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This paper addresses the problem of automated registration of multi-view point clouds generated by a 3D
scanner using sphere targets. First, sphere targets are detected from each point cloud. The centroids of the
detected targets in each point cloud are then used for rough registration. Congruent triangles are com-
puted from the centroids for the correspondence among them, with which a rigid body transformation
is obtained to bring the two point clouds together as closely as possible. After the initial registration,
the two point clouds are further registered by refining the position and orientation of the point clouds
using the underlying geometric shapes of the targets. These registration steps are integrated into one
system that allows two input point clouds automatically registered with no user intervention. Real
examples are used to demonstrate the performance of the point cloud registration.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Measuring the 3D shape of an object is frequently considered in
recent manufacturing processes to maintain the quality of prod-
ucts and to control the fabrication process. It is more important
in fabrication processes when multiple parts are assembled. The
actual 3D geometric shape of each part can be compared with its
CAD (Computer Aided Design) model in advance to identify any
potential problem in the assembly and correct it if necessary [1].
In the shipbuilding industry, such demand is growing. A ship or
an offshore structure is a custom-ordered product, and few stan-
dardized parts are used to build a ship. This means that every part
should be uniquely designed and fabricated, and the accurate
assembly of the parts is critical for the quality of the final product.
To achieve the desired quality, the actual shapes of the fabricated
parts need to be evaluated against their CAD models to verify that
the models have been made accurately. Here, an efficient method
to acquire the 3D shape is to use a laser-based 3D scanner.

A 3D scanner is a line-of-sight device. Moreover, the field of view
that the scanner covers is limited. Therefore, multiple scans in dif-
ferent positions and directions are typically required to scan a large
object. The acquired point clouds must be merged into one data set
for correct representation of the shape of the object. The merged
point clouds, however, fail to represent the shape of the object
because each point cloud is defined with respect to a different
coordinate system, as illustrated in Fig. 1. Fig. 1(a) and (b) show
two point clouds measured from two different locations and direc-
tions. Merging the measured point clouds naively with respect to
one reference coordinate system produces misaligned point sets
as illustrated in Fig. 1(c). The circled parts in Fig. 1(a) and (b),
which should be the same object, are not aligned and instead pro-
duce two separate objects. Therefore, aligning point sets with
respect to a reference coordinate system is necessary to obtain a
set of points that correctly represent the shape of a target object;
this process is called registration.

Registration is a problem that has attracted the attention of
researchers from around the world, and diverse algorithms for
the problem have been proposed in the related literature. With
the significant growth of data in size and complexity due to the
extensive use of high-performance scanners, it is difficult for a
human to handle them efficiently for registration. Moreover, the
linear extensions of the existing algorithms often fail to handle
such data. Therefore, it is necessary to develop a method for regis-
tration that can handle data of large size robustly and efficiently
and that can run automatically.

In this paper, the problem of registration of point clouds is
addressed, and a novel method for automatic registration of two
point clouds using sphere targets is proposed. The overall process
for registration consists of filtering, sphere detection, initial
registration and fine registration. The point clouds, each of which
contains sphere targets, are produced by a 3D scanner. They are
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Fig. 1. Point clouds obtained by a 3D scanner. (a) Point cloud A, (b) point cloud B, and (c) point clouds A and B in a global coordinate system with no registration.
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filtered to extract points for the targets using differential proper-
ties such as normal curvatures and normal vectors estimated from
the point clouds. Next, the sphere targets are detected using a
sphere detection method. The two point clouds are then registered
using the centroids of the sphere targets. This registration is called
the initial registration. Next, the positions of the point clouds are
finely adjusted to minimize the registration error via a fine regis-
tration. The proposed method is different from that in [15]. First,
a different filtering method is employed. In this work, differential
properties are considered to be filtering criteria. This method is
advantageous because more underlying geometric information is
obtained, which is used for further registration and data evalua-
tion. Second, a new method for fine registration is proposed. The
method is designed to combine modeling and registration in an
iterative manner, which produces an accurate registration result.

