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Building information models (BIMs) provide opportunities to serve as an information repository to store
and deliver as-built information. Since a building is not always constructed exactly as the design
information specifies, there will be discrepancies between a BIM created in the design phase (called
as-designed BIM) and the as-built conditions. Point clouds captured by laser scans can be used as a
reference to update an as-designed BIM into an as-built BIM (i.e., the BIM that captures the as-built
information). Occlusions and construction progress prevent a laser scan performed at a single point in
time to capture a complete view of building components. Progressively scanning a building during the
construction phase and combining the progressively captured point cloud data together can provide
the geometric information missing in the point cloud data captured previously. However, combining
all point cloud data will result in large file sizes and might not always guarantee additional building
component information. This paper provides the details of an approach developed to help engineers
decide on which progressively captured point cloud data to combine in order to get more geometric
information and eliminate large file sizes due to redundant point clouds.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

For every construction project, the general contractor of a
project is required to hand over the as-built documentation to
the owner at the end of that project. The main challenge with
the handover process is to ensure that the captured building
information is complete and reflects the actual building conditions
[1–3]. Building information models (BIMs) provide opportunities
to be used as information repositories to store and deliver
as-built information due to their flexibility in capturing and
exchanging digital information about projects.

While it is possible to convert an as-designed BIM created in the
design phase into an as-built BIM, extensive surveying is needed to
measure the discrepancies between an as-designed BIM and actual
building conditions. Laser scanning technology is able to capture
accurate geometric information in a timely manner. Hence, point
clouds captured by laser scans can be used as a reference to update
an as-designed BIM into an as-built BIM. However, point cloud data
collected at a single point in time typically is not capable of
providing all the geometric information required for updating an
as-designed BIM due to: (a) having periodic occlusions on a con-
struction scene because of temporary work, machinery, laborers,
and materials, (b) buried or hidden building components behind
the finished surfaces (e.g., ductwork that are hidden behind ceiling
tiles) and (c) building components that are not scheduled to be
constructed/installed prior to the scanning.

Scanning a building at discrete points in time during its con-
struction process (called as progressive scanning in this paper)
and combining these scans together could provide a more com-
plete set of geometric information, which is necessary for updating
building components in a BIM. The value of progressively scanning
a building during its construction process and combining these
point cloud data sets together are investigated in this paper
through an experimental analysis that used a renovation project
as the testbed.

Combining point clouds together could result in a file with size
that is difficult to process and store, given that each point cloud
often contains millions of data points and its size could range
between a few hundred megabytes to a few gigabytes depending
on the scanning range and resolution [4,5]. There is a trade-off
between obtaining a more complete set of geometric information
by combining all of the progressively captured point clouds and
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reducing the file size by only combining a subset of point clouds
that could provide all the necessary geometric information for
the components of interest. To address this challenge, there is a
need for an approach that would enable evaluating geometric
information contained in a point cloud data set and supporting
the decision of selecting a subset of available point clouds without
sacrificing the file manipulation and handling due to large file
sizes.

This paper first introduces an experimental analysis that
evaluate and quantify the value of using progressive point clouds
to support the BIM updating process. Second, this paper presents
an approach that evaluates the information contained in point
clouds captured at different times and selects the least number
of point clouds for combination. The goal of this approach is to
register less number of point clouds and hence minimize the file
size of the registered point cloud days and the corresponding pro-
cessing time while maximizing the coverage of the geometric
information to be used for BIM update. The developed approach
targets on surfaces of building components and quantifies the geo-
metric information associated with the target surfaces captured
within each point cloud data. The approach then compares the
coverage of information (e.g., the percentage of building surfaces
captured within a point cloud) provided by each point cloud data
and assesses the additional information gained by the combined
point cloud data. Based on the analysis, the approach accesses
the value of geometric information and prioritizes the scans for
minimizing the file size and maximizing the coverage.
2. Related research studies

The research work presented in this paper builds on the
previous research studies in relation to (1) evaluation of the quality
and quantity of information captured by point clouds, (2) point
cloud registration approaches, and (3) scan planning approaches.
2.1. Evaluation of the quality and quantity of information captured by
point clouds

Previous studies that have evaluated the quality and quantity of
information captured by point cloud data can be grouped into two:
(a) Approaches that assess the accuracy of point cloud data by
comparing the measurements on real physical objects to the mea-
surements taken in the corresponding point cloud data, and (b)
Approaches that compare the point cloud data to other sources
of corresponding reference data, such as building information
models.

The first group of research studies focuses on assessing the
accuracy of geometric information captured by point cloud data.
To support the assessment, these research studies have suggested
taking measurements on real physical objects and comparing the
measurements to the measurements taken from the corresponding
objects captured in point cloud data [6–9]. The results of these
research studies are used to support different engineering applica-
tions, including (a) the identification of the factors (e.g., the resolu-
tion and range of laser scanners, the reflectivity of scanned
surfaces) that could impact the accuracy of captured point cloud
data [6–8,10–13], and (b) the evaluation of the accuracy of point
cloud data captured by laser scanners and assessing the applicabil-
ity of using point cloud data to support a specific task (e.g., 3D sur-
veying, quality control, surface flatness detection, etc.) [14–16].

Studies that evaluate the accuracy of captured point cloud data
for specific engineering applications well align with the work
presented in this research in terms of assessing the quality of geo-
metric information captured by laser scanners. However, one main
difference between the previous approaches described above and
Please cite this article in press as: T. Gao et al., An approach to combine progr
http://dx.doi.org/10.1016/j.aei.2015.08.005
the research presented in this paper is that such studies do not
focus on evaluating the completeness of data provided by a point
cloud (i.e., whether or not the entire surfaces of a building
component can be seen in a point cloud). The research presented
in this paper differs from these previous studies with respect to
quantifying the geometric information captured by a point cloud.

