
Advanced Engineering Informatics 29 (2015) 431–439
Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate/ae i
A two-level parser for patent claim parsing q
http://dx.doi.org/10.1016/j.aei.2015.01.013
1474-0346/� 2015 Elsevier Ltd. All rights reserved.

q Handled by C.-H. Chen.
⇑ Corresponding author at: School of Statistics, Jiangxi University of Finance and

Economics, Nanchang 330013, China. Tel.: +86 0791 83816428.
E-mail addresses: wang_jingjing@jxufe.edu.cn (J. Wang), mpelwf@nus.edu.sg

(W.F. Lu), HanTong.Loh@SingaporeTech.edu.sg (H.T. Loh).
Jingjing Wang a,b,⇑, Wen Feng Lu c, Han Tong Loh d

a School of Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, China
b Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, China
c Department of Mechanical Engineering, National University of Singapore, Singapore
d Singapore Institute of Technology, Singapore
a r t i c l e i n f o

Article history:
Received 8 April 2014
Received in revised form 25 January 2015
Accepted 28 January 2015
Available online 21 February 2015

Keywords:
Patent search
Product design
Patent claim
Parsing
Dependency syntax
Parser
a b s t r a c t

Patent claim parsing can contribute in many patent-related applications, such as patent search, informa-
tion extraction, machine translation and summarization. However, patent claim parsing is difficult due to
the special structure of patent claims. To overcome this difficulty, the challenges facing the patent claim
parsing were first investigated and the peculiarities of claim syntax that obstruct dependency parsing
were highlighted. To handle these peculiarities, this study proposes a new two-level parser, in which a
conventional parser is imbedded. A patent claim is pre-processed in order to remove peculiarities before
passed to the conventional parser. The process is based on a new dependency-based syntax called Inde-
pendent Claim Segment Dependency Syntax (ICSDS). This two-lever parser has demonstrated promising
improvement for patent claim parsing on both effectiveness and efficiency over the conventional parser.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Patent analysis approaches are generally classified as patent
mining or visualization [1]. The rapid growth of published patents
has made a call for more sophisticated patent analysis tools. Patent
parsing is an essential operation in many patent mining
approaches such as function-behaviour-state information extrac-
tion [2], concept-based patent search [3] and conceptual graph
extraction [4]. However, patent claim parsing is considered very
difficult [5]. The claim section of a patent defines the scope of Intel-
lectual Property (IP) protection granted by the patent. In a patent,
the claim section is the only part that are examined and conferred
for IP protection. In contrast, other parts like the description sec-
tion or drawings are used for understanding and interpreting the
claims, but do not provide any IP protection themselves. Semantic
patent claim analysis can examine patents for possible infringe-
ments and identify which needs to be manually perused [6]. More-
over, patent claims are important to the value of the patent [7],
especially claims in essential patent i.e. those patents that are
indispensable for designing and manufacturing products [8].
Besides, the number of claims a patent makes has significant
effects on the duration that a patent is under consideration [9]. It
is expected that the improvement on patent claim parsing can pro-
mote more sophisticated patent analysis and therefore tackle the
challenges of the rapid growth of published patents.

The patent claim syntax follows exactly common English gram-
mar but is peculiar [10]. These peculiarities are usually not consid-
ered when designing a conventional natural language parser.
Therefore, conventional natural language parsers may fail to cor-
rectly parse patent claims [5].

To design a completely new data-driven parser, it is necessary
to prepare both the training data and a data-driven model that
can handle the peculiarities of patent claim syntax. In this way,
existent natural language resources are discarded. In contrast, a
smarter way is to utilize existent natural language resources by
improving the adaptability of a conventional parser. This study
applies the latter approach and proposes a two-level parser for pat-
ent claim parsing. At the top level, patent claims are pre-processed
so that a conventional parser e.g., Stanford parser [11] can be more
adaptable to them; while at the bottom level, the conventional par-
ser is evoked to parse the pre-processed claims.

To build such a two-level parser, the peculiarities of the claim
syntax that lead to challenges of claim parsing were investigated.
A new dependency-based syntax, called Independent Claim Seg-
ment Dependency Syntax (ICSDS), was then proposed in order to
address these challenges. The two-level parser was finally build
based on the proposed dependency-based syntax.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2015.01.013&domain=pdf
http://dx.doi.org/10.1016/j.aei.2015.01.013
mailto:wang_jingjing@jxufe.edu.cn
mailto:mpelwf@nus.edu.sg
mailto:HanTong.Loh@SingaporeTech.edu.sg
http://dx.doi.org/10.1016/j.aei.2015.01.013
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei

432 J. Wang et al. / Advanced Engineering Informatics 29 (2015) 431–439
The rest of this paper is organized as the following. The related
works are reviewed in Section 2. The Section 3 highlights the
challenges facing the patent claim parsing. The Section 4 intro-
duces the proposed approach, including the new dependency-
based syntax and the parser system. The Section 5 evaluates both
the effectiveness and efficiency of the proposed parser. Lastly,
the Section 6 addresses conclusions and gives recommendations
for future work.