The primary contribution of this work is as follows. A novel
method is proposed to register point clouds with high accuracy
using amodel-based iterative scheme. Inmost of the existingmeth-
ods for the accurate registration of point clouds, the overlapping
regions between two point clouds should be detected, and a regis-
tration method such as ICP is applied to those overlapping regions.
However, the proposed method in this paper does not require such
a condition. As long as points are determined to belong to a com-
mon object, then fine registration can be performed. Next, two
minor improvements are introduced in this work. One is an
improved process for detecting spheres from a point cloud. A
method of filtering points using differential properties of the under-
lying geometry is proposed to single out candidate points for
spheres, and a selective method is applied to detect spheres from
the filtered points. The other is that the concept of parallel compu-
tation is introduced to accelerate the detection and registration of
point clouds. The methods are implemented in such a way that par-
allel computation is fully exploited using multiple cores of a CPU,
and a significant improvement in computation is achieved.

2. Literature review

Registration of two sets of point clouds consists of computation
of the correspondence and the best rigid body transformation. Such
computation can be performed using the iterative closest point
method in [2]. Since its introduction in the literature, many vari-
ants, such as [3–10], have been proposed to improve the perfor-
mance of the original ICP (Iterative Closest Point) method. There
are other types of registration that do not belong to the category
of ICP methods. Masuda [11] proposed a method for registration
of multiple range images using signed distance fields. Pottmann
et al. [12] proposed a method for registration based on the geomet-
ric optimization framework of squared distance minimization. A
comparative study on the registration of range images was per-
formed in [13]. However, computing the overlapped region and
common features is a difficult task, and efficiency in registration
can decrease as the number of points increases.

To solve this problem, a target-based approach can be consid-
ered. Pre-defined targets are attached to an object, and a scanner
scans the object as well as the targets to produce point clouds.
Next, the targets are detected from the point clouds and then used
to find the correspondence for registration. In [14], three different
types of targets (fixed paper, paddle, and spheres) considered in
practice were analyzed for registration accuracy. One of the con-
clusions of the analysis was that the sphere targets are desirable
for 3D laser scanning. In [15], a system was proposed for register-
ing point clouds using sphere targets. The system consists of two
steps: point processing and registration. The point processing unit
filters input points to obtain candidate points on the targets. The
points are then fitted with spheres using a quasi-Newton optimiza-
tion procedure. The centroids of the detected spheres are then used
for registration. This method, however, is limited because of three
aspects. First, the input points should be pre-processed. Specifi-
cally, unstructured data points should be mapped to points on a
regular grid, which is an additional step. Moreover, a relatively
strong condition that there should exist some free space around
the targets is imposed for sphere target placements. Finally, this
algorithm only considers a rough registration because sphere
detection may not be robust and accurate. This means that a high
precision of registration is needed in actual applications.

Automated registration of two point clouds requires the step of
finding correspondences between them. For this computation, PCA
(Principal Component Analysis) values [16], geometric properties
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[17,18], or statistical similarity [19] are considered to obtain corre-
spondences, with which rough registration is performed. For
improved accuracy, fine registration, such as ICP-based approaches
or the surface interpenetration measure [20] based on a genetic
algorithm, can be used. These methods, however, are not robust
for scanned point clouds because the patterns of the scanned data
are not well organized. Alternately, a semi-automatic registration
of point clouds was proposed [21] for better robustness in registra-
tion. This is not a fully automatic approach because it requires user
input for plane extraction. However, it can avoid the problems of
complex and ill-posed registration.

There have been some attempts to develop automated
registration algorithms for point clouds. However, full automatic
registration without any targets is still problematic for use in
practice. The problem can be reduced and made tractable by using
sphere targets, and there exist a few papers addressing the
problem of automatic registration using sphere targets. However,
the current methods using targets are not complete in terms of
robustness and registration accuracy because of the difficulty in
target detection and registration. In particular, fine registration
using targets, which would be advantageous over an approach
using the entire point clouds, has not been significantly addressed.
Therefore, a new method to handle such problems is needed.
3. Technical approaches

3.1. Target detection

Sphere targets with a fixed radius are used as features of the
point clouds. In most cases, the number of points sampled on the
sphere targets is less than 0:05% of an input point cloud. Therefore,
extracting points on the targets robustly is an important task.

