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Solar cells that convert sunlight into electrical energy are the main component of a solar power system.
Quality inspection of solar cells ensures high energy conversion efficiency of the product. The surface of a
multi-crystal solar wafer shows multiple crystal grains of random shapes and sizes. It creates an
inhomogeneous texture in the surface, and makes the defect inspection task extremely difficult. This
paper proposes an automatic defect detection scheme based on Haar-like feature extraction and a new
clustering technique. Only defect-free images are used as training samples. In the training process, a
binary-tree clustering method is proposed to partition defect-free samples that involve tens of groups.
A uniformity measure based on principal component analysis is evaluated for each cluster. In each par-
tition level, the current cluster with the worst uniformity of inter-sample distances is separated into two
new clusters using the Fuzzy C-means. In the inspection process, the distance from a test data point to
each individual cluster centroid is computed to measure the evidence of a defect. Experimental results
have shown that the proposed method is effective and efficient to detect various defects in solar cells.
It has shown a very good detection rate, and the computation time is only 0.1 s for a 550 � 550 image.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Solar cells are very important in recent years as an attractive
alternative of energy resources. Solar cells are mainly based on
crystalline silicon in the photovoltaic industry. Compared to
monocrystalline solar cells, multicrystalline solar cells dominate
the current market shares due to lower material and manufactur-
ing costs.

Since defects in solar cells degrade the conversion efficiency
and usable lifespan, the inspection of solar cells is very important
in the manufacturing process. The surface of a multiicrystalline
solar wafer shows multiple crystal grains of random shapes and
sizes, as seen in Fig. 1(a). Fig. 1(b) presents the CCD-captured
images of a multicrystalline solar cell. The vertical thin metal lines
are finger electrodes. They supply current to the two horizontal bus
bars. The crystal grains appear randomly in the surface. The solar
cell images thus involve inhomogeneous textures.
Texture analysis techniques [1] in image processing have been
used for defect detection of various material surfaces. They mainly
aim at uniform or homogeneous texture surfaces. Local textural
features or descriptors are extracted either from the spatial domain
[2–5] or from the spectral domain [6–10] of a texture image.
Discriminant classifiers are then applied to separate local defects
from the homogeneous background. They cannot be directly
extended to the inspection of heterogeneous surfaces.

Defect detection using machine vision methods has been stud-
ied extensively in the literature. However, most of the methods can
only handle uniform surfaces, or textured surfaces with homoge-
nous/repetitive patterns. The target object in this study is
multi-crystal solar cells that contain heterogeneous textures. A
defect-free solar cell surface may involve various texture patterns
in different regions. This makes the inspection task extremely dif-
ficult. Image processing techniques have also been applied to the
inspection of solar wafers and solar cells. Fu et al. [11] developed
a machine vision algorithm to detect cracks in solar cells. The
method can only identify cracks that show distinct high-contrast
gray levels in the cell edges. Pilla et al. [12] used the thermographic
technique to intensify cracks in solar cells. A simple thresholding
can then separate the defects from the uniform surface. Warta
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[13] reviewed different sensing techniques to intensify defects and
impurity in solar cells.

Tsai et al. [14] presented an anisotropic diffusion algorithm for
detecting micro-cracks in multicrystalline solar wafers. The diffu-
sion process removes the crystal-grain background, and retains
only the crack. The method is very effective and computationally
fast, but it can detect only micro-cracks. It cannot be directly used
for other defect types. Li and Tsai [15] proposed a machine vision
algorithm to detect saw-mark defects in the solar wafer cutting
process. The Fourier transform is used to remove the crystal grain
background. A Hough-like line detection process is then applied
line by line in the filtered image to detect possible defect points.
It can detect only the specific saw-mark defects. Chiou and Liu
[16] used a near infrared imaging system to highlight micro-cracks
in solar wafers. The method works only when the sensed micro-
crack is significantly darker than the crystal grains. It may falsely
detect a dark, thin defect-free crystal grain as a defect.

