W. Lin et al., A fast updated algorithm to
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parts with nine cases. Each case is handled by the designed proce-
dure to determine whether the discovered HTWUI will still remain
as HTWUI or become non-HTWUI in the updated database. An
additional database scan is required to determine the actual HUIs
of the remaining HTWUIs. Based on the designed framework with
transaction modification, the number of computations can be
greatly reduced until the accumulative total utility in the modified
transactions achieves the designed safety bound. In addition, pre-
viously discovered HTWUIs can be used to help the maintenance
process, thus speeding up computations. Major contributions of
the proposed approach are listed below.

1. We have designed a maintenance algorithm to efficiently
update the discovered HTWUIs for producing HUIs with trans-
action modification compared to the state-of-the-art algorithms
running in batch mode.

2. We extended the pre-large concept in ARM to maintain and
update the discovered HUIs and HTWUIs without multiple
database scans in HUIM.

3. Based on the designed safety bound mechanism, it is unneces-
sary to rescan the updated database each time, unlike
batch-mode algorithms, until the accumulative total utility
achieves the safety bound, which can greatly reduce the data-
base scan computations.

4. Experiments are conducted to show that the proposed mainte-
nance algorithm can efficiently handle the dynamic database
with transaction modification of HUIM, and generally has better
performance compared to the state-of-the-art batch-mode
HUIM algorithms.

2. Related work

In this section, the high-utility itemset mining (HUIM) and the
pre-large concept of ARM are briefly reviewed.

2.1. High-utility itemset mining

High-utility mining is an extension of frequent-itemset mining
[5,6,10,19,25,26]. It considers both quantity and profit factors to
produce more useful and profitable itemsets. An itemset is con-
cerned as a HUI if its utility is no less than the minimum utility
threshold. In the past, Chan et al. proposed a top-k mechanism to
mine both positive and negative high-utility closed patterns [6].
Highly statistical patterns with a new developed pruning strategy
can be discovered efficiently in a level-wise way. Yao et al. applied
mathematical properties to mine HUIs based on designed utility
constraints [23]. Two pruning methods were proposed to reduce
the search space by the utility upper bounds and the expected util-
ity upper bounds. Liu et al. first extended the downward closure
(DC) property of ARM into the transaction-weighted downward
closure (TWDC) property, and presented a Two-Phase model for
mining HUIs [19]. The Two-Phase model is thus designed to effi-
ciently speed up the computations for discovering high
transaction-weighted utilization itemsets (HTWUIs) in a
level-wise way. An additional database scan is then required to
mine actual HUIs from the remaining HTWUIs. The Two-Phase
model can also be modified as a parallelized algorithm using a
Common Count Partitioned Database (CCPD) strategy on shared
memory multi-process architecture [20].
maintain the discovered high-utility itemsets for transaction modification,
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Table 3
Transaction utilities of the given example.

TID Transaction Transaction utility (TU)

1 (A:2), (B:3), (D:1) 54
2 (A:2), (B:2), (D:1), (E:1) 53
3 (C:1), (D:2), (G:1) 60
4 (A:3), (B:2), (D:1), (F:1) 64
5 (A:1), (B:1), (C:1), (D:1) 43
6 (A:1), (D:1), (E:1) 37
7 (B:2), (C:1) 11
8 (A:1), (B:2), (D:1), (G:1) 46
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The above approaches are performed in a level-wise way to
generate-and-test the candidates for mining HUIs. Lin et al. pro-
posed high utility pattern (HUP)-tree algorithm to mine HUIs with-
out candidate generation based on the designed HUP-tree
structure [15]. It keeps the sorted 1-HTWUIs in a descending order
by using three sorting strategies for tree construction. Each node in
the HUP-tree stores the quantities of its prefix items in a branch to
actually mine HUIs without an additional database scan. Vincent
et al. also designed an UP-tree structure to keep high
transaction-weighted utilization 1-itemsets for tree construction
[23]. Each node stores not only the occurrence frequencies of the
processed item in the branch, but also the transaction utility minus
the utilities of items from the previously processed item in the
branch. Two mining algorithms called UP-growth and
UP-growth+ were proposed to efficiently mine HUIs. Since the
pattern-growth mechanism still requires very large amount of
memory to keep the discovered HTWUIs, Liu et al. then designed
a HUI-Miner algorithm to directly mine HUIs without HTWUIs
based on the designed utility-list structure [18]. For the
utility-list structure, each element stores transaction IDs (tids),
the utility of itemset X in the transaction (iutils), and the remaining
utility of itemset X in the transaction (rutils). The computations of
pattern-growth mechanism can be greatly reduced without an
additional database rescan. Fournier-Viger designed an improved
fast high-utility miner (FHM) approach [10] by storing the item
co-occurrences based on HUI-Miner structure, thus reducing join
operations to speed up performance for mining HUIs. More mem-
ory is, however, required for mining HUIs based on the FHM
approach. Experiments showed that the FHM algorithm outper-
forms existing state-of-the-art HUIM algorithms in term of run-
time. Wu et al. also proposed three efficient algorithms for
mining closed + HUIs [24]. From their proposed framework, the
massive number of HUIs can be reduced, and more condense and
concise representation of HUIs can be produced. However, the
above algorithms can only discover HUIs in a static database,
which is not practical in real-life applications.

In real-life situations, transactions may be inserted, deleted, or
modified from the original database. New HUIs may arise and some
existing HUIs may become invalid when the data is changed
(transactions be inserted, deleted, or modified) in the original data-
base. Ahmed et al. presented the IHUP-tree structures with three
designed sorting strategies for mining HUIs with transaction inser-
tion [5]. Lin et al. designed level-wise algorithms to efficiently
mine HUIs with transaction insertion [17] and transaction deletion
[14]. As mentioned previously, transaction modification is also
commonly seen in real-life situations as typos or errors should
be corrected due to intentional or unintentional input by end users.
However, mining HUIs from dynamic databases with transaction
modification has not yet been proposed.

2.2. Pre-large concept of ARM

Many algorithms of ARM have been proposed to mine associa-
tion rules or frequent itemsets from a static database. An itemset is
considered as a frequent itemset if its support ratio is no less than
Please cite this article in press as: J.-C.W. Lin et al., A fast updated algorithm to
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the minimum support threshold. The Fast UPdated (FUP) [8] and
FUP2 [9] concepts were respectively proposed to update the dis-
covered information for transaction insertion and transaction dele-
tion. However, the original database still needs to be rescanned to
handle the itemsets in case 3 [8] for transaction insertion, and the
itemsets in case 4 [9] for transaction deletion.