The second group of research studies formulated a deviation-
based approach in order to identify the differences between point
cloud data and a reference model, such as a building information
model [17–22]. The reference models assumed to reflect the
ground truth for different geometric information, such as the loca-
tion, dimensions, shape and orientation of components, that will
be used to assess the quality of the point cloud data. The patterns
of deviations can be used to indicate the quality of a point cloud
data and how much information is captured by the point cloud
data. Synthesis of the studies in this field suggests that three major
metrics can be used to characterize the information contained in
point cloud data [14,22,23]. These are: (1) the point density, which
defines the number of points within a unit area, (2) the
uncertainty, which refers to the standard deviation of the shortest
distance between points and the surfaces fitted to the points, and
(3) the occlusion, which defines the regions of the object surface
that have no corresponding points in the point cloud data. The
point density determines the level of detail of the geometric infor-
mation that a point cloud is able to provide for a given object. A
high-density point cloud is capable of providing geometric infor-
mation with greater details. The uncertainty is used to define the
reliability of the measurements taken in a certain region within a
point cloud. The uncertainty could be caused by noise in the data,
edge losses (i.e., the mixed-pixels at the edge of two surfaces), low
reflectivity of a surface, and irregularities of surfaces. The research
presented in this paper extends these three concepts to quantify
the geometric information of target building components captured
within a point cloud data set.

2.2. Point cloud registration approaches

Multiple point cloud data sets can be combined together
through the registration process. There are different registration
approaches, which can be grouped into two classes: coarse regis-
tration and fine registration [24]. The coarse registration
approaches align a set of point clouds using correspondences
between each point cloud set. For instance, the corresponding
points or targets can be manually selected from two point clouds
(e.g., centroid of targets, markers), and the coarse registration
approaches will align the set of point clouds in order to minimize
the distances between the points selected from the point clouds. As
a result, whether the selected point pairs are equivalent to each
other or not will determine the accuracy of the final alignment.

The fine registration takes an entire point cloud data set into
consideration [24–26] while registering different point clouds.
Iterative closest point (ICP) is a well-known fine registration algo-
rithm, which iteratively adjusts the alignment of a set of point
clouds until the distances between points in one point cloud data
and their closest points in the remaining sets are minimized
[27,28]. The ICP algorithm is fully automated and no points need
to be pre-selected for the registration purpose.

Registration errors are likely to be introduced into the
combined data set when a pair of point clouds cannot be aligned
perfectly. Hence, it is important to select a point cloud registration
approach that has less registration errors when used to combine
multiple point cloud data sets together. The performance of fine
registration approach could be impacted by deformations that
exist in point clouds, such as having appearances of building
components change in progressively captured point clouds. On
the contrary, the coarse registration done based on the equivalent
essively captured point clouds for BIM update, Adv. Eng. Informat. (2015),
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targets is not influenced by the deformation between different
point clouds. In this paper, we have captured a set of point cloud
data for a research lab at different times during its renovation
process. Due to the large spatial changes between point clouds
captured at different times, it is quite challenging to use fine regis-
tration approaches to register the progressively captured point
cloud together. Therefore, we placed targets in the scene during
the scanning process to facilitate the scanning registration and
used the equivalent target based coarse registration approach.
2.3. Scan planning approaches

Scan planning is a well-known problem in the computer vision
domain. Specifically, the next-best-view (NBV) approaches focus
on finding the minimum number of viewpoints, where a range
sensor could be placed in order to scan all the surfaces of an object
[29–31]. Various next-best-view (NBV) planning approaches have
been developed in the computer vision domain to address the
NBV problem [32]. These approaches are usually composed of
two parts: (a) a method to represent and determine the visibility
of an object surface from different viewpoints, and (b) a viewpoint
selection algorithm that optimizes the coverage of sensors with the
smallest number of views [32–36]. Various approaches have been
used to represent the viewing volume of an object from a given
viewpoint. Examples of such approaches include occupancy grids
(or called as voxel grid), octrees and triangle meshes [37]. One of
the commonly used representation approach is the occupancy grid,
which encodes an object surface using a voxel grid. In a voxel grid,
each voxel can be labeled as occupied (i.e., the voxel is captured by
the scanner from a given viewpoint) or unoccupied. By counting
the number of occupied voxels, the approach is capable of
determining the coverage of a range image captured from a given
location and orientation [34,38].

One of our research objectives is to develop an approach that
selects a minimum number of point cloud sets captured at differ-
ent times to provide a more complete set of geometric information
for the BIM updating process. It is similar to the NBV planning
approaches as they also target on finding a subset of point clouds
or range images to cover all the target object surfaces. NBV
planning approaches select range images captured at different
viewpoints whereas the scanned objects remain the same during
the scanning process. Hence, the changing variable of the NBV
planning approaches is the location of the scanner. On the contrary,
the approach developed in this research focuses on selecting a sub-
set of point clouds captured at different times. The scanned objects
might change among the scans captured at different times. As a
result, the changing variable of the approach is time. However,
the NBV planning approaches and the approach developed in this
research share the same objective of increasing the coverage of
scans and decreasing the redundant information by combining
point clouds varies in location (NBV planning approaches) or in
time (the approach developed in this research). Therefore, the
NBV planning approaches provide a starting point for developing
an approach to select and combine point clouds captured at differ-
ent times. The visibility metrics (i.e., occupied/unoccupied) and the
occupancy grids proposed in the NBV planning approaches are
modified and used in the point cloud selection approach proposed
in this paper.
1 For interpretation of color in Figs. 1 and 3, the reader is referred to the web
version of this article.
3. Motivating case study: an analysis of completeness of
geometric information in progressively captured point clouds

For a detailed analysis of completeness of geometric informa-
tion contained in progressive point clouds, we conducted a case
study while a research lab in a 100-year old university campus
Please cite this article in press as: T. Gao et al., An approach to combine progr
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building was renovated. The renovated space was scanned from
multiple locations to capture the interior of the research lab at
six different times during the renovation process that went from
May to August 2012. A pulsed time-of-flight (PTOF) scanner was
used in the case study. The precision of the scanner is 2 mm and
the maximum scan rate is 50,000 points per second. The lab layout
and the scan locations are shown in Fig. 1. The color1 of walls in the
research lab is white.

In this analysis, we used the point clouds progressively
captured at six different times at location 3 as the testbed. The
six point clouds were captured at the same scanning location in
order to eliminate the variances of geometric information caused
by different scanning locations. These captured point clouds are
referred to as P1, P2, P3, P4, P5 and P6 throughout the rest of this
paper. To evaluate the geometric information contained in the pro-
gressively captured point clouds, we selected the ductworks
installed in room 1 and analyzed howmuch information each point
cloud is able to provide to update these ductworks in a BIM. The
reason to use ductworks was that these ductworks were
progressively installed during the renovation, and as a result point
cloud data captured at different times has a high potential to
provide different information regarding these ductworks. To
update a ductwork segment manufactured in a rectangular shape,
width, height and length of the segment need to be measured from
a given point cloud data. The width, height and length of a
ductwork segment are referred to as geometric properties of that
ductwork segment. The analysis included 22 duct segments and
their 66 geometric properties (i.e., width, height and length) that
were measured in all of the six point clouds.