A typical CCD camera cannot effectively capture fatal defects
such as micro-cracks and subtle finger interruptions. The electrolu-
minescence (EL) imaging technique [17,18] has been introduced to
the photovoltaic industry to intensify the deficiencies of a solar
cell. The solar cell is first excited with voltage in the EL imaging
system. This causes the solar cell to emit the infrared light. A
cooled Si-CCD camera then captures the infrared light. Silicon areas
with high conversion efficiency present brighter luminescence in
the sensed image. Deficiencies of a solar cell appear as dark regions
in the EL image. Fig. 2(a) presents the EL image of a defect-free
solar cell. Fig. 2(b)–(d) shows respectively three EL images with
micro-cracks, breaks, and finger interruptions. The defect areas
are inactive and do not emit light well. They thus generate dark
regions in the EL image. Although the EL image can visually present
defects as dark objects, the background also shows dark grain
boundaries of the random crystal grains. Automatic visual inspec-
tion of solar cell defects in the EL image becomes very difficult. The
currently available inspection machine for solar modules in the
manufacturing process can automatically acquire the EL image
and display it on the monitor. However, it still requires a human
operator to visually identify defects from the EL image. It took
the operator a few seconds per solar cell to complete the inspec-
tion. The distinctly visible defects, such as large-size breaks, can
be easily identified by human eyes. However, subtle defects, such
as small thin cracks, could be carelessly ignored by the operator.

In this paper, we propose a machine vision scheme to auto-
matically detect micro-cracks, breaks, and finger interruptions of
multi-crystal solar cells in EL images. Those defects are the main
sources that reduce the conversion efficiency of solar cells. They
Fig. 1. CCD-captured image of a multi-crystal s
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could occur during module assembly and material handling. It
has been shown [19] that the breakage rate (breakage cells/total
cells) accounts for 2% from manufacturing to transportation in
the photovoltaic industry. The high defective rate could be a seri-
ous problem of a solar cell manufacturer.

The proposed method is based on the clustering technique.
Clustering is an unsupervised classification method to separate a
set of multivariate data points into meaningful groups. All mem-
bers within a partitioned group present similar characteristics.
Data points in different groups are distinct from each other. The
fuzzy C-means (FCM) algorithm [20] is one of the most popular
techniques used for clustering. Since the surface of a clear solar cell
contains random crystal grains with a variety of grain patterns, the
discriminative features extracted from individual crystal-grain pat-
terns will then show a huge number of clusters in the feature
space. It may require several tens of clusters to describe all possible
grain patterns in a defect-free solar cell. The conventional Fuzzy C-
means methods work well to partition a dataset in high-dimen-
sional space into a few clusters. Its performance degrades as the
required number of clusters increases.

In this study, we present a binary-tree partition procedure to
cluster crystal grain patterns of defect-free solar cells into groups.
Given a set of high-dimensional data points, the proposed cluster-
ing method first divides the dataset into two groups using the FCM.
A uniformity measure of inter-sample distances in a cluster is then
calculated for all current clusters, and the one with the worst uni-
formity is further divided into two small groups using the FCM. The
partition process is repeated until the total number of clusters
meets a preset value. The proposed binary-tree partition procedure
can more accurately cluster a dataset involving a high number of
clusters, compared to the conventional FCM.

Since a solar cell involves distinct crystal grain patterns, it is dif-
ficult to use a binary classifier to separate samples into defective
and defect-free classes. Instead, we train only defect-free samples
and group them into multiple clusters using the binary-tree parti-
tion procedure. Any test sample that does not show an acceptable
small distance from at least one of the trained cluster centroids is
then identified as a defect. In order to characterize the local prop-
erties in a solar cell image, we design a set of Haar-like features so
that each pixel point defined in a small neighborhood window can
be represented by the discriminative feature vector. It is expected
that the feature vector of a defect point will result in distinctly
large distances from all trained cluster centroids.

This paper is organized as follows: Section 2 first describes
briefly the conventional FCM method. The proposed binary-tree
partition procedure for defect inspection is then described in
olar cell: (a) solar wafer and (b) solar cell.

i-crystal solar cells using clustering with uniformity measures, Adv. Eng.
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Fig. 2. Demonstrative EL images of solar cells: (a) defect-free sample; (b) micro-crack; (c) break; and (d) finger-interruption.
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detail. The Haar-like representation for feature extraction of solar
cell images is finally described. Section 3 analyzes the effect of
changes in parameter values of the proposed algorithms and pre-
sents the experimental results. The paper is concluded in Section 4.
2. Clustering with uniformity measures

The target object studied in this paper is multi-crystal solar cells
that involve inhomogeneous texture surfaces. Each individual solar
cell surface presents crystal grains of random shapes and sizes. No
two solar wafers have the same crystal-grain pattern. In a single
solar cell, different local regions show distinct grain patterns and
thus different feature values. It means a single class cannot effec-
tively describe the cluttering samples of all defect-free solar cells.
If we take different defect-free samples as one single class, the
intra-variance of the class will be extremely large. Since defect-free
samples have distinct features from cell to cell (and from region to
region in a solar cell), a binary clustering or a binary classifier that
divides samples into defect-free and defective classes fails to find a
clear boundary to separate the two classes.