The pre-large concept was proposed to keep more unpromising
information in the buffer to avoid multiple database scans for han-
dling transaction insertion [11], transaction deletion [12], and
transaction modification [13]. A pre-large itemset is not truly large
(frequent), but has a high probability to be large after the database
is updated. Two support thresholds of Su and Sl are respectively set
to mine large (frequent) or pre-large itemsets in ARM. As the
pre-large itemsets can be used as a buffer to reduce the movement
of an itemset directly from small to large or the other way round,
the very time-consuming computations of multiple database scans
can be greatly reduced. Let the count difference (CD) be the
changes between the transactions before and after modification,
which can be calculated as a positive, zero or negative value.
When transactions are modified in a database, three parts with
nine cases [13] are created as shown in Fig. 1.

The itemsets in case 1 remain large when the database is
updated. The itemsets in cases 2, 5, and 8 remain their original sit-
uation since the CD did not change (zero) after the database was
updated, which will not affect the final frequent itemsets. Some
itemsets in case 3 may become invalid, which will then be
removed from the large itemsets. Some frequent itemsets thus
arise in cases 4 and 7. The itemsets can be easily handled if the
pre-large itemsets are kept in cases 4 and 6. The itemsets in cases
6 and 9 cannot be large since they have negative CDs. In the main-
tenance process, the ratio of the modified transactions in the orig-
inal database is usually very small. An itemset in case 7 cannot
possibly be large after the database is updated as long as the num-
ber of modified transactions is smaller than the safety bound f [13]
as:

f ¼ bðSu � SlÞ � jDjc; ð1Þ

where Su is the upper threshold, Sl is the lower threshold, and |D| is
the number of transactions in the original database.

Note that only occurrence frequency was considered in ARM,
while both quantity and profit factors are considered to reveal
HUIs, HUIM is more complicated than ARM. Although the
pre-large concept in ARM can be used to reduce the computational
cost of multiple database scans, it is insufficient to directly apply
the pre-large concept to maintain and update the discovered
HUIs. Hence, it is not a trivial task to maintain and update the dis-
covered HUIs with transaction modification in the dynamic envi-
ronment. In this paper, we develop an efficient method for
transaction modification in HUIM, which is more practical and
realistic in real-life situations.
3. Preliminaries and problem statement

In this section, the preliminaries and problem statement related
to our proposed approach are defined as follows.

3.1. Preliminaries

Let I = {i1, i2, . . . , im} be a finite set of items in database D, with
each item ij having corresponding profit p(ij). An itemset X 2 I with
k distinct items has length k and is referred to as a k-itemset. The
transitional database is denoted as D = {T1, T2, . . . , Tn}, where
Td 2 D. The quantity q(ij, Td) is the sold quantity of item ij in trans-
action Td. An example database and its profit table are respectively
shown in Tables 1 and 2. As an example of TID 1 (transaction 1) in
maintain the discovered high-utility itemsets for transaction modification,
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Table 4
Transactions before and after modification.

TID Before modification After modification

6 (A:1), (D:1), (E:1) (A:2), (B:1), (F:1), (G:9)

Table 5
Parameters of used datasets.

|D| Total number of transactions
AvgLen Average transaction length
|I| Number of distinct items
Type Dataset type (sparse or dense)

Table 6
Characteristics of used datasets.

Dataset |D| AvgLen |I| Type

Foodmart 21,556 4.4 1559 Sparse
Retail 88,162 10.3 16,470 Sparse
Accidents 340,183 33.8 458 Dense
T10I4D100K 100,000 10.1 870 Sparse

Fig. 2. Experiments of runti
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Table 1: an item (A) is purchased with two quantities; an item (B) is
purchased with three quantities; and an item (D) is purchased with
one quantity. The profit value of (A) is set as 10, which indicates
that the retailer gets 10 profit if one unit of item (A) is sold.

Definition 1 (Utility of an item in transaction). The utility of an
item ij in Td is denoted as u(ij, Td), which can be defined as:
uðij; TdÞ ¼ qðij; TdÞ � pðijÞ; ð2Þ

in which q(ij, Td) is the quantity of an itemset ij in Td, and p(ij) is the
profit of an itemset ij.

For the given example in Table 1, the utility of (A) in TID (= 1) is
calculated as: u(A,T1) = q(A, T1) � p(A) (= 2 � 10) (= 20).
Definition 2 (Utility of an itemset in transaction). The utility of an
itemset X in transaction Td is denoted as u(X, Td), which can be
defined as:

uðX; TdÞ ¼
X

ij2X^X # Td

uðij; TdÞ: ð3Þ

For the given example in Table 1, the utility of (AB) in TID (= 1)
is calculated as: u(AB, T1) = u(A, T1) + u(B, T1) = q(A, T1) � p(A) + q(B,
T1) � p(B) (= 2 � 10 + 3 � 3) (= 29).
me under various MUs.

maintain the discovered high-utility itemsets for transaction modification,
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Fig. 3. Runtime experiments under various MRs.
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Definition 3 (Transaction utility). The transaction utility of trans-
action Td is denoted as TU(Td) and defined as:

TUðTdÞ ¼
Xm

j¼1

uðij; TdÞ; ð4Þ

where m is the number of items in Td.
For the given example in Table 1, the transaction utility in TID

(= 1) is calculated as: TU(T1) = u(A, T1) + u(B, T1) + u(D, T1) (=
20 + 9 + 25) (= 54). The transaction utilities of the running example
in Table 1 are shown in Table 3.
Definition 4 (Total utility of a database). The total utility TUD is the
sum of all transaction utilities in D, which can be defined as:

TUD ¼
X
Td2D

TUðTdÞ: ð5Þ

Hence, the total utility in D is calculated as: TUD = (54 + 53 +
60 + 64 + 43 + 37 + 11 + 46) (= 368).
Definition 5 (High-utility itemset, HUI). An itemset X is a
high-utility itemset (HUI) in database D if its utility in D is no less
than minimum utility count as:
Please cite this article in press as: J.-C.W. Lin et al., A fast updated algorithm to
Adv. Eng. Informat. (2015), http://dx.doi.org/10.1016/j.aei.2015.05.003
HUI X
X

X # Td^Td2D

uðX; TdÞP TUD � e

�����
( )

; ð6Þ
where e is the minimum high utility threshold in the original
database.