A geometric property can have three statuses in a point cloud:

� Occluded: Measurements from a given point cloud data are not
possible as occlusions block the view of a component regarding
that property.

� Not installed: Measurements from a given point cloud data are
not possible as the corresponding component was not in place
when the point clouds were captured.

� Measurable: Measurements from a given point cloud data are
possible for the property being considered.

In this case study, targets were placed in the scene when laser
scanning was progressively performed during the renovation pro-
cess. A screenshot of targets presented in a point cloud is shown
in Fig. 2. An equivalent target based point cloud registration
approach was used to combine point clouds together. The six point
clouds were progressively registered and analyzed for the status of
the same 66 geometric properties shown in the registered point
clouds. In total, five registered point cloud sets were generated,
labeled as ‘‘P1 + P2”, ‘‘P1 to P3”, ‘‘P1 to P4”, ‘‘P1 to P5”, and ‘‘P1 to
P6”.

Fig. 3 shows the status of geometric properties measured in the
point clouds captured at a single point in time (i.e., P1, P2, etc.) as
well as the progressively registered point clouds. In Fig. 3, each row
represents a ductwork segment in the testbed. The blue, gray and
black boxes represent whether a corresponding geometric prop-
erty is measurable, not installed or occluded in the point cloud,
respectively.

As shown in Fig. 3, when considered individually, none of the
progressively captured point cloud sets is capable to provide a
complete view for all the geometric properties for all these seg-
ments. In order to help interpretation of Fig. 3, screenshots of the
analyzed duct segments taken from each of the six point cloud sets
essively captured point clouds for BIM update, Adv. Eng. Informat. (2015),
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Fig. 1. Research lab site layout and the scan locations.

Fig. 2. Targets shown in a point cloud.

Fig. 3. Status of geometric properties captured by individual point clouds (P1, P2 . . . P6) and the combination of them.
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are shown in Fig. 4. Combining Fig. 3 with Fig. 4, it can be found
that no ductwork segments were installed by the time P1 was cap-
tured, and thus all the 66 geometric properties are gray – hence
Please cite this article in press as: T. Gao et al., An approach to combine progr
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have ‘‘not installed” status in P1. 42% of the geometric properties
were ‘‘not installed” in P2. By the time P3 was captured, all the
ductworks in Room 2 were installed (i.e., no segments with not-
essively captured point clouds for BIM update, Adv. Eng. Informat. (2015),
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Fig. 4. Screenshots of the analyzed duct segments taken from each point cloud set.
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installed status). Occlusions caused by temporary structures
prevent a point cloud from capturing a complete view of target
components and their associated geometric properties. In P3, 11%
of the geometric properties were ‘‘occluded”. 23% of the geometric
properties captured by P4 were ‘‘occluded” and 14% of the
geometric properties captured by P5 were ‘‘occluded”. By the time
P6 was captured, ceiling tiles and lighting fixtures were installed.
They occluded most of the ductworks. As a result, the percentage
of ‘‘occluded” geometric properties jumped to 67% in P6.

It was possible to extract more geometric properties from the
merged point clouds than the point clouds captured at a single
point in time. In the combined point clouds ‘‘P1 to P3”, ‘‘P1 to
P4”, ‘‘P1 to P5” and ‘‘P1 to P6”, 96% of the geometric properties
were ‘‘measureable” and 4% of them were ‘‘occluded”. The
occluded geometric properties in the combined point clouds
(shown as black boxes in Fig. 3) were either ‘‘occluded” or ‘‘not
installed” in all of the six progressively captured point clouds.

An important observation was that when point cloud data P1 to
P3 are combined, this data set provided the same number of geo-
metric properties as compared to combining all six point cloud sets
together. Adding P4, P5 and P6 into the registered point cloud did
not increase the number of ‘‘measurable” geometric properties for
the analyzed duct segments. It shows that combining more point
cloud sets does not always mean that the registered point clouds
would provide more geometric properties in relation to the target
components.

In addition, as observed from Figs. 3 and 4, the occlusions
are randomly distributed in the six point clouds. However, as
Please cite this article in press as: T. Gao et al., An approach to combine progr
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renovation progresses, it is likely that the probability of having
the same occlusions occurring at exactly the same locations will
decrease. It will be possible to get measurements in the point cloud
data captured later in time for the geometric properties that were
‘‘occluded” or ‘‘not installed” in the point cloud data captured ear-
lier in time. As a result, when multiple progressively captured
point clouds are combined together, it is possible to retrieve geo-
metric properties that were occluded or not installed in other point
clouds.

However, the increase in the number of measurable geometric
properties provided by a combined point cloud data set is not pro-
portional to the increase in the number of point cloud data sets
that are combined together. Adding more point cloud data sets will
increase the size of the final data set though it might not always
provide additional measurable geometric properties. Given the
large file size of a point cloud data, combining multiple point
clouds together would generate a combined point cloud that
requests a large storage space and processing time. For instance,
six point clouds were collected at different points in time in the
motivating case study, and the average size of a file containing
one set of point cloud data was around 320 MB. Combining these
six point cloud data sets together generated a 2 GB file that con-
tains 13 million points for just one scan location. In a case study
done at Carnegie Mellon University on a two story building con-
struction site, a total of 68 scans were conducted to capture the
indoor and outdoor environments of a 38,000 square foot building
in just one visit. If we progressively scan the building and combine
the scan data all together at different times it will generate a large
essively captured point clouds for BIM update, Adv. Eng. Informat. (2015),
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data set that is difficult to store, manipulate and process [4,39,40].
Therefore, having a pre-selected set of point clouds could reduce
the size of final point cloud data and also potentially improve the
usage for the final point cloud data. In order to support the decision
of which point clouds to be registered, there is a need to develop an
approach to evaluate the geometric information contained in each
point cloud set and assess the gained information when additional
point clouds are registered together. The next section provides the
details of the point cloud selection approach developed for this
purpose.