2. Related works

A complex knowledge-based natural language analysis
approach was proposed [12] to capture both the structure and con-
tent of a claim text. The knowledge includes both shallow lexicon
and predicate lexicon. The shallow lexicon is a word list which was
automatically acquired from a corpus of five million words in US
patents. The predicate lexicon for claims on apparatuses was man-
ually acquired from a corpus of 1000 US patent claims. It was
expected that the proposed claim parsing can be used in machine
translation and improvement on the readability of patent claims.
However, with regard to performance, this approach was not com-
pared with other approaches.

Since not only structure but also content is useful in patent
claim analysis, claim parsing in this study focuses on dependency
parsing. Compared with phrase structure (or constituency) parsing,
dependency parsing offers an easier way to extract the content of a
claim. This is because dependency grammar [13] can explicitly
express word-to-word relations. Further, the result of dependency
parsing can be converted from that of phrase structure parsing
[14]. The phrase structure grammars have a high proportion in for-
mal grammatical systems. Thus, many existent natural language
resources can be reused in dependency parsing.

Dependency parsing methods are generally classified into two
categories: grammar-based parsing or data-driven parsing. The
grammar-based parsing requires grammar or rules, e.g., context-
free dependency grammar. In contrast, data-driven parsing does
not need grammar or rules; it relies on models, which are learned
from training data, to make decisions. The learned models can be
classified into graph-based models [15,16], transition-based mod-
els [17,18], or hybrid models [19–21].

A simple way to realize domain adaptation is by correcting and
enriching the training set of a data-driven parser with domain-
specific data. In this way, previous work [22] had retrained a
Bohnet’s parser. However, the improvement on performance is
not very promising. This is probably because the parser lacks a
mechanism to handle the peculiarities of patent claim. Besides,
effectiveness improvement should consider natural language pro-
cessing. Most works focus on the detection of a restricted number
of prominent verbal relations, including in particular is-a, has-part
and cause, while deriving a large number of content relations relies
on deep syntactic structures [23].

In parsing, the length of a sentence is the number of tokens,
which are words and punctuations in the sentence. Similarly, the
length of a claim can be defined as the number of tokens in a claim.
The length of an independent claim is usually too long so that the
claim cannot be parsed [10]. To improve the efficiency of patent
claim parsing, a common strategy is segmentation. An approach
[10] was proposed for reducing the length and the complexity of
patent claim via claim decomposition. The decomposition can
obviously improve the success rate of parsing with a Stanford par-
ser. However, no evaluation results were given to show the accu-
racy of parsing after decomposition. A finite-state machine [4]
was implemented to split a patent claim into a set of sub-sentences
before passed to a Stanford parser. This finite-state machine was
designed for handling two claim’s forms. However, these two
claim’s forms can not cover all claims. Two segmentation tasks
[24] were carried out. The first task segments a claim into three
components: preamble, transition and body text; the second task
further segment the claim into subordinate and coordinate clauses.
The evaluation of these two tasks only focuses on claim segmenta-
tion rather than the effectiveness of claim parsing.

Briefly, little previous works had focused on patent claim pars-
ing. It should be noted that the efficiency of patent claim parsing
can be improved with claim segmentation. However, it is still a
question whether claim segmentation will depress the effective-
ness of patent claim parsing. Moreover, simply enriching training
set of a data-driven parser does not make very promising improve-
ment on performance. A mechanism is needed to handle the pecu-
liarities of patent claim.

3. Peculiarities of claim syntax

Claim syntax follows exactly English grammar. However, com-
pared to daily English usage, claim syntax is peculiar [10]. This
study focuses on those peculiarities that may increase the difficulty
of dependency parsing. These peculiarities are highlighted in the
following sub-sections.

3.1. Claim template

There are some formal templates for starting a claim. For exam-
ple, ‘‘file folder’’ is the patented product found in US Patent
7,954,694. The first independent claim starts with ‘‘We claim:’’
and a dependent claim starts with ‘‘The file folder of claim 3,
wherein’’. It is necessary to use these templates for organizing mul-
tiple claims.

These templates do not offer any information pertaining to the
patented product. In other words, removing these templates does
not lead to useful information loss. However, the existence of these
templates does increase the difficulty of dependency parsing.

3.2. Post attribute past participle

For regular verbs, the verb form of their past forms is the same
as that of their past participles. In claims, the past forms are rarely
used since the basic tense is present tense rather than past tense.
On the other hand, it is frequent to use a complex noun phrase
with post attributive present participle phrase or post attributive
past participle phrase. However, given such a complex noun phrase
with post attributive past participle phrase, a conventional parser
is prone to mark the past participle as a past form. It is because a
conventional parser usually treats the input text as a sentence
rather than a noun phrase.

3.3. Parenthetical sentence

Parenthesis means that additional word, phrase or sentence is
inserted into a passage which would be complete without it. Inser-
tion of an independent sentence is rare in daily English usage, but
it is frequent in claims. This increases the difficulty of dependency
parsing because a conventional parser usually treats the input text
as a single sentence.