Taking an example that runs in both Tables 1 and 3, and suppos-
ing that the minimum utility threshold e is set at 30%. An item (A) is
not considered as a HUI since it appears in TID (=1, 2, 4, 5, 6, 8); the
utility of (A) is calculated as u(A) = u(A, T1) + u(A, T2) + u(A, T4) + u(A,
T5) + u(A, T6) + u(A, T8) (= 20 + 20 + 30 + 10 + 10 + 10) (= 100), which
is less than the minimum utility count as (0.3 � 368) (= 110.4). An
itemset (AD) is considered as a HUI since (AD) appears in TID (= 1,
2, 4, 5, 6, 8); the utility of (AD) is calculated as u(AD) = u(AD,
T1) + u(AD, T2) + u(AD, T4) + u(AD, T5) + u(AD, T6) + u(AD, T8) (=
45 + 45 + 55 + 35 + 35 + 35) (= 250), which is larger than the mini-
mum utility count (250 > 110.4).

From the above example, it can be observed that an item (A) is
not a HUI but its superset of an itemset (AD) is concerned as a HUI.
Thus, the downward closure (DC) property of ARM is not suitable
for HUIM. Liu et al. presented a Two-Phase model [19] and the
transaction-weighted downward closure (TWDC) property to first
generate the high transaction-weighted utilization itemsets
(HTWUIs), and then rescan the original database for the remaining
maintain the discovered high-utility itemsets for transaction modification,
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HTWUIs to produce the actual HUIs. The definition of Two-Phase
model is given below.

Definition 6 (Transaction-weighted utility of an itemset). The
transaction-weighted utility of an itemset X is the sum of all
transaction utilities TU(Td) containing itemset X in D, which is
defined as:

TWUDðXÞ ¼
X

X # Td^Td2D

TUðTdÞ: ð7Þ
Definition 7 (High transaction-weighted utilization itemset,
HTWUI). An itemset is called a high transaction-weighted utiliza-
tion itemset (HTWUI) if its transaction-weighted utility (TWU) is
no less than the minimum utility count as:

HTWUI fXjTWUDðXÞP e� TUDg ð8Þ

For example, the transaction-weighted utility of (A) is
calculated as TWUD(A) = TU(T1) + TU(T2) + TU(T4) + TU(T5) + TU(T6) +
TU(T8) (= 54 + 53 + 64 + 43 + 37 + 64) (= 297); an item (A) is con-
cerned as a HTWUI since TWUD(A) (= 297 > 110.4).
3.2. Problem statement

Given a transactional quantitative database D, a user-specified
profit table p-table, and a minimum high utility threshold e, the
changed parts in D before and after modification are respectively
denoted as T and T0. The maintenance problem with transaction
modification in HUIM is to efficiently maintain and update the
set of the discovered high-utility k-itemsets as:

HUI X
X

X # Td^Td2D

uðX; TdÞP TUD þ TUT0 � TUT
� �

� e

�����
( )

ð9Þ
4. Proposed maintenance algorithm with transaction
modification

In this section, a new pre-large strategy is designed to maintain
and update the discovered HUIs in HUIM. Since both profit and
quantity factors are concerned in HUIM, it is a different way to
maintain the discovered information when compared to the
pre-large concept in ARM. The notations used in the proposed algo-
rithm are given below.

4.1. Notations
P
A

D

lease cite thi
dv. Eng. Info
Original quantitative database, D = {T1, T2, . . . , Tn},
in which each transaction Tj contains several items
with sold quantities
I
 A set of m items, I = {i1, i2, . . . , im}, in which each
item ij has its own profit value p(ij) and quantity
q(ij, Td) in transaction Td
T
 Transactions before modification

T0
 Transactions after modification

U
 Entire updated database, i.e., D � T + T0
TUD
 Total utility of the transactions in D

TUT
 Total utility of the transactions before modification

in T

TUT0
 Total utility of the transactions after modification

in T
0
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rmat. (2015), http://dx.doi.org/10.1016/j.aei.2015.05.003
TUM
aintain the d
Total utility of the transactions before and after
modification
TUU
 Total utility of the transactions in U

buf
 Stores the total utility of the last processed

transactions for transaction modification. It is set
at 0 when the database is rescanned
X
 An itemset containing k distinct items

Su
 Upper utility threshold for large (high)

transaction-weighted utilization and high-utility
itemsets. It is the same as the high utility threshold
in traditional utility mining
Sl
 Lower utility threshold for prelarge
transaction-weighted utilization and prelarge
utility itemsets, Su > Sl
f
 Safety transaction utility bound for transaction
modification
Cr
 Set of candidate r-itemsets

TWUD(X)
 Transaction-weighted utilization of an itemset X in

the original database

TWUM(X)
 Transaction-weighted utilization of an itemset X

before and after modification;

TWUU(X)
 Transaction-weighted utilization of an itemset X in

the updated database

HTWUID

r

Set of large (high) transaction-weighted utilization
r-itemsets in the original database
HTWUIsD
 Set of large (high) transaction-weighted utilization
itemsets in the original database
PTWUID
r

Set of prelarge transaction-weighted utilization
r-itemsets in the original database
PTWUIsD
 Set of prelarge transaction-weighted utilization
itemsets in the original database
HTWUIU
r

Set of large (high) transaction-weighted utilization
r-itemsets in the updated database
HTWUIsU
 Set of large (high) transaction-weighted utilization
itemsets in the updated database
PTWUIU
r

Set of prelarge transaction-weighted utilization
r-itemsets in the updated database
PTWUIsU
 Set of prelarge transaction-weighted utilization
itemsets in the updated database
u(X)
 Actual utility of an itemset X in the updated
database
HUIsU
 Set of high-utility itemsets in the updated database
4.2. Maintenance strategy of HUIM

In real-life applications, transactions do not remain in a static
state, but instead they are dynamically inserted, deleted, or modi-
fied in their original databases. Intuitively, transaction modifica-
tion [13] can be simply considered as transaction insertion
followed by transaction deletion. A conventional way for handling
transaction modification requires two steps, which is inefficient in
maintaining and updating the discovered information. The
pre-large concept of transaction modification in ARM indicates that
the small itemsets could not be large, and or the other way around,
when the number of accumulative modified transactions is less
than the designed safety bound. Since the pre-large concept of
ARM cannot be directly applied to HUIM for transaction modifica-
tion, it is necessary to develop a new approach to maintain and
update the discovered HUIs for transaction modification in HUIM.
The designed safety bound of the total utility in the modified trans-
actions can be obtained as:

TUM ¼ f 6 ðSu � SlÞ � TUD; ð10Þ
iscovered high-utility itemsets for transaction modification,
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where TUM is the total utility for the modified transactions, and TUD

is the total utility in the original database.