A defect-free solar cell in the EL image presents distinct texture
features in different local regions. For any two arbitrary local
regions in a defect-free solar cell, it is difficult to manually deter-
mine if these two regions have the similar grain pattern and, thus,
have the same class label. Using the traditional binary clustering or
classification methods to identify unexpected defects from inho-
mogeneous texture surfaces becomes impossible. In this section,
Please cite this article in press as: D.-M. Tsai et al., Defect detection in mult
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we present a new binary-tree partition procedure based on the
fuzzy C-means. The conventional FCM and its formulation are first
overviewed in Section 2.1. Section 2.2 then describes the proposed
clustering procedure for defect detection in EL images of solar cells.
Section 2.3 presents the extraction of the Haar-like features.

2.1. Fuzzy C-means clustering

The FCM separates a data set X into C clusters by minimizing
the errors in terms of the weighted distance of each data point xi

to all centroids vc’s of the C clusters. That is,

Min JFCM ¼
XC

c¼1

XN

i¼1

wp
ickxi � vck2

s.t.XC

c¼1

wic ¼ 1; i ¼ 1;2 . . . ;N

where p is the exponent.
The weight wic is a normalized distance from a sample point i to

the cluster c, and is considered as a membership value of the point
to the cluster. The weight wic and the centroid vc can be updated by
the expectation–maximization (E–M) algorithm:

E-step:

wic ¼ 1
XC

j¼1

d2
ic

d2
ij

 ! 1
p�1

,
for i ¼ 1;2; . . . ;N and c ¼ 1;2; . . . ;C
i-crystal solar cells using clustering with uniformity measures, Adv. Eng.
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Fig. 3. Clustering of 7500 data points in 50 groups: (a) clustering result from the
conventional FCM and (b) clustering result from the proposed method.
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where

d2
ic ¼ kxi � vck2

M-step:

vc ¼
PN

j¼1wp
jc � xjPN

j¼1wp
jc

for c ¼ 1;2; . . . ;C:
2.2. Proposed FCM clustering procedure

The conventional model of FCM clustering algorithm can be
theoretically used for any dataset that has arbitrary number of
clusters. However, the clustering performance is dramatically
degraded when the number of clusters is too large. For defect
detection in EL images of solar cells, the possible crystal-grain pat-
terns may involve 30 or more clusters. An effective clustering algo-
rithm is required for a high number of multi-group samples.

In order to improve the effectiveness of the FCM for non-sphe-
rical, sparsely-distributed datasets, we adopt the distance metric
proposed by Tsai and Lin [21]. It incorporates the distance variation
in a cluster to regularize the distance between a data point and the
cluster centroid. The distance metric is defined as:

d̂2
ic ¼
kxi � vck2

rc
ð1Þ
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where rc is the weighted mean distance in cluster c, and is given by

rc ¼
PN

j¼1wp
jc � kxj � vck2PN

j¼1wp
jc

( )1=2

ð2Þ

The distance measure normalizes the distance based on the
spread of data points from the centroid in a cluster. The new
FCM algorithm, named FCM-r, searches for C clusters by minimiz-
ing the objective:

Min JFCM-r ¼
XC

c¼1

XN

i¼1

wp
ic �
kxi � vck2

rc

s.t.

XC

c¼1

wic ¼ 1; i ¼ 1;2 . . . ;N

The E–M algorithm is also iteratively used to solve for the
weights wic and the centroids vc:

E-step:

wic ¼ 1
XC

j¼1

d̂2
ic

d̂2
ij

 ! 1
p�1

,
for i ¼ 1;2; . . . ;N and c ¼ 1;2; . . . ;C

where d̂2
ic ¼

kxi�vck2

rc
, and rc is given by Eq. (2)

M-step:

vc ¼
PN

j¼1wp
jc � xjPN

j¼1wp
jc

The defect-free solar cell surfaces present a huge variety of ran-
dom crystal grain patterns. We therefore propose a new binary-par-
tition clustering based on the uniformity measure of inter-sample
distances in a cluster, and apply it for high multi-group clustering.
A poor uniformity of a cluster indicates that the cluster contains
heterogeneous samples. In a partition level, the uniformity is mea-
sured for all current clusters, and the one with the worst uniformity
value is further partitioned into two smaller clusters using the FCM-
r. The partition procedure is repeated until the number of clusters
meets the predetermined cap.