4. An approach to evaluate information contained in
progressively captured point clouds and select point clouds to
be combined

This section introduces the point cloud selection approach
developed in this research. The approach assumes that an as-
designed BIM is available and progressive laser scans are captured
on the site. The consideration of the quality of laser scan data is not
within the scope of this paper. The approach is composed of two
modules: (1) content assessment module, which quantifies the
geometric information contained in each point cloud data for
updating/modeling target building components in a BIM, and (2)
content improvement module, which calculates the information
gained by adding one point cloud data to another. This module
requires the output of content assessment module. Each module
is detailed in the following subsections.

4.1. Content assessment module for quantifying the geometric
information contained in a point cloud

Fig. 5 shows the flowchart of the content assessment module.
The content assessment module takes two inputs: a set of point
cloud data captured at different points in time and a set of target
components modeled in the BIM. For selected surfaces associated
with the target components, this module applies a grid-based eval-
uation approach to quantify the geometric information provided
Fig. 5. The flowchart of cont
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by a point cloud data set. For each surface of a target component,
the grid-based approach overlays a grid on the surface of a target
component and divides the target surface into a finite number of
cells. The grid-based point cloud evaluation approach can be
divided into two steps: (1) grid construction and (2) point cloud
geometric information assessment, as detailed below:

Step 1: Grid construction
Grid construction step overlays a grid onto each surface of tar-

geted components modeled in a BIM. The grid divides a given sur-
face of target components into a finite number of cells. The size of a
cell is determined based on the size of the surfaces and the level of
detail required by the assessment conducted in the next step. As an
example, Fig. 6a shows a grid that is generated over a surface of
ductworks modeled in a BIM, which divides the surface into a
number of cells with the size of 0.04 m.

Step 2: Point cloud geometric information assessment
This step analyzes a point cloud using the same grid generated

in Step 1 for each surface of the components modeled in a BIM.
During this step, first the point cloud and the BIM are aligned into
the same coordinate system using the ICP algorithm, so that the
grid can also be aligned with the point cloud. The initial alignment
between the point cloud and the BIM was made manually by align-
ing corresponding points in the two data sources. After the grid is
overlaid with the point cloud, each cell in the grid contains a set of
points. When a cell does not contain any points, the geometric
information is missing in this cell. There are several reasons for
the missing points in a cell, such as: (a) corresponding building
surface could be occluded, (b) corresponding building surface
could still be not installed when the point cloud data was captured,
and (c) the reflectivity of the corresponding building surface, which
results in having no laser beam being reflected and returned back
to the scanner.

To easily differentiate cells with points and without points, a
coverage image is generated in this step, which uses a color-
coding to indicate whether a cell contains any information related
to target surfaces or not. Fig. 6a shows a screenshot of ductworks
modeled in the BIM and the grids overlapped on top of the
ent assessment module.

essively captured point clouds for BIM update, Adv. Eng. Informat. (2015),
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Fig. 6a. Ductworks modeled in a BIM and the grid overlaid on the surfaces of ductworks (red cells are the cells occupied by the model, cell size is set as 0.04 m). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6b. Ductworks captured by a point cloud (left) and the coverage image (right), where the red cells indicate that the cells contain the points associated with the target
surface (cell size is set as 0.04 m). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ductwork surfaces. Fig. 6b shows a point cloud data and its cover-
age image. The coverage image is used to quantify the information
contained in each grid using a metric called, the coverage ratio. The
coverage ratio refers to the ratio of a surface that is clearly pre-
sented in a point cloud without any occlusions over the entire sur-
face and is calculated for each surface using the equation given
below:
Coverage ratio

¼ number of cells occupied on the grid overlaid on a point cloud for a surface
total number of cells available on the grid for that surface

ð1Þ

A cell is occupied if there is a point inside that cell. A low cov-
erage ratio means that a given point cloud set cannot provide
enough geometric information to model/update target surfaces. It
also suggests that additional point clouds need to be added in
order to cover the missing portion of the components for accurate
measurements.

Step 2 is repeated for all the surfaces of a given component and
for all the point cloud sets. The content assessment module calcu-
lates the coverage ratio of all the input point cloud data sets for the
targeted surfaces in the BIM. The point cloud with the maximum
coverage ratio is the one that is capable of providing the most com-
plete geometric information for the specific surfaces of the target
components and is marked as the baseline point cloud.

To better demonstrate how the content assessment module
works, we used four point cloud data sets captured at four different
times as an example, and selected the ductworks shown in the
point clouds as the target building components. Fig. 7 shows four
point clouds captured at different points in time and their coverage
Please cite this article in press as: T. Gao et al., An approach to combine progr
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images for the shown surfaces of the ductworks. According to the
coverage ratios, P3 has the highest coverage ratio as 67.6% for
the surfaces of ductworks and hence should be used as the baseline
point cloud. The remaining point clouds need to be evaluated in
order to determine which point clouds should be combined with
the baseline point cloud data. This ties to the second module,
which is the content improvement module.
4.2. Content improvement module: assessing the information gain by
combining additional point clouds

This module takes the baseline point cloud identified by the
content assessment model as an input together with the remaining
sets of point cloud data, and determines which remaining point
clouds should be combined with the baseline point cloud for the
target surfaces and their geometric properties. The flowchart of
this process is shown in Fig. 8.

This module assumes that there is n number of sets of point
cloud data (P1, P2, P3 . . . Pn), and Pj is selected as the baseline point
cloud data with the highest coverage ratio among n number of
point cloud data. This module first compares each of the remaining
point clouds to the baseline point cloud, and calculates how much
information can be gained for the target geometric properties, by
adding each of the remaining point cloud data into Pj individually.
When comparing Pi (1 < i 6 n) with the baseline point cloud – Pj,
the module utilizes the same grid generated in the content assess-
ment module and overlays the coverage images of Pj and Pi
together. The content improvement module then examines the
coverage images and identifies the cells that are occupied by Pi,
but not by Pj. These cells refer to the target surface areas that were
essively captured point clouds for BIM update, Adv. Eng. Informat. (2015),
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Point cloud Coverage Image and 
Coverage Ratio

Point cloud Coverage Image and 
Coverage Ratio

P1 P1 0% P2 P2 48.1%

P3 P3 67.6% P4 P4 65.4%

Fig. 7. Point cloud data captured at different points in time and their occlusion images for duct segments.