Definition 8. Transactions before modification are projected and
denoted as T; Transactions after modification are also projected
and denoted as T

0
.

In this example, the transactions before and after modification are
then shown in Table 4.

Definition 9. The total utility in the modified transactions is
denoted as TUM, which is defined as:

TUM ¼ TUT0 � TUT : ð11Þ

In this example, the total utility before transaction modification
is calculated as TUT (= 1 � 10 + 1 � 25 + 1 � 2) (= 37). The total util-
ity after transaction modification is calculated as TUT0 (=
2 � 10 + 3 � 3 + 1 � 3 + 9 � 5) (= 77). The TUM is then calculated
as TUM (= 77 � 37) (= 40).
Definition 10. The modified TWUM of an itemset X for the
modified transactions is the TWU difference of an itemset X before
(in T) and after modification (in T0), which is defined as:

TWUMðXÞ ¼ TWUT0ðXÞ � TWUTðXÞ: ð12Þ
Definition 11. The updated TWUU of an itemset X for the updated
database is the TWUD in the original database plus TWUM, which is
defined as:

TWUUðXÞ ¼ TWUDðXÞ þ TWUMðXÞ: ð13Þ
Definition 12. The total utility for the updated database (TUU) is
calculated as the total utility in the original database (in D) plus
the total utility for the modified transactions, which is defined as:

TUU ¼ TUD þ TUM ¼ TUD þ TUT0 � TUT : ð14Þ
Lemma 1. An itemset X is small in the original database (D) (not
existing in HTWUID), but is HTWUIM in the modified transactions
(M), then it will not be a HTWUIU in the updated database (U).
Proof. For an original database, an itemset X is small

transaction-weighted utilization itemset if TWUDðXÞ
TUD < Sl. For the

modified transactions, an itemset X is a HTWUI in M if
TWUMðXÞ

TUM P Su. For the updated database, the TWU value of an item-
set X becomes TWUU(X) = TWUD(X) + TWUM(X). Therefore:

TWUUðXÞ
TUU ¼ TWUDðXÞ þ TWUMðXÞ

TUD þ TUM ; since TWUDðXÞ < Sl � TUD;

TWUDðXÞ þ TWUMðXÞ
TUD þ TUM <

Sl � TUD þ TWUMðXÞ
TUD þ TUM :

h

From the above definitions, it can be obtained that:

TUM ¼ f 6 ðSu � SlÞ � TUD ) TUM
6 Su � TUD � Sl � TUD

) TUM þ Sl � TUD
6 Su � TUD

Since TWUM(X) < TUM, thus:

TWUDðXÞ þ TWUMðXÞ
TUD þ TUM <

Sl � TUD þ TUM

TUD þ TUM <
Su � TUD

TUD þ TUM < Su:
Please cite this article in press as: J.-C.W. Lin et al., A fast updated algorithm to
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Lemma 2. An itemset X is small both in the original database (D) and
in the modified transactions (M), then it will still remain small in the
updated database (U).
Proof. For an original database, an itemset X is small

transaction-weighted utilization itemset if TWUDðXÞ
TUD < Sl. For the

modified transactions M, an itemset X is a small

transaction-weighted utilization itemset if TWUM ðXÞ
TUM < Sl. For the

updated database, the TWU value of an itemset X becomes
TWUU(X) = TWUD(X) + TWUM(X). Therefore:

TWUUðXÞ
TUU ¼ TWUDðXÞ þ TWUMðXÞ

TUD þ TUM 6 Su

Since TWUD(X) < Sl � TUD, and TWUM(X) < Sl � TUM, thus:

TWUDðXÞ þ TWUMðXÞ
TUD þ TUM <

Sl � TUD þ Sl � TUM

TUD þ TUM :

h

From the above definitions, it can be obtained that
TUM þ Sl � TUD

6 Su � TUD, and Sl � TUM < TUM, thus:

TWUDðXÞ þ TWUMðXÞ
TUD þ TUM <

Sl � TUD þ TUM

TUD þ TUM <
Su � TUD

TUD þ TUM < Su:

Based on the developed pre-large strategy for HUIM, the small
transaction-weighted utilization itemsets could not be HTWUIs
in the updated database until the number of accumulative total
utility for the modified transactions achieves the designed safety
bound.

5. Proposed PRE-HUI-MOD algorithm

Details of the proposed algorithm for transaction modification
in HUIM is described in Algorithm 1.

Algorithm 1. Proposed PRE-HUI-MOD algorithm

INPUT: D, T, T0, TUD, HTWUIsD, PTWUIsD, Su and Sl.
OUTPUT: U (= D � T + T0), HTWUIsU, PTWUIsU, and HUIsU.
1. set buf := 0.
2. compute f := (Su � Sl) � TUD.
3. scan T and T0 to compute TUT and TUT0.
4. compute TUM := TUT0 � TUT.
5. compute TUU := TUD + TUM.
6. if (buf + TUM) 6 f then

buf := buf + TUM.
for each X 1-itemset in T and T0 do

find TWUT(X) and TWUT0(X).
compute TWUM(X) := TWU(X)T0 � TWU(X)T.

end for
C1 X.

else
set U D � T + T0.
scan U to find HTWUIs, PTWUIs, and HUIs in a level-wise

way.
set HTWUIsD HTWUIsU.
set PTWUIsD PTWUIsU.
set HUIsD HUIsU.
set buf := 0.
terminate algorithm.

end if

(continued on next page)
maintain the discovered high-utility itemsets for transaction modification,
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P
A