The uniformity measure of inter-sample distances in a cluster is
derived from the principal component analysis (PCA) of the covari-
ance matrix of all inter-samples in a cluster. Given a cluster
Xc ¼ fxc;i; i ¼ 1;2; . . . ;ncg that contains nc data points, the data
matrix is constructed as

Ac ¼ D xc;1 Dxc;2 � � � Dxc;ncb cT

where Dxc;i ¼ xc;i � �xc and �xc ¼ 1
nc

Pnc
i¼1xc;i.

The covariance matrix of inter-samples in a cluster c is formed
by

Mc ¼ Ac � AT
c

Let k ¼ k1 k2 � � � knc½ � be the nc eigenvalues of the covariance
matrix Mc. It is expected that the variance of these nc eigenvalues
should be very small if all the data points are equally spread in
the cluster. The variance of k’s is thus a good indicator of uniformity
of inter-sample distances. If the cluster contains heterogeneous
data points, the resulting eigenvalues will not present equal dis-
tance variances in all coordinates. The variance of eigenvalues will
then be distinctly large.

Since high-density and low-density clusters should have the
same uniformity magnitude if they present a homogeneous spread
in the space, the standard deviation of k’s normalized with respect
to the mean eigenvalue is used as the uniformity measure for data
spread in a cluster. That is,
i-crystal solar cells using clustering with uniformity measures, Adv. Eng.
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(a) Original image (b) Opening of (a)

Fig. 4. Morphological opening process for a solar cell image: (a) original image and (b) result of the opening process in (a).

Fig. 5. Twelve prototypes of the Haar-like features used in this study.
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uk ¼
rk

�k
ð3Þ

where �k and rk are the mean and the standard deviation of k’s, i.e.

�k ¼ 1
nc

Xnc

i¼1

ki

rk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nc

Xnc

i¼1

ðki � �kÞ2
vuut

The uniformity measure of inter-samples can well indicate the clus-
ters that need to be further divided.

The binary-tree partition procedure for multi-group clustering
is summarized as follows:

Input dataset X = {xi, i = 1, 2, . . . , N}, and the expected number of
clusters C.

Let B be the collection of clusters. Initially, B ¼ /.
Step 1: Apply the FCM-r to partition X into two clusters B1 and

B2, and B ¼ B1 [ B2.
Step 2: Compute the uniformity measure using Eq. (3) for every

new cluster Bi, and Bi 2 B. Let ukðBiÞ be the measured
uniformity value of cluster Bi. Find the cluster in B with the
worst uniformity value, i.e.

B�i ¼ arg max
Bi2B
fukðBiÞg
Partition the cluster B�i into two clusters Bi�;1 and Bi� ;2 using the
FCM-r, and let B ¼ ðB� Bi� Þ [ Bi� ;1 [ Bi� ;2.

Step 3: Let jBj represent the total number of clusters in B. Repeat
Step 2 if jBj < C. Else, deliver the resulting clusters B.
In order to evaluate the performance of multi-group clustering
between the conventional FCM and the proposed clustering with
uniformity measures, the public benchmark dataset [22] that con-
tains 7500 two-dimensional data points in 50 groups is used for
the test. When the conventional FCM clustering algorithm is
applied, the objective function will fall into a local minimum in
the iterative process. It then leads to the wrong clustering results
as showed in Fig. 3(a). The crosshairs in the figure mark the detect-
ed centroids of individual clusters. Some of the homogeneous
groups are wrongly assigned to two clusters (i.e., a group with
two centroids), and some groups are falsely detected by assigning
the centroid in the middle of two clusters.

Fig. 3(b) shows the clustering results of the same test dataset
from the proposed partition procedure. All 50 groups are correctly
Please cite this article in press as: D.-M. Tsai et al., Defect detection in mult
Informat. (2015), http://dx.doi.org/10.1016/j.aei.2015.01.014
identified. Note that the proposed method can reliably partition
the overlapping groups into separated clusters. Numerous bench-
mark datasets have also been evaluated. The experiments consis-
tently show that the proposed clustering with uniformity
measures generates similar results as the conventional FCM when
the datasets involve only a few groups. The proposed method dis-
tinctly outperforms the conventional FCM for the datasets contain-
ing tens of groups.

To apply the proposed clustering, the number of clusters C must
be predetermined. If the true number of patterns is less than a pre-
set C, some of the resulting clusters may contain only a few sam-
ples (e.g. 3 or less) in a cluster. In this case, the number of
clusters C can be reduced and the clustering process repeats until
each cluster contains a sufficient number of samples. Since the
clustering process can be carried out off-line, an appropriate num-
ber of clusters C can be always determined prior to the inspection
process. In addition, the clustering results are used to determine if
a test sample is close enough to at least one of the clusters of
defect-free samples. The detection results are generally not sensi-
tive to a small change of the number of clusters C.