Fig. 8. Flowchart of the content improvement module.

8 T. Gao et al. / Advanced Engineering Informatics xxx (2015) xxx–xxx
shown in Pi, but could not be captured or were occluded in Pj. To
quantify this additional geometric information, a metric, named
as dissimilarity ratio, has been introduced. The dissimilarity ratio
represents the percentage of information gained by adding the
new point cloud into the baseline point cloud, and is calculated
using the following equation:
Please cite this article in press as: T. Gao et al., An approach to combine progr
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Dissimilarity ratio ðPi;PjÞ

¼ number of cells occupied in Pi but not Pj on a given surface
total number of cells available on the grid on a given surface

ð2Þ

where Pi is the baseline point cloud.
Fig. 9 shows the result of the assessment for the same set of

ductworks used as an example in the previous module. The addi-
tional information generated by adding P2 into the P1 is shown
in the third column.

This assessment is repeated until all the point clouds at hand
are compared to the baseline point cloud. The point cloud with
the maximum dissimilarity ratio is defined as the one that has
the highest information to add to the baseline point cloud. This
point cloud is then registered with the baseline point cloud and
considered as the new baseline point cloud for the next iteration.
The model iteratively combines the remaining point clouds to
the baseline point cloud till either all the point clouds have been
registered together or the maximum dissimilarity ratio is smaller
than a threshold, whichever occurs earlier. Users determine the
value of the threshold. If the dissimilarity ratio of a point cloud is
smaller than the threshold, it is not worth adding this point cloud
to the baseline point cloud set since the combination will increase
the file size without bringing enough additional geometric infor-
mation for the model update/construction. The output of the con-
tent improvement module is a point cloud that is composed of the
selected point clouds.
5. Validation

We validated the performance of the developed approach in
terms of whether the approach is able to identify the right combi-
nation of point clouds in order to get a more complete set of geo-
metric information with less file size. In order to evaluate the
efficiency of the developed approach, its performance has been
compared with two other approaches (i.e., approach 1 and
approach 2). In approach 1, all the point clouds are registered
together. In approach 2, the point clouds are progressively regis-
tered, in the order that they were acquired, until the dissimilarity
ratio reaches to a preset threshold, which is the same threshold
used in the developed approach. The approach developed in this
research (i.e., approach 3), however, first uses the coverage ratios
to select the baseline point cloud and then determines which point
clouds should be combined with the baseline point cloud using the
essively captured point clouds for BIM update, Adv. Eng. Informat. (2015),

http://dx.doi.org/10.1016/j.aei.2015.08.005


P1 baseline point cloud P2 added point cloud The coverage image shows 
cells occupied by P2 but not 
P1 (hence the additional 
information). Dissimilarity 
ratio = 25.96%. 

P1 + P2 cover imageP1 coverage image P2 coverage image

Fig. 9. Dissimilarity ratios by adding P2 to P1, where P1 represents the baseline point cloud data.

Fig. 10. A snapshot from the model that captures all the component types used in the validation.
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Fig. 11a. Processing time and point cloud density vs. grid.
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dissimilarity ratios. The combined point clouds generated by the
three approaches were compared. Three metrics were used in the
validation, as: (a) the coverage ratio, (b) the number of geometric
properties that can be measured in a baseline point cloud for target
surfaces of components, and (c) the size of the final point cloud file
merged.

The validation data includes five sets of point cloud data pro-
gressively captured during the renovation of the research lab, as
detailed earlier in the paper and labeled as (P1, P2, P3, P4, and P5).
We focused on three different types of building components, which
are (1) duct segments: surfaces of segments installed in room 2, (2)
interior walls: surfaces of Wall2-W (i.e., western wall in room 2),
and Wall2-S (i.e., southern wall in room 2), and (3) ceilings: the
surface of ceiling in the room. A set of screen shots of the compo-
nents used in the validation is shown in Fig. 10. These components
were selected to ensure that the approach can be generalized to
different types of building components.
Please cite this article in press as: T. Gao et al., An approach to combine progressively captured point clouds for BIM update, Adv. Eng. Informat. (2015),
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Table 1
The resulting subset of point clouds to be registered following the three approaches.

Approach Component 1: Ductworks Component 2: Wall2-W Component 3: Wall2-S Component 4: Ceiling

1 P1 + P2 + P3 + P4 + P5 P1 + P2 + P3 + P4 + P5 P1 + P2 + P3 + P4 + P5 P1 + P2 + P3 + P4 + P5
2 P1 + P2 + P3 P1 + P2 + P3 + P4 P1 + P2 + P3 P1 + P2 + P3 + P4
3 P3 + P4 P4 + P1 + P2 P1 + P3 P1 + P2 + P5

Table 2
Comparison of the developed approach (approach 3) with respect to other baseline approaches.

Approach Component 1: Ductworks Component 2: Wall2-W Component 3: Wall2-S Component 4: Ceiling

C M S C M S C M S C M S

1 75.7% 41 11.2 92.5% 4 11.2 94.0% 4 11.2 96.5% 4 11.2
2 74.0% 41 6.9 92.1% 4 9.2 93.9% 4 6.9 96.5% 4 9.2
3a 75.0% 41 4.5 90.8% 4 7 93.7% 4 4.6 96.5% 4 6.7

C: coverage ratio M: number of measurable geometric
properties

S: number of points (million)

a Shows the developed approach.
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Each approach of selecting point clouds for complete geometric
information for model updating process has been implemented in
Matlab and tested using the validation data. The resulting selec-
tions of point clouds to be registered following the three
approaches are shown in Table 1. Pi + Pj + � � � + Pk shown in Table 1
indicates that point cloud Pi, Pj, . . . , Pk are combined in the stated
order. The point clouds are merged in their entirety and they are
not pre-segmented based on the target-building component. If
the point clouds are pre-segmented based on the surface of inter-
est, the same approach can be applied to select the least number of
point cloud segments for each surface of interest.

The comparison of the results using the metrics defined earlier
is provided in Table 2. Table 2 shows that the coverage ratio
increases when additional point clouds are added into the baseline
point cloud. At the same time, the rate of growth of the coverage
ratio decreases. The geometric properties remain the same in the
combined point clouds generated by the three approaches. The
developed approach (approach 3) achieved the point cloud with
smallest number of points and smallest file size in all of the four
validation datasets by suggesting the least number of point cloud
data to be merged.