7. set r := 1.
8. for each r-itemset of X in Cr do

if ðX 2 HTWUID
r ; PTWUID

r Þ then
compute TWUU(X) := TWUD(X) + TWUM(X).
if (TWUU(X) P TUU � Su) then

HTWUIU
r  X.

else if (TUU � Sl 6 TWUU(X) < TUU � Su) then
PTWUIU

r  X.
end if

else
R_set X.

end if
end for

9. if (R_set – null) then
for each X in R_set do

scan D to find TWUD(X).
compute TWUU(X) := TWUD(X) + TWUM(X).
if (TWUU(X) P TUU � Su) then

HTWUIU
r  X.

else if (TUU � Sl 6 TWUU(X) < TUU � Su) then
PTWUIU

r  X.
end if

end for
end if
lease cite this article in press as: J.-C.W. Lin et al., A fast updated algorithm to
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10. set r := r + 1.
11. Cr  HTWUIU

r�1 [ PTWUIU
r�1.

12. repeat STEPs 8 to 11 until Cr := null.
13. for (HTWUIU

k  k :¼ 1; rÞ do

scan U to compute u(X) from HTWUIU
k .

if (u(X) P TUU � Su) then
HUIU

k  X.
end if

end for
14. HTWUIsU  [ HTWUIsU

k .

15. PTWUIsU  [ PTWUIsU
k .

16. HUIsU  [ HUIsU
k .

17. set HTWUIsD  HTWUIsU .
18. set PTWUIsD  PTWUIsU .
19. set HUIsD  HUIsU .

In the proposed PRE-HUI-MOD algorithm, it takes input as D, T,
T0, TUD, HTWUIsD, PTWUIsD, Su and Sl. The developed safety bound is
first calculated to determine whether the updated database needs
to be rescanned (Step 2). The total utility before and after
transaction modification is also calculated (Step 4). Afterwards,
the total utility in the updated database is then found (Step 5).
maintain the discovered high-utility itemsets for transaction modification,
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The 1-itemsets in the transactions before and after modification
are then derived to find their TWU values (Step 6). When the
total utility in the modified transactions archives the designed
safety bound, the database is then required to be rescanned with
batch-mode processing for mining HUIs (Step 6). The derived can-
didate 1-itemsets are then determined with the discovered
HTWUID

1 and PTWUID
1 in a level-wise way to check whether they

are larger than or equal to the minimum utility count, or lie
between the two minimum utility counts (Step 8). If the derived
candidate 1-itemset from step 6 does not satisfy the condition in
step 8, it is then put into the set of R_set for later processing. If
R_set is not null, it is necessary to rescan the original database
to find the TWU values of itemsets existing in R_set (Step 9). A
similar determination procedure to step 6 is then processed to
determine whether the processed itemsets satisfy the condition
as the high transaction-weighted utilization 1-itemsets
(HTWUIs) and pre-large transaction-weighted utilization
1-itemsets (PTWUIs). After the 1-itemsets of HTWUIs and
PTWUIs are completely determined, the Apriori-like algorithm is
then processed to level-wisely produce the HTWUIs (Steps 11 to
12). After that, the remaining HTWUIs are then processed to find
their actual HUIs (Step 13). The discovered HTWUIsU, PTWUIUs and
HUIsU at each level are then merged (Steps 14 to 16). Finally, the
discovered information will be used as next iteration for transac-
tion modification (Steps 17 to 19).
Please cite this article in press as: J.-C.W. Lin et al., A fast updated algorithm to
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5.1. Experimental evaluation

Note that mining HUIs from dynamic databases with transac-
tion modification has not yet been proposed before. In this section,
the proposed PRE-HUI-MOD algorithm is compared to three
batch-mode algorithms, including the well-known Two-Phase
algorithm [19], the HUI-Miner [18], and the state-of-the-art FHM
[10] algorithms, in terms of runtime, memory consumption, and
the number of the discovered patterns. Since the Two-Phase algo-
rithm, HUI-Miner, and FHM algorithms were designed to handle a
static database, they performed in a conventional way to rescan an
updated database each time after transactions are consequentially
modified from an original database (our dynamic environment set-
ting). The Two-Phase algorithm used in the experiments has been
improved by our designed granular mechanism, which can be used
to speed up the computations [14]. The HUI-Miner and FHM are
both the state-of-the-art algorithms that mine HUIs in batch mode,
so it is unnecessary to perform other HUIM algorithm comparisons
in our experiments such as IHUPTWU [5] and UP-growth+ [23]. The
experimental descriptions and results are described below.

5.2. Experimental environment

The four compared algorithms of the Two-Phase model, the
HUI-Miner, the FHM, and the proposed PRE-HUI-MOD in the
maintain the discovered high-utility itemsets for transaction modification,
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experiments were implemented in the Java computer program-
ming language on a personal computer with an Intel 2.6-GHz
dual-core processor and 4 GB of RAM, running the 32-bit
Microsoft Windows 7 operating system. The three real-life food-
mart [21], accidents [1], and retail [1] datasets, and one synthetic
T10I4D100K dataset [4], were used to evaluate the performance
of the proposed PRE-HUI-MOD algorithm when compared to those
of the Two-Phase, HUI-Miner and the FHM algorithms. The food-
mart dataset was collected from an anonymous chain store. It is
a quantitative dataset of the products sold by the chain store.
The accidents dataset contains anonymous traffic accident data
on a public road in Belgium. The retail dataset contains anonymous
retail market basket data from a retail store in Belgian. The syn-
thetic T10I4D100K and T10I4N4KD|X|K datasets were generated
by IBM Quest Synthetic Data Generation Code. With the exception
of the foodmart dataset, both quantity (internal) and profit (exter-
nal) values are assigned to the items in the accident, retail,
T10I4D100K and T10I4N4KD|X|K datasets by Liu’s simulation
model [19]. The parameters and characteristics are respectively
shown in Tables 5 and 6.