2.3. Feature extraction

As seen in Fig. 2, the finger electrodes present repetitive vertical
lines in the EL image. The thin finger electrodes could be
i-crystal solar cells using clustering with uniformity measures, Adv. Eng.
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Fig. 6. Configuration of the EL imaging system.
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mistakenly identified as line-shaped defects. Morphology opening
is thus applied first to the gray-valued EL image to remove the thin
finger lines. The pixel value is first replaced with the maximum
gray-level in the window of a structuring element. It is then
replaced with the minimum gray-level in the same window. The
structuring element for gray-level opening is given by a 5 � 1
row window in this study. The opening operation can remove all
the pixels in regions which are too small to contain the 5 � 1 win-
dow. Fig. 4(a) shows the original EL image that contains vertical
finger lines. Fig. 4(b) presents the result of the opening operation.
The finger lines are removed while the shape of the break defect is
well retained in the smoothed image.

For saving the computation time and improving the detection
accuracy, only edge points in the smoothed EL image are evaluated
for possible defects. The Canny edge operator [23] is used to
extract the edges in the EL image of a solar cell. In the training
stage of the proposed method, only edge points are taken as the
training samples for clustering. In the inspection stage, only edge
points of a test image are evaluated.

In order to distinguish various defects of micro-cracks, breaks
and finger interruptions from a randomly patterned background,
effective discriminative features must be designed and extracted
for solar cells in EL images. As seen in Fig. 2(b)–(d), defects are line-
or bar-shaped and contain dark gray levels from their surround-
ings. In this study, the Haar-like features, which are originally pro-
posed by Viola and Jones [24] for face recognition, are extracted for
each edge point in the EL image. Fig. 5 shows 12 windows in
horizontal, vertical and diagonal directions for the extraction of
the Haar-like features, where each window is divided into black
and white rectangular regions. The resulting feature value of a
given window is the difference of the gray-level sums in the black
and white regions. The windows in the first two rows are used to
extract line edges and, especially, for breaks. The windows in the
last row are used to extract thin lines or strips. All these 8 windows
can well capture the characteristics of line- and bar-shaped defects
in arbitrary directions. To adaptively detect different defect sizes, a
variety of Haar window sizes for each of the 12 window patterns
are also generated. Let h � w be the size of a rectangular window.
We set 7 varying values for the width with w = 6, 12, 18, 24, 30, 36
and 42 pixels. The height h is set at a fixed value of 18 for possible
defect lengths. There are 12 Haar window patterns, each of 7 win-
dow sizes, used to extract the discriminative features. Thus, a total
of 84 (12 � 7) features are used to represent the characteristics of
each edge point in the image. All the required computation for the
84 Haar-like features can be efficiently implemented with the inte-
gral image technique [25]. They can be efficiently applied for on-
line, real-time inspection of solar cells in a manufacturing process.
Please cite this article in press as: D.-M. Tsai et al., Defect detection in mult
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2.4. Defect detection

In this study, only the edge points are used as training samples.
They are randomly collected from defect-free solar cell images in
the training stage. These training samples are grouped into a pre-
determined number of clusters using the proposed binary-tree
clustering method described previously.

Let B ¼ fBc; c ¼ 1;2; . . . ;Cg be the resulting clusters, and
Bc ¼ fxc;1; xc;2; . . . ; xc;ncg the cluster c that contains nc members. In
order to detect possible defect points in a test image, an adaptive
distance threshold for each resulting cluster is formulated. Because
individual clusters may have different densities and the distances
of inter-samples may be different from cluster to cluster, the dis-
tance threshold must be separately determined for each cluster.
The distance between a test edge point and the centroid of a cluster
Bc in B is calculated. It is then compared with the distance thresh-
old. If there exists at least one cluster that gives the distance less
than the threshold, the test edge point is classified as a defect-free
point. If the distance violates the distance restriction for all clusters
in B, the test edge point is then identified as a defect point. The
adaptive distance threshold Tc of a cluster Bc is given as follows.