3.4. Complex noun phrase as sentence

In claim, it is frequent that an independent sentence consists of
only a complex noun phrase rather than has a subject–verb–object
structure. Moreover, it is frequent that such a complex noun phrase
is inserted into another sentence, i.e., parenthesis. Theoretically,
noun phrase as an independent sentence is allowed by dependency
grammar. A parser can correctly parse a noun phrase as a sentence

J. Wang et al. / Advanced Engineering Informatics 29 (2015) 431–439 433
when the noun phrase is simple and stays alone; e.g., when it is a
single noun, or when it is a very simple noun phrase structure such
as a determiner plus a noun. However, if the noun phrase is com-
plex and stay with other constituents, then the parser is prone to
mark the noun phrase as a dependent of another constituent. In
other words, the noun phrase is treated as a sentence’s constituent
rather than a sentence.

3.5. Recursion

Recursion is frequent in independent claims, especially when
expressing the structure of the patented invention. In recursion,
the predicates of the main sentence and sub-sentence express
the same meaning. For instance, ‘‘wherein the body includes a
graphical region comprising an ornamental three dimensional sculp-
ture’’ (in US Patent 7,917,986) is best analysed as a main sentence
‘‘wherein the body includes a graphical region’’ having an embedded
sentence ‘‘a graphical region comprises an ornamental three dimen-
sional sculpture’’. The predicate of the main sentence is ‘‘includes’’,
while the predicate of the sub-sentence is ‘‘comprises’’. The mean-
ing of ‘‘includes’’ and ‘‘comprises’’ are the same when expressing
inclusion relationship. This phenomenon increases the difficulty
of dependency parsing.

3.6. Coordination

Coordination is frequent in claims since an invention usually
includes several parts. In dependency grammar, coordination is
defined trickily. For example, in sentence ‘‘A camera comprises a
lens and a body’’, the head of both ‘‘lens’’ and ‘‘body’’ should be
‘‘comprises’’. However, according to dependency grammar, the
head of ‘‘and’’ is assigned as ‘‘lens’’ and the dependency relation
is assigned as ‘‘coordinator’’. At the same time, the head of ‘‘body’’
is also assigned as ‘‘lens’’ and the dependency relation is assigned
as ‘‘conjunct’’. Therefore, additional step is needed to reveal the
reasonable dependency relation. Although the reasonable depen-
dency relation can be revealed, too many coordination increases
the difficulty of dependency parsing.

In summary, peculiarities above lead to long claims. Some pecu-
liarities, such as parenthetical sentence, complex noun phrase as
sentence, recursion and coordination cause Long Distance Depen-
dencies (LDD). The LDD is a classic critical problem in language
modelling.

4. Independent Claim Segment Dependency Syntax

To improve the adaptability of a conventional parser, e.g.
Stanford parser [11], a two-level parser for patent claim parsing
is proposed. At the top level, the peculiarities of claim syntax are
handled so that the conventional parser can be more adaptable
to them. At the bottom level, the conventional parser is evoked
to parse the pre-processed claims.

Specifically, the claim template peculiarity can be trimmed. The
post attribute past participle peculiarity can be corrected with a
post-POS tagging. Those peculiarities leading to Long Distance
Dependencies (LDD) can be fixed with a segmentation and assem-
bly approach.

The segmentation strategy limits the length of a claim in pars-
ing and guarantees the efficiency of the proposed parser since pre-
vious works have shown its promising performance. The assembly
process is expected to build segment-to-segment dependency rela-
tions (at cross-segment level) and further build cross-segment
word-to-word dependency relations. Theoretically, the distance
(in terms of segments) between two segments is much smaller
than the distance (in terms of words) between two words within
these two segments, respectively. Thus, the distance of the
dependency becomes shorter and is easier to be captured. The
conventional parser is only evoked when parsing word-to-word
dependency relations in each claim segment (i.e., with-segment
level).

To realize the whole idea discussed above, new dependency
syntax is needed. Independent Claim Segment Dependency Syntax
(ICSDS) is dependency-based syntax designed for parsing indepen-
dent claims, which cannot be directly parsed well with conven-
tional parsers. The ICSDS belongs to a class of modern syntactic
theories that are all based on dependency relation.

Like other dependency grammar, ICSDS has flowing properties:

(1) Connectivity

All the words are connected with dependency relations. In other
words, every word should be assigned at least one dependency
relation.

(2) Single Head

Each word must have and can only have one head. In other
words, every word should be assigned a head.

In ICSDS, a claim segment is a sequence of words after claim
segmentation. Each claim segment (the dependent) must have
and only have one head, which is another claim segment or ROOT,
i.e., the root of the parsing tree. One word in the dependent must
depend on and only depend on one word in the head. In other
words, one segment-to-segment dependency relation can be con-
verted into one word-to-word dependency relation.

The ICSDS only has Partial Planarity rather than Planarity. Pla-
narity means that a dependency relation does not cross any other
dependency relations when drawn above the words. The Partial
Planarity relaxes the conditions by allowing cross drawing if the
crossed dependency relations are connecting to ROOT. Planarity
means the claim is formed by one sentence. In contrast, Partial Pla-
narity allows a claim to include multiple sentences. This property
makes ICSDS adaptable to the parenthetical sentence peculiarity
of claim syntax.