In the conducted experiments, a modification ratio (MR) was set
for the number of modified transactions in the datasets. Note that
the related MR of each dataset was given at the top of all figures in
experiments. The transactions for modification (|D| �MR) were
consequentially selected bottom-up from the original dataset,
which will be replaced and modified to top-down transactions
Please cite this article in press as: J.-C.W. Lin et al., A fast updated algorithm to
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from the original dataset. For example, the dataset size of foodmart
is 21,556, and its MR is set as 1% (shown in Fig. 3(a)). The
bottom-up (21,556 � 1%) (= 215) transactions from the foodmart
dataset are selected to be modified as top-down (21,556 � 1%) (=
215) transactions. The next 215 bottom-up transactions from
21125th to 21340th are consequentially selected to be modified
as the top-down 216th to 431th transactions. Five iterations of
transaction modification are performed for each algorithm. Note
that the number of iterations can be defined according to the user’s
preference. The other datasets adopted the given MR settings for
the results of Figures in the dynamic environment.
5.3. Runtime

The runtime of the proposed PRE-HUI-MOD algorithm is then
compared to those of the Two-Phase, HUI-Miner and the FHM algo-
rithms in the four datasets. Since the Two-Phase model [19],
HUI-Miner [18] and the FHM [10] algorithms are performed in
batch mode, they have to rescan the original dataset and re-mine
for HTWUIs or HUIs after each transaction modification. The pro-
posed PRE-HUI-MOD only needs to maintain and update the dis-
covered HTWUIs and PTWUIs for the later HUI mining process.
The PTWUIs are kept for maintenance, and hence, it is unnecessary
to rescan the original dataset until the accumulative total utility for
transaction modification achieves the safety bound. The conducted
maintain the discovered high-utility itemsets for transaction modification,
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experiments for runtime under various minimum utility thresh-
olds (MUs) with a fixed MR are shown in Fig. 2.

From Fig. 2, it can be observed that the proposed PRE-HUI-MOD
algorithm has better performance compared to those of
Two-Phase, HUI-Miner and FHM algorithms in the four datasets.
The batch-mode FHM algorithm has better performance compared
to those of other two batch-mode algorithms, except in the food-
mart dataset as shown in Fig. 2(a). For the accidents dataset shown
in Fig. 2(c), the proposed PRE-HUI-MOD algorithm requires more
runtime under the lower minimum utility threshold compared to
the HUI-Miner and FHM algorithms. The PRE-HUI-MOD algorithm
is almost two orders of magnitude faster than the other algorithms
as it is unnecessary to rescan the original dataset until the accumu-
lative total utility in the modified transactions achieves the
designed safety bound based with the pre-large concept. The con-
ducted experiments for runtime under various modification ratios
with a fixed minimum utility threshold (MU) are shown in Fig. 3.
Since the datasets have different characteristics, the various MUs
are respectively set at 0.01% for foodmart dataset, 0.15% for retail
dataset, 5% for accidents dataset and 0.3% for T10I4D100K dataset.

In Fig. 3, is can be observed that the proposed PRE-HUI-MOD
algorithm still has a better performance than the Two-Phase,
HUI-Miner and FHM algorithms under various modification ratios
in all datasets. Also, another very interesting result can be observed
from Fig. 3 that the runtime of the proposed PRE-HUI-MOD algo-
rithm increases whereas the runtime of the Two-Phase,
HUI-Miner and FHM algorithms remains steady, and so the gap
between the proposed PRE-HUI-MOD algorithm becomes smaller
Please cite this article in press as: J.-C.W. Lin et al., A fast updated algorithm to
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compared to the other three algorithms along with increasing
MR. When the size of transactions for modification is increased,
more computations are required to partition the discovered
HTWUIs and PTWUIs into several cases for maintenance based
on the proposed PRE-HUI-MOD algorithm, which can be observed
from Fig. 3; this result indicates that the proposed PRE-HUI-MOD
algorithm is more efficient in handling small size transactions for
modification. Since only few transactions require daily or monthly
modifications, the proposed PRE-HUI-MOD algorithm is much
more suitable for real-world applications compared to the other
batch-mode algorithms. Besides, it is unnecessary to rescan origi-
nal dataset until the accumulative total utility number for the
modified transactions achieves the safety bound based on the
designed PRE-HUI-MOD algorithm. The accumulative value
increases along with the increasing transactions size modifications,
which indicates that the updated dataset may require rescanning
each time.

5.4. Number of discovered patterns

The number of patterns of the proposed PRE-HUI-MOD algo-
rithm is then compared to those of the Two-Phase, HUI-Miner
and the FHM algorithms in the four datasets. The Two-Phase algo-
rithm uses HTWUIs to reduce the number of candidates in the min-
ing process, but the HUI-Miner and FHM algorithms adopted the
utility-list structure for directly mining HUIs without candidate
generation. The proposed PRE-HUI-MOD algorithm adopted not
only HTWUIs based on the Two-Phase model, but also the
maintain the discovered high-utility itemsets for transaction modification,
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PTWUIs based on the pre-large concept. The number of HTWUIs,
HUIs, and PTWUIs under various MUs with a fixed MR, and also
under various MRs with a fixed MU, are then compared and shown
in Figs. 4 and 5 respectively.

From Figs. 4 and 5, it can be observed that the number of
HTWUIs is very large compared to the number of PTWUIs in the
four datasets. From the numerous HTWUIs produced by
the Two-Phase and the proposed PRE-HUI-MOD algorithms in
the experiments, rare HUIs are then produced from the remaining
HTWUIs. Since the HUI-Miner and FHM algorithms can directly
generate HUIs, it is unnecessary to generate the candidates of
HTWUIs. It can also be observed that fewer PTWUIs are kept based
on the proposed PRE-HUI-MOD algorithm, but the computations
can be greatly improved compared to those of the Two-Phase,
HUI-Miner and FHM algorithms.

5.5. Memory consumption

The memory consumption of the proposed PRE-HUI-MOD algo-
rithm is then compared to those of the Two-Phase, HUI-Miner and
the FHM algorithms in the four datasets. The results under various
MUs with a fixed MR, and under various MRs with a fixed MU, are
respectively shown in Figs. 6 and 7.