The Euclidean distance from a point xi to the cluster centroid vc

of a cluster Bc is calculated by

dc;i ¼ kxi � vck; xi 2 Bc ð4Þ

Let lc and rc be the mean and standard deviation of distances dc,i for
all members in cluster Bc. The distance threshold for cluster Bc is
adaptively defined by the control limit:

Tc ¼ lc þ t � rc; c ¼ 1;2; . . . ;C ð5Þ

where t is the control constant.
In the inspection stage, the distance from a test sample x0 to the

centroid of cluster c is

dc ¼ kx0 � vck; 8c ¼ 1;2; . . . ;C

If the distance is greater than the threshold Tc, the edge point x0 in
the test image is marked with 1 for cluster c. Else, it is marked with
0. That is,

dcðx0Þ ¼
1; if dcðx0Þ > Tc

0; otherwise

�

x0 is finally identified as a defect point if its distance is larger than
the threshold for every cluster in B, i.e.

YC

c¼1

dcðx0Þ ¼ 1
i-crystal solar cells using clustering with uniformity measures, Adv. Eng.
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(a1) (a2) (a3) (a4) 

(b1) (b2) (b3) (b4) 

(c1) (c2) (c3) (c4) 

(d1) (d2) 
C=20

(d3) 
C=30

(d4) 
C=50

Fig. 7. Effect of changes in the number of clusters with C = 20, 30 and 50, given the control constant t = 0.02: (a1) break defect image; (b1) finger-interruption defect image;
(c1), (d1) two defect-free images; (a2)–(d2) respective detection results with C = 20; (a3)–(d3) respective detection results with C = 30; and (a4)–(d4) respective detection
results with C = 50.
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3. Experimental results

The EL imaging system used in the experiment consisted of a
dark chamber, in which the solar module was placed. A DC power
supply provided voltage to excite the solar module. A cooled near-
infrared CCD camera then captured the infrared light emitting from
the excited module. The configuration of the EL imaging system is
illustrated in Fig. 6. The image size of a solar cell in the experiment
was 550 � 550 pixels with 8-bit gray-levels. The proposed detec-
tion algorithms were coded using MATLAB and implemented on
Please cite this article in press as: D.-M. Tsai et al., Defect detection in mult
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a Pentium Core 2 Duo, 3.0 GHz personal computer. The proposed
algorithm currently takes 0.1 s to process a 550 � 550 image. With
a more computationally efficient programming language, such as
C# and a high-end personal computer, the computation time of
the proposed method can be further improved. For on-line inspec-
tion, a solar module comprises 6 � 6 (i.e. 36) solar cells. The system
thus requires 36 images of size 550 � 550 pixels to complete the
inspection of the whole module surface. Only 3.6 s are needed to
inspect the entire solar module surface. It is fast enough for on-line
and real-time solar module inspection.
i-crystal solar cells using clustering with uniformity measures, Adv. Eng.

http://dx.doi.org/10.1016/j.aei.2015.01.014


(a1) (a2) (a3) (a4) 

(b1) (b2) (b3) (b4) 

(c1) (c2) (c3) (c4) 

(d1) (d2) 
t =0.01 

(d3) 
t =0.02 

(d4) 
t =0.03 

Fig. 8. Effect of changes in control constant with t = 0.01, 0.02 and 0.03, given the number of clusters C = 30: (a1) break defect image; (b1) finger-interruption defect image;
(c1), (d1) two defect-free images; (a2)–(d2) respective detection results of t = 0.01; (a3)–(d3) respective detection results of t = 0.02; and (a4)–(d4) respective detection
results of t = 0.03.
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In this study, crack, break and finger-interruption are line- or
bar-type defects in solar cells. The image size used in the experi-
ment was 550 � 550 pixels. Given a spatial resolution of 0.28 mm
per pixel for a solar cell of 156 � 156 mm2 in its physical size,
the minimum detectable size is about 0.84 mm (3 pixels) in width
of a defect.

The total number of edge points selected from defect-free solar
cell images for clustering in the training stage is around 40,000.
The control constant t for the distance threshold of each trained
cluster is set at 0.02. The total number of clusters C is 30. The
Please cite this article in press as: D.-M. Tsai et al., Defect detection in mult
Informat. (2015), http://dx.doi.org/10.1016/j.aei.2015.01.014
height h of the Haar window is fixed at 18. The effects of changes
in parameter values of C (number of clusters) and t (control con-
stant) are first presented in Section 3.1. The detection results of
the test samples with various defect types are discussed in
Section 3.2.

3.1. Effects of changes in parameter values of C and t

The proposed defect detection algorithms have two main para-
meters: the number of clusters C and the control constant t in Eq.
i-crystal solar cells using clustering with uniformity measures, Adv. Eng.

http://dx.doi.org/10.1016/j.aei.2015.01.014


(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

(e1) (e2)
Fig. 9. Detection results of defect-free solar cell images: (a1)–(e1) five faultless
samples and (a2)–(e2) respective detection results of the proposed inspection
scheme, where no defects are declared.