The ICSDS follows Conditional Proximity Principle rather than
Proximity Principle. Proximity Principle means that each depen-
dent depends on the closest possible head. In ICSDS, a condition
is added to the Proximity Principle, i.e., the dependency should sat-
isfy all constraints.

The details of claim segment segmentation, claim segment
feature recognition, claim segment parsing, and cross-segment
word-to-word dependency construction are given in the following
sub-sections.

4.1. Claim segment segmentation

Generally, the segmentation defined in ICSDS follows the natu-
ral separation of text. If two portions are linked with only space
(punctuation), they are not separated. Two words separated by
space (punctuation) usually have a local dependency relation.
The design of segmentation mechanism is very important. The seg-
mentation process precedes the assembly process. The mechanism
of segmentation can affect that of assembly.

Briefly, any mark that helps separating an independent claim
and making the meaning clear is considered as a separator. Known
separators belong to three categories: HyperText Markup Language
(HTML) element, sequential number, and punctuation mark. Gen-
erally, two separators belonging to the same category do not occur
consecutively. In contrast, two or three separators belonging to dif-
ferent categories may occur consecutively.

Therefore, a delimiter, which is a mark fixing the boundary of a
segment, is defined as a triple in the form of (HTML-element,

434 J. Wang et al. / Advanced Engineering Informatics 29 (2015) 431–439
sequential-number, punctuation-mark) in ICSDS. For example, a
part of the first independent claim of US Patent 4,027,510 is shown
as follows:
1. A forceps instrument comprising in combination,

a. an outer sleeve member,

b. a guiding viewing-tube support, tubular in
shape, and mounted concentrically within said outer
sleeve,

c. a tubular barrel mounted within said outer
sleeve substantially concentrically around and axially
slidable along said guiding viewing-tube support,
. . .
The first segment here is ‘‘A forceps instrument comprising in
combination’’, followed by the first delimiter (‘‘br’’, ‘‘TypeE’’, ‘‘,’’).
The first delimiter contains a HTML element i.e.,
 (formally

), a sequential number of type E, which is defined as an
alphabetical sequential number followed with a period, and a punc-
tuation mark i.e., a comma. The third segment is ‘‘a guiding viewing-
tube support’’, followed by the third delimiter (-, -, ‘‘,’’). The third
delimiter contains only a punctuation mark, i.e., a comma.

4.2. Claim segment feature recognition

The claim segment feature recognition step characterizes each
claim segment with two features: a starting feature and an ending
feature. This is because a segment is usually characterized by its
starting portion and ending portion. The features are recognized
from lower level elements. These elements include segment length
(i.e., the number of tokens in a claim segment), lexicon, part-of-
speech (POS) and some self-defined word classes e.g., indefinite
article (IA).

Without large training dataset, the segment feature recognition
uses a rule-based method. The form of a rule is: {has element 1, has
element 2, . . ., has element n}) {has feature}. Both the starting
feature and the ending feature have the same rule structure. A rule
is stored in the form of string. The feature is put at the start of the
string before all conditions. For example, a starting feature rule
‘‘NP,2,IA,!POS:adjective’’ means if a segment with length two,
starting from an indefinite article, and the second token is not an
adjective, then the segment should start from a noun phrase (NP).

A dataset (see Section 5.1 for details), which consists of 173
independent claims, is used for establishing feature rules. The fun-
damental method of establishing rules is generate and test (or trial
and error). Firstly, claim segments are observed one by one. At the
same time, feature and elements are manually annotated. With the
annotation, each claim can generate two rules: one for starting fea-
ture, the other for ending feature. Secondly, the generated rules are
sorted and checked. Redundant rules are discarded. If a specific
rule can be replaced by a general rule, then the specific rule is dis-
carded. Thirdly, the checked rules are test. Those claim segments
whose features cannot be correctly recognized are used for gener-
ating new rules. The rule generation and test is repeated until the
results of recognition are satisfying.

4.3. Claim segment parsing

With claim segment features, the claim segment parsing step
builds segment-to-segment dependencies. If a claim segment relies
on another segment to form a sentence, then there exists a depen-
dency relation between these two segments, while the former is
called dependent and the latter is called head. If a claim segment
does not rely on any other segment to form a sentence, then its
head is the ROOT. Therefore, the major task for segment depen-
dency relation recognition is to find a segment’s head and their
dependency relation.

The segment dependency relation recognition also uses a rule-
based method. Two major elements of the rule-based method are
dependency rule and dependency constraint. The dependency con-
straints are used with the dependency constraints together to sup-
port segment dependency relation recognition. A dependency rule
describes the features of both the dependent and its possible head.
The adopted elements in dependency rules include relative posi-
tion, relative distance, starting feature, ending feature, and punctu-
ation. Moreover, a dependency rule can describe inheritance. A
dependent may inherit another dependent’s head, according to
the inheritance. On the other hand, dependency constraints pro-
vide additional requirements on dependent. The dependency con-
straints are an important mechanism for realizing syntax
properties and handling the peculiarities of the claim syntax.