From Figs. 6 and 7, it can be observed that the proposed
PRE-HUI-MOD algorithm requires a similar amount of memory
consumption as the Two-Phase and HUI-Miner algorithms, espe-
cially in the accidents and T10I4D100K datasets shown in
Figs. 6(c) and (d) and 7(c) and (d). More memory is required of
the proposed PRE-HUI-MOD algorithm compared to those of the
Two-Phase and HUI-Miner algorithms in the foodmart and retail
datasets, which can be observed from Figs. 6(a) and (b),
7(a) and (b). The reason is that the proposed PRE-HUI-MOD algo-
rithm is required to keep the additional PTWUIs for maintenance,
especially for a sparse dataset. The memory consumption gap
between the proposed PRE-HUI-MOD and HUI-Miner algorithms
Please cite this article in press as: J.-C.W. Lin et al., A fast updated algorithm to
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reduces along with increasing MUs, which can be observed from
Fig. 6(a) and (b). From the above results, it can be concluded that
the proposed PRE-HUI-MOD algorithm is acceptable to achieve
the trade-off between the runtime, the number of patterns, and
memory consumption.

5.6. Scalability

The scalability of the proposed PRE-HUI-MOD algorithm is then
compared to those of the Two-Phase, HUI-Miner, and the FHM
algorithms in the T10I4N4KD|X|K dataset. The MU was set at
0.15%, and the MR were respectively set at 0.1% and 0.5%. The data-
set size |X| was set at 100 to 500, with increments 100 (K) each
time. The results are shown in Fig. 8.

From Fig. 8(a) and (c), it can be observed that the proposed
PRE-HUI-MOD algorithm is two orders of magnitude faster than
other algorithms in terms of runtime. The runtime of the
Two-Phase algorithm is sharply increased whereas those of the
HUI-Miner, FHM and PRE-HUI-MOD algorithms steadily increased
along with increasing dataset size and MR. The number of gener-
ated PTWUIs with the proposed PRE-HUI-MOD algorithm is gener-
ally smaller than the number of HUIs. Less memory consumption is
required for the proposed PRE-HUI-MOD algorithm when com-
pared to the FHM algorithm in batch mode, as shown in
Fig. 8(b) and (e). The memory consumption gap between the pro-
posed PRE-HUI-MOD algorithm and the other algorithms became
smaller when the MR was set at 1%. The proposed PRE-HUI-MOD
algorithm is still one order of magnitude faster than the other algo-
rithms. Hence, the proposed PRE-HUI-MOD algorithm has accept-
able scalability results.

In the experiments, the proposed PRE-HUI-MOD algorithm per-
formed five maintenance iterations. In a real-life situation, the
dataset would be then consequentially and continuously changed.
Since the Two-Phase, HUI-Miner and FHM algorithms all per-
formed in batch-mode approach, the proposed PRE-HUI-MOD
maintain the discovered high-utility itemsets for transaction modification,
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algorithm can thus achieve better performance compared to
batch-mode algorithms in a dynamic environment, especially
when the number of modification is increased.

6. Comparative analysis

It is more complicated to maintain the discovered HUIs since
the discovered information may become invalid or the invalid
information may be arisen in dynamic databases. Most algorithms
[6,19,23,25,26] of HUIM only handle the static databases and some
algorithms are further designed to handle the dynamic environ-
ments of transaction insertion [5,16] and transaction deletion
[14]. Although transaction modification can be concerned as the
insertion operation followed by deletion operation or vice versa,
it takes twice operations and time-consuming process to maintain
the discovered information. To the best of our knowledge, transac-
tion modification of HUIM is also common seen in real-life situa-
tions but has not been proposed yet. The proposed maintenance
algorithm can efficiently maintain the discovered information
when some transactions are modified, which is different than the
past two operations (insertion and deletion) in dynamic databases
and cannot be compared in the conducted experiments. From the
conducted experiments of the past batch-mode algorithms
[10,18,19], it can be found that the proposed PRE-HUI-MOD has
best results among them. The proposed maintenance algorithm is
thus acceptable and reasonable in real-life situations.

7. Conclusion and future work

In a real-life environment, a database is usually found in a
dynamic environment as the transactions in the database are fre-
quently inserted, deleted or modified. Transaction modification is
also commonly seen in real-world applications, especially as errors
or typos may frequently occur when information is inputted into a
computer using a keyboard. Although transaction insertion is fol-
lowed by transaction deletion, or deletion followed by insertion,
can be concerned as a batch process for transaction modification,
it takes twice operations and time-consuming processes to main-
tain and update the discovered HUIs. Thus, it is an important task
to design a maintenance algorithm for transaction modification,
and thus efficiently update the discovered HUIs in dynamic
databases.

In this paper, based on a new developed pre-large strategy, an
efficient algorithm called PRE-HUI-MOD algorithm is proposed to
maintain and update the discovered HUIs of HUIM for handling
transaction modification. When transactions are modified, the pro-
posed PRE-HUI-MOD algorithm partitions the discovered HTWUIs
into three parts, creating nine cases according to whether they
are HTWUIs or small transaction-weighted utilization itemsets in
the original database and in the modified transactions. Each part
is then executed by the designed procedure to respectively main-
tain and update the discovered HTWUIs. A safety bound is also
designed to reduce database rescan computations when transac-
tions are modified. From the experimental results, it can be
observed that the proposed PRE-HUI-MOD algorithm outperforms
existing batch-mode algorithms in several databases in terms of
execution time and scalability.

Since the proposed PRE-HUI-MOD algorithm applied the
generate-and-test mechanism and the Two-Phase model for
level-wisely mining HUIs, extra memory is required to maintain
the HTWUIs and PTWUIs. In the near future, the utility-list struc-
ture will be extended to handle the maintenance approach
whether it is insertion, deletion, or modification. The computations
Please cite this article in press as: J.-C.W. Lin et al., A fast updated algorithm to
Adv. Eng. Informat. (2015), http://dx.doi.org/10.1016/j.aei.2015.05.003
can thus be greatly improved without candidate generations for
directly producing HUIs.

Acknowledgement

This research was partially supported by the Tencent Project
under Grant CCF-TencentRAGR20140114, by the Shenzhen
Peacock Project, China, under Grant KQC201109020055A, by the
Natural Scientific Research Innovation Foundation in Harbin
Institute of Technology under Grant HIT.NSRIF.2014100, and by
the Shenzhen Strategic Emerging Industries Program under Grant
ZDSY20120613125016389.

References

[1] Frequent Itemset Mining Dataset Repository, 2012. <http://fimi.ua.ac.be/
data/>.

[2] R. Agrawal, T. Imielinski, A. Swami, Database mining: a performance
perspective, IEEE Trans. Knowl. Data Eng. 5 (1993) 914–925.