For the ductworks, the coverage ratio of the registered point
clouds generated by approach 1 is 2.3% higher than the registered
point clouds generated by approach 2. However, the number of
points of the final point cloud generated by approach 1 is 62.3%
higher than approach 2. It shows that when registering all of the
point clouds together without any pre-selection, the increase of file
size might overweight the improvement in relation to the com-
pleteness of the geometric information. For the interior surface of
Wall 2-W, the combined point cloud gained by approach 3 has
the coverage ratio as 90.8%. Approach 2 added one more point
cloud into the registered point cloud, which increases the coverage
ratio by 1.5%, but also increases the number of points by 31.4%.
Approach 1 combined all the point clouds together. This approach
increases the coverage ratio by 2% and the number of points by
60%, as compared to the third approach. We also counted the geo-
metric properties that can be measured from the point clouds. The
geometric properties for the analyzed building components
include length and width of the building surfaces. The measurable
properties remain the same for the studied building components
and for the implemented approaches. The result showed that using
approach 3, it is possible to reduce the number of point clouds that
need to be registered so as to reduce the file size. As shown in
Table 2, as compared to the other two baseline approaches, we
can retrieve more geometric information (i.e., higher coverage
Please cite this article in press as: T. Gao et al., An approach to combine progr
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ratio) using the least number of point clouds (i.e., less number of
points and less file size), which validates the effectiveness of our
approach.

Two factors play a role in the performance of the developed
approach: the grid resolution and the threshold values. The selec-
tion of the grid size would change the value of the coverage ratio.
The coverage ratio is an estimate of how much geometric informa-
tion is provided by a point cloud data set and the size of a cell will
influence how many points (if any) fall in each cell. Hence, it is
important to balance the grid size. When the grid size is too large,
the coverage ratio might only provide a rough estimate for the geo-
metric information contained in a point cloud data set. On the
other hand, when the grid size is too small, the coverage ratio will
be too sensitive to the noises presented in a point cloud and will
take more time to compute.

We have performed sensitivity analysis of grid size on the per-
formance of the approach. Fig. 11 shows the sensitivity results of
incrementally changing the grid size from 0.01 m to 1 m, and
resulting coverage ratios for the surfaces of duct segments shown
in Fig. 6. In addition, we also recorded the calculation time for each
of the grid size and calculated the average number of points that
belonged to a point cloud within a cell. The sensitivity analysis
was conducted on a 64 bit computing platform with i7 2.4 GHz
CPU, 8 GB RAM and SSD hard drive. Fig. 11a shows the resulting
calculation time and the average number of points within a cell
when the grid size is changing from 0 to 1. As seen in Fig. 11a,
the calculation time increases while the grid size decreases. When
the grid size decreases from 0.1 m to 0.01 m, the calculation time
increases significantly. When the grid size is equal to 0.01 m, the
calculation time is 100 times greater than the calculation time
when the grid size is 0.01 m. In the meantime, the average number
of points per cell decreases along with the decrease of the grid size.
Having too many points within a cell could indicate that the grid
based evaluation approach can only provide a rough estimate for
the geometric information contained in a point cloud. Decreasing
the grid size would result in a more accurate estimation for the
geometric information contained in a point cloud data, but it
would also increase the calculation time significantly. A good
selection of the grid size needs to balance the calculation time
and the average number of points per cell. Fig. 11b shows the rela-
tionships between the grid size and the coverage ratio. As shown in
this figure, dividing a building surface with a large grid size could
lead to an overestimate for the information contained in a point
cloud. In the validation section, we selected the grid size as
0.04 m since it provides a good balance between calculation time
essively captured point clouds for BIM update, Adv. Eng. Informat. (2015),
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Fig. 11b. Coverage ratio vs. grid size.
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and estimation accuracy for our specific case. As shown in Fig. 11,
the coverage ratio becomes more and more stable after decreasing
below 0.04 m while the calculation time is increasing rapidly. For
instance, when the coverage is changed from 0.04 m to 0.01 m,
the coverage ratio only decreases by 3% whereas the calculation
time increased by 14 times. One thing worth to notice is that users
might have different computing resources or preferences for the
calculation time and the estimation accuracy. Hence the grid size
selected in this paper is not necessarily to be the optimal solution.

In the validation calculations, the threshold was set as 1% for all
the datasets. The value of threshold also impacts the performance
of the developed approach. When threshold is set as 0, approach 1,
2, and 3 gave the same result, since they all combine all of the point
clouds together. When the threshold value is increased, it means
that the size of the registered point cloud has gained more weight.
As a result, less number of point clouds will be combined together.
The impacts of the threshold on the developed approach and the
selection of the optimal threshold will be addressed in the future
work.
6. Conclusion

Progressively captured and registered point clouds provide
opportunities to capture a more complete view of the building
components over time. A unique challenge of using registered
point clouds is that registering point clouds that contain overlap-
ping information might increase the difficulty of storing and pro-
cessing registered point clouds due to file size. This paper
presented an approach that evaluates the information contained
in point clouds and supports the decision on which point clouds
should be combined. Instead of registering all the point clouds
together, the approach only combines the point clouds that contain
less repetitive geometric information, which effectively reduces
the file size of the final dataset and increases the usability of the
data. Base on our validation experiment, the approach represented
in this paper is capable of retrieve more geometric information
(i.e., higher coverage ratio) using the least number of point clouds
(i.e., less file size). Hence, our approach allows construction
professionals to rapidly evaluate the information contained in pro-
gressive point clouds and selectively combine progressive captured
point clouds to provide a complete set of geometric information
with reduced file sizes for the BIM update.