For two segments, if a rule is applicable and all constraints are
satisfied, then the dependency relation between the two segments
is as the one defined in the rule. If no rule is applicable, ‘‘ROOT’’ will
be assigned as the head. For example, four dependency rules and a
claim are given in Fig. 1. Four segment features are ‘‘NP-S’’, ‘‘NEW’’,
‘‘NP’’ and ‘‘AND’’. Segment feature ‘‘NP’’ means noun phrase. Seg-
ment feature ‘‘NP-S’’ means the first noun phrase in a sentence.
Segment feature ‘‘NEW’’ means a start of a new sentence. Segment
feature ‘‘AND’’ means ‘‘and’’. The claim consists of two independent
sentences: a sentence consisting of segment {1, 2, 7, 8, 9} and a
sentence consisting of segment {3, 4, 5, 6}. A dependency relation
between two segments is depicted via an arc with an arrowhead
towards the head. An arc with solid line means a parsed correct
dependency; an arc with dot line means a correct dependency
waiting for parsing.

According to the rule ‘‘NP NEW’’ and the Proximity Principle,
Segment 7 should depend on Segment 3. Next, according to the
rule ‘‘AND NEW’’ and the Proximity Principle, Segment 8 should
also depend on Segment 3. A dependency constraint on coordinat-
ing conjunction can reject the first incorrect parsing. Briefly, the
constraint is that a head cannot accept dependent if its last two
dependents are starting with ‘‘AND’’ and ‘‘NP’’, respectively. Thus,
Segment 7 will depend on Segment 1, according to the rule
‘‘NP NP-S’’. Consequently, the Partial Planarity property can
reject the second incorrect parsing. The search for the head of
Segment 8 will omit all segments before it but Segment 1.

A left-to-right parsing algorithm is designed to read the entire
segmented claim, and then identify the head of each segment from
the left side of the claim to the right side. The pseudo-code is
shown as below.

Fig. 1. An example for explaining dependency rules and constraints.

J. Wang et al. / Advanced Engineering Informatics 29 (2015) 431–439 435
When a segment is in the process of head identification, it is
called current segment. The head of current segment is assigned
as ‘‘ROOT’’ initially (in Line 04). In the following head search pro-
cess, a rule corresponding to current segment is picked (in Line
05). According to this picked rule, either the leftward segments
or the rightward segments are examined one by one. For each seg-
ment under examination, the algorithm first examines dependency
constraints (in Line 07). If the examined segment is feasible and it
together with current segment can match the picked rule (in Line
08), the head in the rule (in Line 10) and its actual index (in Line
11) will be assigned to current segment.

The establishment of dependency rule and dependency con-
strain is similar to establishment of feature rule. The 173 indepen-
dent claims, is used for establishing rules and dependency
constraints. The fundamental method of establishing rules and
constrains is generated and tested. Firstly, claim segment and fea-
tures are observed one by one. At the same time, dependencies are
manually annotated. With the annotation, each dependency can
generate one dependency rule. Secondly, the generated rules are
sorted and checked. Redundant rules are discarded. Thirdly, the
checked rules are tested. Those dependency cannot be correctly
parsed are used for generating additional rules and constraints.
The dependency constraints are manually generated when one rule
interferes with another rule. The generation and test is repeated
until parsing results are satisfying.
4.4. Assembling

Given segment-to-segment dependencies, word-to-word
dependencies within each segment, the assembling builds word-
to-word dependencies crossing segments and finally returns all
word-to-word dependencies. This task can be simply described as
a process of the replacement of heads. The head of a word in the
dependent segment is replaced with a word in the head segment.

Current implementation only considers two types of cross-seg-
ment word-to-word dependencies: verb–noun relation and adjec-
tive–noun relation. This is because these two relations are the most
common and critical relations. Especially, verb–noun relation is
usually LDD. The relation between dependency type and word
POS is given in Table 1.
4.5. The two-level parser system

To test the proposed approach, an ICSDS-based parser was
designed and built. It is based on Stanford parser. The entire flow-
chart of the parser system is given in Fig. 2. Since loading a trained
Table 1
Relation between dependency type and word POS.

Head word Dependent word Dependency type

Noun Noun Adjective–noun
Noun Adjective Adjective–noun
Noun Verb Verb–noun
Verb Noun Verb–noun
Stanford parser requires many seconds, the parser processes claims
in a batch.

The ICSDS-based parser mainly includes nine modules: trim-
ming, tokenization, POS tagging, POS correction, Stanford parsing,
claim segment segmentation, claim segment feature recognition,
claim segment parsing and assembling. The trimming is used for
handling claim templates. The tokenization is completed by the
Stanford tokenizer, which is based on Penn Treebank; while the
POS tagging is completed by the Stanford POS tagger. In this way,
the errors caused by using different tokenization method or POS
tagging method are minimized. The POS correction is used for han-
dling post attribute past participle. The details of last four modules
are explained in sub-sections above.
5. Evaluation

Comparison experiments were conducted to test both the effi-
ciency and effectiveness of the proposed approach. Two parsers
were used: Stanford parser and ICSDS-based parser.