(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

(e1) (e2)
Fig. 10. Detection results of defective solar cell images: (a1) break defect image;
(b1) micro-crack/finger-interruption image; (c1)–(e1) finger-interruption images;
and (a2)–(e2) detection results of the proposed inspection scheme.
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(5). In order to evaluate effects of changes in parameter values for
solar cell inspection, Fig. 7 first presents the detection results with
varying numbers of clusters C = 20, 30, and 50, given that the con-
trol constant t = 0.02. In the first column of the figure, the test sam-
ples sequentially are break defect image (a1), finger-interruption
defect image (b1), and two defect-free images (c1)–(d1). The
detected defect points are shown in black and the defect-free
points are presented in white in the resulting binary images, as
seen in Fig. 7(a2)–(d2) with C = 20, Fig. 7(a3)–(d3) with C = 30,
and Fig. 7(a4)–(d4) with C = 50. It can be seen from Fig. 7(a2)–
(a4) that the break defect can be reliably detected, regardless of
the changes in C values. In this study, an insufficient or an exces-
sive number of clusters may miss the detection of subtle defects.
As seen in Fig. 7(b2), the results show that the finger-interruption
defects are not well detected when the number of clusters is only
20. When the number of clusters is too large, such as 50, the upper-
right finger-interruption in the image is also not detected, as seen
in Fig. 7(b4). With C = 30, the break and finger-interruption defects
can be well detected. In consideration of computational efficiency
and detection effectiveness, 30 clusters are therefore selected in
the subsequent experiments and are recommended for the
implementation.

The parameter t sets up the adaptive control limit (threshold) to
segment the defect points from the background. A very small t val-
ue gives a tight control limit and may result in severe noise. Con-
versely, an excessively large t value yields a loose control limit
and may fail to detect a subtle defect. Fig. 8 shows the detection
results as binary images with three control constants t = 0.01,
0.02 and 0.03, given the number of clusters C = 30. The first column
of the figure shows the same test images as those in Fig. 7. When
the control constant is tightly selected, such as t = 0.01, the break
(as seen in (a2)) can be still detected, and the finger-interruption
(as seen in (b2)) can also be identified. There are some minor noisy
points detected in the defect-free image, as seen in Fig. 8(d2). The
random noise generated in the binary images of defect-free solar
cells can be easily removed by simple morphological closing opera-
tions. Given a loose control limit, for example t = 0.03, the upper-
right finger-interruption in the image cannot be identified, as seen
in Fig. 8(b4). A control constant t = 0.02 gives the best overall per-
formance, where the random noise is removed and the small
defects are well detected.
Fig. 11. A small dark object similar to the finger-interruption.
3.2. Detection results

In the experiment, the number of clusters C = 30 and control
constant t = 0.02 are applied to all test samples. Figs. 9 and 10 show
the detection results of the proposed method for defect-free and
defective images, respectively. In Fig. 9, the first column ((a1)–
(e1)) presents five defect-free images for the test. The second col-
umn ((a2)–(e2)) presents the detection results of the proposed
inspection scheme. In this experiment, we used the morphological
closing operation with a 3 � 3 structuring element to remove noise
in the binary images. In the five defect-free test samples, each EL
image contains a unique background pattern. The proposed
Table 1
Detection results of the proposed method on the 50 test samples.

Sample types Number of samples Detection results

Defective Defect-free

Defect-free 31 1 30

Defective
Break 6 6 0
Micro-crack 3 3 0
Finger-interruption 10 10 0

Please cite this article in press as: D.-M. Tsai et al., Defect detection in mult
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defect-detection scheme can reliably ignore the random grain
boundaries in the detection process and results in clear surfaces
in the final binary images with the same parameter setting.
Fig. 10(a1)–(e1) shows fives defective solar cell images containing
break, micro-crack, and finger-interruption defects for the test. It
can be seen from Fig. 10(a1) and (e1) that the break and the fin-
ger-interruption are embedded within grain boundaries. It makes
the inspection task very difficult. Fig. 10(a2)–(e2) presents the
detection results. All of the defects are well detected.

In this study, only edge points in the EL image are used for
evaluation. Extraction of edges using the Canny edge detector is
generally not affected by illumination changes. Also, the dark
objects (defects and crystal grain boundaries) in the EL image show
relatively high contrast with respect to their surrounding back-
ground. The proposed detection method is thus robust to illumina-
tion changes. As seen in Fig. 9, the image in (e1) is significantly
darker than those in (a1)–(d1). Similarly, the illumination of the
image in Fig. 10(a1) is distinctly lower than the bright image in
Fig. 10(d1). The proposed method can reliably detect defects under
various illuminations.