In this section, the process of detecting spheres from a point
cloud is presented. It consists of two steps, point filtering and
sphere detection. The point-filtering step removes points that do
not belong to sphere targets using differential properties. The
detection step estimates sphere targets from the filtered data
points using a RANSAC (RANdom SAmpling Consensus)-based
method.

3.1.1. Filtering point data
The fundamental approach of filtering is to eliminate points for

which the underlying geometry is obviously different from that of
a sphere target. The geometry at a point is estimated using differ-
ential properties, such as normal vectors and curvatures at the
point. These properties can be computed by the method of [22].
For completeness of the presentation, a brief summary of this
method is introduced.

3.1.2. Estimation of the normal vector and curvature
Consider apoint,p0. First, thepoints in theneighborhoodofp0 are

selected. The number of these points is denoted as 2K. Then,K sets of
ðpi;p0;pjÞ are obtained. Here, pi and pj are chosen, which yield the
largest angle between the two vectors pi � p0 and pj � p0. Then, a
quadratic curve is computed for each set. A curve interpolating
ðpi;p0;pjÞ is given by riðuÞ ¼ ai0 þ ai1uþ ai2u2. Here, rið0Þ ¼ pi;

rið1Þ ¼ pj; riðui0Þ ¼ p0 and ui0 ¼ jp0 � pij=ðjp0 � pij þ jp0 � pjjÞ, and
the unknowns in riðuÞ can be determined using these conditions.
The unit tangent vector, vi, of riðuÞ at p0 is

vi ¼ ai1 þ 2ai2ui0

jai1 þ 2ai2ui0j
� �

: ð1Þ

Then, the normal vector n0 at p0 can be calculated using the
property that n0 and vi should be perpendicular. For all K curves,
s ¼
PK

i¼1 ðn0 � ðvi � �vÞÞ2
K � 1

: ð2Þ

Here, �v ¼PK
i¼1vi=K . Then, the normal vector at p0 is given as n0, the

vector that minimizes (2). Consider a K � 3 matrix, A, whose i-th
row is vi � v. Then, the eigenvector corresponding to the smallest
eigenvalue of ATA is the vector that minimizes (2).

The normal curvature of the underlying surface at p0 in the vi

direction is computed as follows. Suppose that ni is the normal
vector of piðuÞ at p0. The curvature value of the curve at p0 is
computed to be

ji ¼ dpi

du
� d2pi

du2

 !,
dpi

du
� d2pi

du2

�����
�����: ð3Þ

Then, a curvature vector jini is obtained. The normal curvature of
the surface in the vi direction becomes

jni ¼ jini � n0: ð4Þ
3.1.3. Processing point clouds
Using the differential properties at each point, the following

three filtering steps are performed.

1. If any of the curvature values are close to zero, then the point is
highly likely to be part of a plate or a cylinder. This point is
removed.

2. If the signs of the curvature values are not the same, the point is
removed because the underlying geometric shape near that
point is hyperbolic.

3. If the curvature values are not close to the curvature of the
sphere target, the point is removed.

Fig. 2 shows an example of filtered point data after the three
filtering passes are completed. These filtering steps can
efficiently eliminate points that do not belong to the given sphere
targets.

3.1.4. Sphere detection
Spheres can be detected from points by various methods such

as least squares-based methods [23–26], a RANSAC-based
methods [27,28] and the Hough Transform based method [29].
In this paper, a RANSAC-based method is considered. The RANSAC
concept has various advantages [28]. This method is simple to
implement and easily applicable to various applications. It is
also robust against noise and outliers [30]. Roth and Levine [31]
discussed how data with more than 50% of outliers could be pro-
cessed. The downside of the RANSAC method is long computation
time.

In sphere detection, four non-collinear sample points, which
are the minimum number of points for modeling a sphere, are
needed. Then, a sphere is modeled by computing the centroid
and its radius from the four points. Suppose that the four
non-collinear points are P1; P2; P3 and P4. Then, a matrix
Eq. (5) is obtained as follows.