5.1. Dataset

A product patent dataset is built manually for the tests. In this
dataset, there are a total of 273 product patents, which were down-
loaded from the United States Patent and Trademark Office
(USPTO). Each patent is a utility patent and describes a whole
product. There are ten product types, including toothbrush, digital
camera, razor, lighter, forceps, file folder, mobile phone, surgical
scalpel, hypodermic needle and paper punch.

The first independent claims (referring as claim in the rest of
this paper) were extracted from the dataset. The length of a claim
is defined as the number of tokens it contains. The statistical result
is shown in Fig. 3. The frequency of a claim length is the number of
times a claim length occurs in the dataset. It is observed that the
length of most claims is more than 100 tokens. At the extreme,
the length of a claim may exceed 800 tokens.

The whole dataset is separated into training set and test set. The
training set consists of 173 patents, while the test set consists of
100 patents. Manual annotation was carried out to label every
claim with standard tags.

5.2. Efficiency evaluation

The efficiency of parsing was evaluated through memory use
and parsing time. Stanford parser requires a lot of memory. With
2 GB Java memory, only 174 of 273 claims can be directly parsed
by the Stanford parser. The range of claim length is from 26 to
210. The ICSDS parser requires less memory than the Stanford par-
ser, because its segmentation strategy reduces the maximum
length of a claim in parsing. All 273 claims can be parsed under a
computer with up to 1.4 GB Java memory.

To test the parsing time, 174 claims in the dataset that can be
parsed with both ICSDS parser and Stanford parser were used.
The comparison of parsing time is shown in Fig. 4.

Fig. 2. Flowchart of the ICSDS-based parser.

0 100 200 300 400 500 600 700 800 900
0

15

30

45

60

75

90

105

120

Fr
eq

ue
nc

y

Length

Fig. 3. The frequency of claim length.

436 J. Wang et al. / Advanced Engineering Informatics 29 (2015) 431–439
It was observed that generally the parsing time of Stanford par-
ser is monotonically increased with the increase of claim length.
When the claim length is less than 50, the increase of parsing
time is not significant. Parsing a claim with 50 tokens requires
about five second. However, the parsing time increases sharply
when the claim length is more than 100. Parsing a 140 long
claim needs more than one minute; parsing a 170 long claim
needs two minutes; while parsing a 200 long claim needs three
minutes.

Apart from the shortest claim, ICSDS parser is faster than
Stanford parser. Moreover, the variation of parsing time with ICS-
DS parser is small. The range of parsing time is from 1 to 31 s.
The parsing time with ICSDS parser is almost independent from
the claim length when the claim length is no more than 210.
5.3. Effectiveness evaluation

The effectiveness of parsing was tested on a structure model
extraction problem. A structure model is a tree (graph model) that
can describe the structure of a patented invention. In a structure
model, as shown in Fig. 5, a root node is labelled with the name
of the patented invention; a branch node is labelled with a unit
name; and a leaf node is labelled with a part name.

For example, an independent claim consisting of four sentences
(number in the second column) and 10 segments (number in the
first column) is given below.

67 84 92 105 114 120 130 137 146 152 159 168 175 181 186 204 209
0

50

100

150

200

250

300

350

400

450

 ICSDS
 Stanford

Ti
m

e
(s

ec
on

d)

Length

Fig. 4. Comparison of parsing time.

Fig. 5. Structure model.

Fig. 6. An example of structure model.

J. Wang et al. / Advanced Engineering Informatics 29 (2015) 431–439 437
01 1 A mobile phone,
02 1 comprising:
03 1 a body having a ground portion;
04 1 a metallic cover detachably coupled to the body,
05 2 the metallic cover forming an exterior surface of the mobile

phone;
06 1 and a grounding unit configured to electrically connect the

ground portion of the body to the metallic cover when the
metallic cover is coupled to the body,

07 3 the grounding unit being disposed on one of facing surfaces
of the body and the metallic cover,

08 4 wherein the grounding unit includes:
09 4 an attachment portion located on an inner surface of the

metallic cover facing the body;
10 4 and an elastic extension portion extending from the

attachment portion towards the body.

In the first sentence, a mobile phone (in Segment 1) comprises
(in Segment 2) a body (in Segment 3), a metallic cover (in Segment
4) and a grounding unit (in Segment 6). The second sentence fur-
ther elaborates the metallic cover (in Segment 5). The third sen-
tence further elaborates the grounding unit (in Segment 7) and it
includes (in Segment 8) an attachment portion (in Segment 9)
and an elastic extension portion (in Segment 10). Thus, its struc-
ture model is shown in Fig. 6.

In the structure model extraction problem, an independent
claim in the test set is parsed and a structure model is extracted
from the parsing tree. The extracted structure model is compared
with the standard structure model, which is previously manually

Fig. 7. An example of ICSDS parsing.

438 J. Wang et al. / Advanced Engineering Informatics 29 (2015) 431–439
built. If two structure models are the same, then the parsing is con-
sidered as accurate.