In order to further verify the detection performance of the pro-
posed method, a total of 50 solar cell images are also evaluated. In
the 50 test images, 31 are defect-free and 19 are defective. All the
parameter values are the same as those used in the previous
experiment. The 19 defect images involve 6 break samples, 3
micro-crack samples, and 10 finger-interruption samples. The
detection statistics are summarized in Table 1. In this study, we
used a 3 � 3 structuring element to remove noise. Thus, any black
object larger than 3 � 3 pixels in the final segmented (binarized)
image is declared as defect. As long as parts of defects are detected,
the system alarms. All of the 19 defective solar cell images are cor-
rectly identified, and the false negative rate is zero. Only one of the
31 defect-free solar cell images is falsely detected as a defect, and
Table 2
Detection results of the FCM on the 50 test samples.

Sample types Number of samples Detection results

Defective Defect-free

Defect-free 31 13 18

Defective
Break 6 6 0
Micro-crack 3 2 1
Finger-interruption 10 10 0
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Fig. 12. Comparison of proposed method and conventional FCM with the same parameter settings: (a1) break defect image; (b1) finger-interruption defect image; (c1), (d1)
two defect-free images; (a2)–(d2) detection results of the proposed method; and (a3)–(d3) detection results of the conventional FCM.
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the false positive rate is 3.2% for the test images in the experiment.
The falsely-detected defect-free sample is a dark object similar to
the finger-interruption, as seen in the upper-right corner of the
EL image in Fig. 11.

For comparing the detection performance, the FCM method is
also used to evaluate the same 50 solar cell images. The parameter
values of the FCM are selected so that most of the true defects can
be identified. For the FCM method in Table 2, one of the 19 defec-
tive solar cell images is falsely detected as defect-free, and the false
negative rate is 5.2%. However, thirteen of the 31 defect-free solar
cell images are wrongly detected as defects. The false positive rate
is as high as 41.9%. As for the processing time, the tradition FCM
Please cite this article in press as: D.-M. Tsai et al., Defect detection in mult
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method is faster than the proposed method for off-line clustering.
However, the processing time of on-line inspection is the same,
and is invariant to the clustering methods.

Fig. 12 visually demonstrates the comparison of the proposed
clustering method and the conventional FCM under the same para-
meter settings. Fig. 12(a1) is a break defect image. The detection
results show that only the proposed clustering procedure can well
detect the thin break, as seen in Fig. 12(a2) and (a3). Fig. 12(b1) is a
finger-interruption defect image. The conventional FCM method
cannot detect the finger interruption, as seen in Fig. 12(b3).
Fig. 12(c1) and (d1) are two defect-free images. The conventional
FCM shows some noise in the detection results for defect-free
i-crystal solar cells using clustering with uniformity measures, Adv. Eng.
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images, as seen in Fig. 12(d3). The proposed clustering procedure
declares no defect points for the two defect-free images.

4. Conclusions

This paper has proposed a machine vision method for solar cell
inspection in electroluminescence images. The Haar-like features
are designed and extracted to represent the characteristics of local
crystal-grain patterns. The improved clustering procedure can
effectively group a dataset containing tens of clusters by evaluating
the uniformity of inter-sample distances in each cluster. In the
training process, only defect-free images are taken as training sam-
ples, and a simple distance threshold is automatically determined
for each cluster. The adaptive distance threshold is easily deter-
mined based on the mean and standard deviation of distances from
sample points to the cluster centroid for each individual cluster. In
the inspection process, the distance from the testing data to indi-
vidual cluster centroids can be easily computed and compared
with the distance threshold. The proposed method effectively
detects solar cell defects in electroluminescence images, and gives
the location of a detected defect. With the implementation of
integral image techniques, the computation time in the inspection
process is extremely fast. The proposed method is thus practical for
one-line, real-time inspection in the solar cell manufacturing
process.

The proposed method mainly focuses on the detection of line-
and bar-type defects, including crack, break and finger interrup-
tion, which are serious and commonly-occurred in the solar cell
manufacturing process. Other types of defects, such as circular-
shaped stains and contaminations in solar cells, may need different
discriminative features for better inspection results. But, the pro-
posed clustering mechanism can be still applied for the grouping
of defect-free samples.

The proposed method in it present form requires an appropriate
setting of two critical parameters, the number of clusters C and the
control constant t for distance threshold. They are empirically
determined in this paper. It is worthy of further investigation for
automatic parameter setting in the future.
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