There are several limitations of the approach presented in this
paper, which are worthy of future research. First, in this paper,
we used a 4-month renovation project as the testbed to test and
validate the developed point cloud selection approach. In the
future research, it would be interesting to test the performance
of the approach presented in a building environment where differ-
ent types of building components, temporary components and
Please cite this article in press as: T. Gao et al., An approach to combine progr
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noises co-exist and evaluate how the approach would perform
under those conditions. Second, the coverage ratio is calculated
over 3D planes where a grid can be constructed. There is a poten-
tial to extend the grid construction method and calculate the cov-
erage ratio for more complex surfaces, such as cylinders or NURBs
surfaces. A 3D surface can be represented by a set of connected
polygons (e.g., triangles) using polygonal modeling approach. In
the future research study, it would be possible to represent 3D sur-
faces as a set of polygons and overlay a point cloud with those
polygons. The coverage ratio can then be calculated as the number
of occupied polygons divided by the total number of polygons.
Third, the approach presented in this paper treats all the surface
areas equally. However, information contained in different surface
areas might vary based on the location. For instance, edges might
contain more information than center areas in some cases. An
important future research study would be to assess how the sug-
gested registration options would change based on assigning dif-
ferent weights to different surface segments. Combining that
with the techniques, such as edge detection or surface reconstruc-
tion, it would be possible to retrieve sufficient information for
model update/construction with point clouds where only partial
surfaces are captured. Fourth, the differences between an as-
designed BIM and the actual building condition might cause an
inaccurate estimation of the coverage ratio. A research study has
been done by the authors that focus on developing algorithms to
match components of an as-designed BIM to segments extracted
from point clouds under different discrepancy conditions (e.g., an
ductwork modeled in the BIM is constructed at different location
with different shapes and sizes) [41]. There are also other
approaches that could be used for such mapping process. For
instance, Bosche developed an approach that converts a BIM into
a virtual point cloud and then matches points of the virtual point
cloud to points from the actual point cloud [42]. In the future
research study, it would be possible utilize these matching algo-
rithms to identify the matches between a point cloud and an as-
designed BIM and adjust the impacts of BIM-point cloud variations
on the calculation of the coverage ratio.
References

[1] J. Dickinson, A. Pardasani, S. Ahamed, S. Kruithof, A survey of automation
technology for realising as-built models of services, in: 1st International
Conference on Improving Construction and Use Through Integrated Design
Solutions, CIB IDSEspoo, Finland, 2009, pp. 365–381.

[2] S.R. Pettee, As-Builts-Problems & Proposed Solutions, Construction
Management Association of America, 2005.

[3] W. East, W. Brodt, BIM for construction handover, J. Build. Inform. Model.
(2007) 28–35.

[4] H. Song, H.-Y. Feng, A progressive point cloud simplification algorithm with
preserved sharp edge data, Int. J. Adv. Manuf. Technol. 45 (2009) 583–592.

[5] Bentley, Point Clouds at Bentley AECMAGAZE, 2012. <http://
aecmag.com/software-mainmenu-32/507-point-clouds-at-bentley>.
essively captured point clouds for BIM update, Adv. Eng. Informat. (2015),

http://refhub.elsevier.com/S1474-0346(15)00095-6/h0010
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0010
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0010
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0015
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0015
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0020
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0020
http://aecmag.com/software-mainmenu-32/507-point-clouds-at-bentley
http://aecmag.com/software-mainmenu-32/507-point-clouds-at-bentley
http://dx.doi.org/10.1016/j.aei.2015.08.005


12 T. Gao et al. / Advanced Engineering Informatics xxx (2015) xxx–xxx
[6] C. Fröhlich, M. Mettenleiter, Terrestrial laser scanning—new perspectives in 3D
surveying, Int. Arch. Photogrammet., Remote Sens. Spatial Inform. Sci. 36
(2004) W2.

[7] C. Boehnen, P. Flynn, Accuracy of 3D scanning technologies in a face scanning
scenario, in: Fifth International Conference on 3-D Digital Imaging and
Modeling IEEE, Ottawa, Ontario, Canada, 2005, pp. 310–317.

[8] W. Boehler, M. Bordas Vicent, A. Marbs, Investigating laser scanner accuracy,
Int. Arch. Photogrammet., Remote Sens. Spatial, Inform. Sci. 34 (2003) 696–701.

[9] M. Golparvar-Fard, J. Bohn, J. Teizer, S. Savarese, F. Pena-Mora, Evaluation of
image-based modeling and laser scanning accuracy for emerging automated
performance monitoring techniques, Autom. Constr. 20 (2011) 1143–1155.

[10] P. Tang, B. Akinci, D. Huber, Quantification of edge loss of laser scanned data at
spatial discontinuities, Autom. Constr. 18 (2009) 1070–1083.

[11] K. Mechelke, T.P. Kersten, M. Lindstaedt, Comparative investigations into the
accuracy behaviour of the new generation of terrestrial laser scanning
systems, in: Optical 3-D Measurement Techniques VIII Gruen and Kahmen,
Zurich, 2007, pp. 319–327.

[12] T.P. Kersten, H. Sternberg, K. Mechelke, Investigations into the accuracy
behaviour of the terrestrial laser scanning systemMensi GS100, in: Conference
in Optical 3D Measurement Techniques, Vienna, Austria, 2005, pp. 122–131.

[13] J. Clark, S. Robson, Accuracy of measurements made with a Cyrax 2500 laser
scanner against surfaces of known colour, Surv. Rev. 37 (2004) 626–638.

[14] P. Tang, D. Huber, B. Akinci, Characterization of laser scanners and algorithms
for detecting flatness defects on concrete surfaces, J. Comput. Civ. Eng. 25
(2010) 31–42.

[15] M. Golparvar-Fard, F. Pena-Mora, S. Savarese, Monitoring changes of 3D
building elements from unordered photo collections, in: 2011 IEEE
International Conference on Computer Vision Workshops, IEEE, Barcelona,
Spain, 2011, pp. 249–256.

[16] H. Park, H. Lee, H. Adeli, I. Lee, A new approach for health monitoring of
structures: terrestrial laser scanning, Comput.-Aided Civ. Infrastruct. Eng. 22
(2007) 19–30.

[17] E. Anil, B. Akinci, D. Huber, Representation requirements of as-is building
information models generated from laser scanned point cloud data, in:
International Symposium on Automation and Robotics in Construction (ISARC)
Seoul, Korea, 2011.

[18] P. Tang, E.B. Anil, B. Akinci, D. Huber, Efficient and effective quality assessment
of as-is building information models and 3D laser-scanned data, in: ASCE
International Workshop on Computing in Civil Engineering, Miami, Florida,
2011.

[19] P. Tang, D. Huber, B. Akinci, R. Lipman, A. Lytle, Automatic reconstruction of as-
built building information models from laser-scanned point clouds: a review
of related techniques, Autom. Constr. 19 (2010) 829–843.