The parsing result of ICSDS parser, where the word-to-word
dependencies given by Stanford parser are omitted, is shown in
Fig. 7. It can be observed that the core word in every segment is
found correctly. For example, the core word in Segment 1 is
‘‘phone’’, which represents a mobile phone; while the core word
in Segment 4 is ‘‘cover’’, which represents a metallic cover. More-
over, their dependency relations are also found correctly. For
example, the phone comprises a body, a cover and a unit. The unit
further comprises a portion and another portion. With this parsing
result, the structure of patented invention can be easily described.
This structure is just the major content of the claim. Therefore, the
proposed parser had successful analysed the major content of the
claim. In contrast, a conventional parser is hardly to figure out this
structure and messes everything up due to LDD.

To evaluate the effectiveness, accurate rate is used as the eval-
uation measures. Accurate rate is the ratio of the number of accu-
rate parsed claims to that of all parsed claims. Both Stanford parser
and ICSDS parser were tested with the test set. The evaluation
result showed that the accurate rate of Stanford parser was 14%,
while the accurate rate of ICSDS parser was 68%. Although 68% is
not very high, it is much higher than 14%, which is the accurate
rate of Stanford parser. The improvement is close to 400%. The rea-
sons of errors are various. Briefly, the rules discovered in the train-
ing set are incomplete to cover all situations.
6. Conclusions

In this study, six claim syntax peculiarities that increase the dif-
ficulty of parsing are highlighted. They are (1) claim template, (2)
post attribute past participle, (3) parenthetical sentence, (4) com-
plex noun phrase as sentence, (5) recursion, and, (6) coordination.
These peculiarities cause long claims. Especially, the last four pecu-
liarities lead to Long Distance Dependencies. A new two-level par-
ser is proposed for patent claim parsing. It is designed to improve
the adaptability of a conventional parser, e.g. Stanford parser. The
conventional parser (in the first level) is evoked by a higher-level
(in the second level) parser, which can handle the peculiarities of
claim syntax. With respect to peculiarity (1), a trimming process
is adopted to filter non-informative content. With respect to pecu-
liarity (2), a POS correction process is adopted to change past form
into past participle. With respect to last four peculiarities, a new
dependency syntax called Independent Claim Segment Depen-
dency Syntax (ICSDS) is proposed. To guarantee the efficiency of
the proposed parser, a segmentation strategy is adopted. The seg-
mentation and consequent assembly is executed by the ICSDS-
based parser. The conventional parser is only evoked when pro-
cessing each claim segment. Theoretically, the distance (in terms
of segments) between two segments is much smaller than the dis-
tance (in terms of words) between two words within these two
segments, respectively. Thus, the distance of the dependency
becomes shorter and is easier to be captured.

The evaluation results show that ICSDS-based parser is much
effective than Stanford parser. This is because its segmentation
strategy. Moreover, ICSDS-based parser is much efficient than
Stanford parser in a model extraction problem. This is because
ICSDS-based parser can parse correctly more LDD relations.

To our best knowledge this work is a pioneer work in claim
parsing. Compared to previous works, this study has shown an
obvious improvement on effectiveness of patent claim parsing.
With the ICSDS-based parser, patent claims can be automatically
processed in a larger number and in a short time. This research
contributes to patent users who are looking for technological
details. For example, it saves time for product designers and allows
them to focus on creative work. This research also contributes gen-
eral patent users. It can support and enhance many patent-related
applications, such as patent valuation, technology relatedness and
competitor analysis, patent strategy development, and technology
management.

In the future, ICSDS can be expanded by defining more depen-
dency relationships between segments. Current ICSDS only focuses
on verb–noun relation and adjective–noun relation. This is because
these two relations are the most common and critical relations.
However, for completeness, other relations such as preposition–
noun, verb–preposition and adverb–verb should also be defined.
Moreover, an evaluation with larger scale is expected to be carried
out for testing the effectiveness and the efficiency of the enhanced
ICSDS parser.
References

[1] A. Abbas, L. Zhang, S.U. Khan, A literature review on the state-of-the-art in
patent analysis, World Pat. Inf. 37 (2014) 3–13.

[2] G. Fantoni, R. Apreda, F. Dell’Orletta, M. Monge, Automatic extraction of
function-behaviour-state information from patents, Adv. Eng. Inform. 27
(2013) 317–334.

[3] T. Montecchi, D. Russo, Y. Liu, Searching in cooperative patent classification:
comparison between keyword and concept-based search, Adv. Eng. Inform. 27
(2013) 335–345.

[4] S.-Y. Yang, V.-W. Soo, Extract conceptual graphs from plain texts in patent
claims, Eng. Appl. Artif. Intell. 25 (2012) 874–887.

[5] S. Verberne, E. D’hondt, N. Oostdijk, Quantifying the challenges in parsing
patent claims, in: the 1st International Workshop on Advances in Patent
Information Retrieval (AsPIRe’10), March 2010, Milton Keynes, UK.

[6] C. Lee, B. Song, Y. Park, How to assess patent infringement risks: a semantic
patent claim analysis using dependency relationships, Technol. Anal. Strategic
Manage. 25 (1) (2013) 23–38.