[3] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large
databases, in: The International Conference on Very Large Data Bases, 1994, pp.
487–499.

[4] R. Agrawal, R. Srikant. Quest Synthetic Data Generator, 1994. <http://www.
Almaden.ibm.com/cs/quest/syndata.html>.

[5] C.F. Ahmed, S.K. Tanbeer, B.S. Jeong, Y.K. Lee, Efficient tree structures for high
utility pattern mining in incremental databases, IEEE Trans. Knowl. Data Eng.
21 (2009) 1708–1721.

[6] R. Chan, Q. Yang, Y.D. Shen, Mining high utility itemsets, in: IEEE International
Conference on Data Mining, 2003, pp. 19–26.

[7] M.S. Chen, J. Han, P.S. Yu, Data mining: an overview from a database
perspective, IEEE Trans. Knowl. Data Eng. 8 (1996) 866–883.

[8] D.W.L. Cheung, J. Han, V. Ng, C.Y. Wong, Maintenance of discovered association
rules in large databases: an incremental updating technique, in: International
Conference on Data Engineering, 1996, pp. 106–114.

[9] D.W.L. Cheung, S.D. Lee, B. Kao, A general incremental technique for
maintaining discovered association rules, in: The International Conference
on Database Systems for Advanced Applications, 1997, pp. 185–194.

[10] P. Fournier-Viger, C.W. Wu, S. Zida, V.S. Tseng, Fhm: faster high-utility itemset
mining using estimated utility co-occurrence pruning, Found. Intell. Syst. 8502
(2014) 83–92.

[11] T.P. Hong, C.Y. Wang, Y.H. Tao, A new incremental data mining algorithm using
pre-large itemsets, Intell. Data Anal. 5 (2001) 111–129.

[12] T.P. Hong, C.Y. Wang, Maintenance of association rules using pre-large
itemsets, Intell. Databases: Technol. Appl. (2007) 44–60.

[13] T.P. Hong, C.Y. Wang, An efficient and effective association-rule maintenance
algorithm for record modification, Expert Syst. Appl. 37 (2010) 618–626.

[14] C.W. Lin, T.P. Hong, G.C. Lan, J.W. Wong, W.Y. Lin, Efficient updating of
discovered high-utility itemsets for transaction deletion in dynamic databases,
Adv. Eng. Inform. (2015) 16–27.

[15] C.W. Lin, T.P. Hong, W.H. Lu, An effective tree structure for mining high utility
itemsets, Expert Syst. Appl. 38 (2011) 7419–7424.

[16] C.W. Lin, G.C. Lan, T.P. Hong, An incremental mining algorithm for high utility
itemsets, Expert Syst. Appl. 39 (2012) 7173–7180.

[17] C.W. Lin, T.P. Hong, G.C. Lan, J.W. Wong, W.Y. Lin, Incrementally mining high
utility patterns based on pre-large concept, Appl. Intell. 40 (2014) 343–357.

[18] M. Liu, J. Qu, Mining high utility itemsets without candidate generation, in:
ACM International Conference on Information and Knowledge Management,
2012, pp. 55–64.

[19] Y. Liu, W.K. Liao, A. Choudhary, A two-phase algorithm for fast discovery of
high utility itemsets, Adv. Knowl. Discov. Data Min. (2005) 689–695.

[20] Y. Liu, W.K. Liao, A. Choudhary, A fast high utility itemsets mining algorithm,
in: International Workshop on Utility-based Data Mining, 2005, pp. 90–99.

[21] Microsoft. Example Database Foodmart of Microsoft Analysis Services. <http://
msdn.microsoft.com/en-us/library/aa217032(SQL.80).aspx>.

[22] B. Nath, D.K. Bhattacharyya, A. Ghosh, Incremental association rule mining: a
survey, WIREs Data Min. Knowl. Discov. 3 (2013) 157–169.

[23] V.S. Tseng, B.E. Shie, C.W. Wu, P.S. Yu, Efficient algorithms for mining high
utility itemsets from transactional databases, IEEE Trans. Knowl. Data Eng. 25
(2013) 1772–1786.

[24] C.W. Wu, Philippe Fournier-Viger, Philip S. Yu, Vincent S. Tseng, Efficient
algorithms for mining the concise and lossless representation of closed+ high
utility itemsets, in: IEEE International Conference on Data Mining, 2011, pp.
824–833.

[25] H. Yao, H.J. Hamilton, C.J. Butz, A foundational approach to mining itemset
utilities from databases, in: SIAM International Conference on Data Mining,
2004, pp. 482–486.

[26] H. Yao, H.J. Hamilton, Mining itemset utilities from transaction databases, Data
Knowl. Eng. 59 (2006) 603–626.
maintain the discovered high-utility itemsets for transaction modification,

http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0010
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0010
http://www.Almaden.ibm.com/cs/quest/syndata.html
http://www.Almaden.ibm.com/cs/quest/syndata.html
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0025
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0025
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0025
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0035
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0035
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0050
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0050
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0050
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0055
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0055
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0060
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0060
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0065
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0065
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0070
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0070
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0070
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0075
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0075
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0080
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0080
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0085
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0085
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0095
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0095
http://msdn.microsoft.com/en-us/library/aa217032(SQL.80).aspx
http://msdn.microsoft.com/en-us/library/aa217032(SQL.80).aspx
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0110
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0110
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0115
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0115
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0115
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0130
http://refhub.elsevier.com/S1474-0346(15)00057-9/h0130
http://dx.doi.org/10.1016/j.aei.2015.05.003

	A fast updated algorithm to maintain the discovered high-utility itemsets for transaction modification
	1 Introduction
	2 Related work
	2.1 High-utility itemset mining
	2.2 Pre-large concept of ARM

	3 Preliminaries and problem statement
	3.1 Preliminaries
	3.2 Problem statement

	4 Proposed maintenance algorithm with transaction modification
	4.1 Notations
	4.2 Maintenance strategy of HUIM

	5 Proposed PRE-HUI-MOD algorithm
	5.1 Experimental evaluation
	5.2 Experimental environment
	5.3 Runtime
	5.4 Number of discovered patterns
	5.5 Memory consumption
	5.6 Scalability

	6 Comparative analysis
	7 Conclusion and future work
	Acknowledgement
	References