[20] F. Bosché, A. Guillemet, Y. Turkan, C. Haas, R. Haas, Tracking the built status of
MEP works: assessing the value of a scan-vs-BIM system, J. Comput. Civ. Eng.
(2014).

[21] B. Akinci, F. Boukamp, C. Gordon, D. Huber, C. Lyons, K. Park, A formalism for
utilization of sensor systems and integrated project models for active
construction quality control, Autom. Constr. 15 (2006) 124–138.

[22] S. Oude Elberink, G. Vosselman, Quality analysis on 3D building models
reconstructed from airborne laser scanning data, ISPRS J. Photogrammet.
Remote Sens. 66 (2011) 157–165.
Please cite this article in press as: T. Gao et al., An approach to combine progr
http://dx.doi.org/10.1016/j.aei.2015.08.005
[23] E.B. Anil, P. Tang, B. Akinci, D. Huber, Assessment of quality of as-is building
information models generated from point clouds using deviation analysis, in:
Three-Dimensional Imaging, Interaction, and Measurement, California, USA,
2011.

[24] J. Salvi, C. Matabosch, D. Fofi, J. Forest, A review of recent range image
registration methods with accuracy evaluation, Image Vis. Comput. 25 (2007)
578–596.

[25] C. Yang, G. Medioni, Object modelling by registration of multiple range images,
Image Vis. Comput. 10 (1992) 145–155.

[26] T. Rabbani, S. Dijkman, F. van den Heuvel, G. Vosselman, An integrated
approach for modelling and global registration of point clouds, ISPRS J.
Photogrammet. Remote Sens. 61 (2007) 355–370.

[27] G.C. Sharp, S.W. Lee, D.K. Wehe, ICP registration using invariant features, IEEE
Trans. Pattern Anal. Mach. Intell. 24 (2002) 90–102.

[28] N.J. Mitra, N. Gelfand, H. Pottmann, L. Guibas, Registration of point cloud data
from a geometric optimization perspective, in: 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, ACM, Nice, France, 2004, pp.
22–31.

[29] J. Maver, R. Bajcsy, Occlusions as a guide for planning the next view, IEEE
Trans. Pattern Anal. Mach. Intell. 15 (1993) 417–433.

[30] C. Connolly, The determination of next best views, in: IEEE International
Conference on Robotics and Automation, IEEE, St. Louis, Missouri, 1985, pp.
432–435.

[31] R. Pito, A sensor-based solution to the ‘‘next best view” problem, in: 13th
International Conference on Pattern Recognition, IEEE, Vienna, Austria, 1996,
pp. 941–945.

[32] R. Pito, A solution to the next best view problem for automated surface
acquisition, IEEE Trans. Pattern Anal. Mach. Intell. 21 (1999) 1016–1030.

[33] W. Scott, G. Roth, J.-F. Rivest, View planning for automated 3D object
reconstruction inspection, ACM Comput. Surv. 35 (2003).

[34] J.E. Banta, L. Wong, C. Dumont, M.A. Abidi, A next-best-view system for
autonomous 3-D object reconstruction, IEEE Trans. Syst. Man Cybern. Part A
Syst. Hum. 30 (2000) 589–598.

[35] L. Wong, C. Dumont, M. Abidi, Next best view system in a 3D object modeling
task, in: 1999 IEEE International Symposium on Computational Intelligence in
Robotics and Automation, IEEE, Monterey, CA, 1999, pp. 306–311.

[36] J. Maver, R. Bajcsy, Occlusions as a guide for planning the next view, IEEE
Trans. Pattern Anal. Mach. Intell. 15 (1993) 417–433.

[37] K.A. Tarabanis, P.K. Allen, R.Y. Tsai, A survey of sensor planning in computer
vision, IEEE Trans. Robot. Autom. 11 (1995) 86–104.

[38] N.A. Massios, R.B. Fisher, A best next view selection algorithm incorporating a
quality criterion, in: British Machine Vision Conference Southampton, UK,
1998, pp. 1–10.

[39] S. Ravada, M. Horhammer, B.M. Kazar, O. Spatial, Point Cloud: Storage, Loading,
and Visualization, 2010.

[40] G. De Haan, Scalable visualization of massive point clouds, NCG KNAW 49
(2009) 59.

[41] T. Gao, S. Ergan, B. Akinci, J. Garrett, Evaluation of different features for
matching point clouds to building information models, J. Comput. Civ. Eng.
(2014) 04014107.

[42] F. Bosche, C. Haas, Automated retrieval of 3D CAD model objects in
construction range images, Autom. Constr. 17 (2008) 499–512.
essively captured point clouds for BIM update, Adv. Eng. Informat. (2015),

http://refhub.elsevier.com/S1474-0346(15)00095-6/h0030
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0030
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0030
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0040
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0040
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0045
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0045
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0045
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0050
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0050
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0065
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0065
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0070
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0070
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0070
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0080
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0080
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0080
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0095
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0095
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0095
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0100
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0100
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0100
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0105
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0105
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0105
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0110
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0110
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0110
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0120
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0120
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0120
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0125
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0125
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0130
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0130
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0130
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0135
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0135
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0140
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0140
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0140
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0140
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0140
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0145
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0145
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0150
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0150
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0150
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0150
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0155
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0155
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0155
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0155
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0155
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0160
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0160
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0165
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0165
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0170
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0170
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0170
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0175
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0175
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0175
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0175
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0180
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0180
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0185
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0185
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0200
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0200
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0205
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0205
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0205
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0210
http://refhub.elsevier.com/S1474-0346(15)00095-6/h0210
http://dx.doi.org/10.1016/j.aei.2015.08.005

	An approach to combine progressively captured point clouds for BIM update
	1 Introduction
	2 Related research studies
	2.1 Evaluation of the quality and quantity of information captured by point clouds
	2.2 Point cloud registration approaches
	2.3 Scan planning approaches

	3 Motivating case study: an analysis of completeness of geometric information in progressively captured point clouds
	4 An approach to evaluate information contained in progressively captured point clouds and select point clouds to be combined
	4.1 Content assessment module for quantifying the geometric information contained in a point cloud
	4.2 Content improvement module: assessing the information gain by combining additional point clouds

	5 Validation
	6 Conclusion
	References