[7] E.J. Walsh, H.J. DiPietrantonio, Getting the most value from patent claims,
Intell. Property Technol. Law J. 23 (7) (2011) 9–12.

[8] R. Bekkers, R. Bongard, A. Nuvolari, An empirical study on the determinants of
essential patent claims in compatibility standards, Res. Policy 40 (7) (2011)
1001–1015.

[9] Y. Xie, D.E. Giles, A survival analysis of the approval of US patent applications,
Appl. Econ. 43 (11) (2011) 1375–1384.

[10] P. Parapatics, M. Dittenbach, Patent claim decomposition for improved
information extraction, in: M. Lupu et al. (Eds.), Current Challenges in
Patent Information Retrieval, Springer-Verlag, Berlin Heidelberg, 2011,
pp. 197–216.

[11] S.-Y. Yang., V.-W. Soo, Comparing the conceptual graphs extracted from patent
claims, in: The IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (SUTC 2008), June 2008, Taichung, Taiwan.

[12] S. Sheremetyeva, Natural language analysis of patent claims, in: The ACL-2003
Workshop on Patent Corpus Processing, July 2003, Sapporo, Japan.

[13] J. Nivre, Dependency Grammar and Dependency Parsing. Technical Report.
Växjö University, 2005.

[14] M. Marneffe, B. MacCartney, C.D. Manning, Generating typed dependency
parses from phrase structure parses, in: The Fifth International Conference
on Language Resources and Evaluation (LREC 2006), May 2006, Genoa,
Italy.

http://refhub.elsevier.com/S1474-0346(15)00025-7/h0005
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0005
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0010
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0010
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0010
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0015
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0015
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0015
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0020
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0020
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0030
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0030
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0030
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0035
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0035
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0040
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0040
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0040
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0045
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0045
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0050
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0050
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0050
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0050
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0050
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0050

J. Wang et al. / Advanced Engineering Informatics 29 (2015) 431–439 439
[15] Q.I. Wang, D. Lin, D. Schuurmans, Simple training of dependency parsers via
structured boosting, in: The International Joint Conference on Artificial
Intelligence (IJCAI-07), January 2007, Hyderabad, India.

[16] J. Eisner, three new probabilistic models for dependency parsing: an
exploration, in: The 16th International Conference on Computational
Linguistics (COLING 1996), August 1996, Center for Sprogteknologi,
Copenhagen, Denmark.

[17] J. Nivre, M. Scholz, Deterministic dependency parsing of English text, in: The
20th international Conference on Computational Linguistics (COLING 2004),
August 2004, University of Geneva, Switzerland.

[18] H. Yamada, Y. Matsumoto, Statistical dependency analysis with support vector
machines, in: The International Conference on Parsing Technologies (IWPT
2003), April 2003, Nancy, France.

[19] Y. Zhang, S. Clark, A tale of two parsers: investigating and combining graph-
based and transition-based dependency parsing using beam-search, in: The
conference on Empirical Methods in Natural Language Processing (EMNLP
2008), October 2008, Waikiki, Honolulu, Hawaii, USA.

[20] J. Nivre, R. McDonald, Integrating graph-based and transition-based
dependency parsers, in: The 46th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies (ACL-HLT 2008),
June 2008, Columbus, Ohio, USA.

[21] K. Sagae, A. Lavie, Parser combination by reparsing, in: Human Language
Technology Conference – North American chapter of the Association for
Computational Linguistics annual meeting (HLT-NAACL 2006), June 2006, New
York City, USA.

[22] A. Burga, J. Codina, G. Ferraro, H. Saggion, L. Wanner, The challenge of syntactic
dependency parsing adaptation for the patent domain, in: The ESSLI 2013
Workshop on Extrinsic Parse Improvement (EPI), 5–16 August 2013,
Düsseldorf, Germany.

[23] G. Ferraro, L. Wanner, Towards the derivation of verbal content relations from
patent claims using deep syntactic structures, Knowl.-Based Syst. 24 (8)
(2011) 1233–1244.

[24] G. Ferraro, H. Suominen, J. Nualart, Segmentation of patent claims for
improving their readability, in: The 3rd Workshop on Predicting and
Improving Text Readability for Target Reader Populations (PITR), April 2014,
Gothenburg, Sweden, pp. 66–73.

http://refhub.elsevier.com/S1474-0346(15)00025-7/h0115
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0115
http://refhub.elsevier.com/S1474-0346(15)00025-7/h0115

	A two-level parser for patent claim parsing
	1 Introduction
	2 Related works
	3 Peculiarities of claim syntax
	3.1 Claim template
	3.2 Post attribute past participle
	3.3 Parenthetical sentence
	3.4 Complex noun phrase as sentence
	3.5 Recursion
	3.6 Coordination

	4 Independent Claim Segment Dependency Syntax
	4.1 Claim segment segmentation
	4.2 Claim segment feature recognition
	4.3 Claim segment parsing
	4.4 Assembling
	4.5 The two-level parser system

	5 Evaluation
	5.1 Dataset
	5.2 Efficiency evaluation
	5.3 Effectiveness evaluation

	6 Conclusions
	References