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

2
6664

3
7775

A

B

C
D

2
6664

3
7775 ¼

�P1 � P1

�P2 � P2

�P3 � P3

�P4 � P4

2
6664

3
7775: ð5Þ

Here, Pi ¼ ðxi; yi; ziÞ; i ¼ 1; 2; 3; 4. The equation is solved using the
singular value decomposition method, determining the unknowns
A; B; C and D. The centroid and the radius are computed by

a ¼ �A=2; b ¼ �B=2; c ¼ �C=2 and r ¼ ða2 þ b2 þ c2 � DÞ1=2 [27].



Fig. 2. Example of filtered point data. (a) An original input point cloud. (b) A filtered point cloud.
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RANSAC-based sphere estimations are presented in [27,28].
Based on the two approaches, the following procedure is developed
for this work.

1. Four points are randomly drawn from the input points.
2. A sphere is estimated by solving Eq. (5) using the sampled

points.
3. The points in the neighborhood of the estimated sphere are

gathered to construct a consensus set. These points are called
the inliers to the sphere. Here, the distances from the inliers
to the sphere are less than a user-defined value, t.

4. Verify that the number of points in the consensus set is larger
than a user-defined tolerance, d.
(a) If so, the estimated sphere is accepted as an underlying

model, and an accurate sphere is estimated using all the
inliers in the least squares sense. The procedure is
terminated.

(b) If not, proceed to Step 5.
5. Determine if the number of iterations is less than Niter . If so,

return to Step 1. Otherwise, the process stops with a failure
notice.

A value of 30% of the designated sphere radius is employed for
t, which is empirically determined after the measurement condi-
tion of the scanner and the distribution pattern of the point clouds
are considered. Step 4 requires a user-defined number, d. If the
number of points within the tolerance region t is larger than d, it
is concluded that an appropriate sphere has been estimated. This
value, d, should be determined in advance based on the point dis-
tribution and noise pattern of the points. In this process, a value of
20 was chosen for d. The number Niter is determined based on the
probability, p; at least one random sample contains no outliers
with probability p ¼ 0:99. In this work, Niter is set to be thirty times
the number of detected points belonging to the sphere.

The naive application of the proposed procedure would take a
long time if the size of the point clouds is large. In this work, a
divide-and-conquer approach, which subdivides the entire space
enclosing the point cloud into smaller subspaces in an octree-like
manner, is introduced to reduce the computation time.
4. Registration

4.1. Initial registration

The detection process may not accurately estimate the spheres
that the points are intended to represent. Therefore, the initial
registration using the centroids of the detected spheres can be
inaccurate, but it is accurate enough for the two point clouds to
be roughly aligned.

Consider that k1 sphere targets from point cloud PC1 and k2
sphere targets from point cloud PC2 have been detected. Suppose
that C1 ¼ fc1f ; f ¼ 1; . . . ; k1g and C2 ¼ fc2g ; g ¼ 1; . . . ; k2g; these
are the sets containing the centroids of the detected spheres in
PC1 and PC2 , respectively, and k1 6 k2. Here, C1 is assumed to be
the base, and C2 is the target. The initial registration process is
given as follows.

1. C�
1 ¼ CorrptsðC1;C2Þ: This is the operator for computing the

points C�
1 from C1, where C�

1 corresponds to C2.
2. ðR;TÞ ¼ RtrðC�

1;C2Þ: This is the operator for computing the
rotation matrix, R, and the translation vector, T for register-
ing C2 and C�

1.
3. P�

C2
¼ Transf ðPC2 ; R; TÞ: This function transforms PC2 using

R and T. Namely, P�
C2

¼ R � PC2 þ T.

Step 1 is a critical step for the success of registration. Because no
a priori information for the correspondence between C1 and C2 is
available, the function CorrðÞ should establish the best correspon-
dence between them. In this work, the following method is used.
Suppose that dðc2i; c2jÞ is the function that computes the minimum
distance between c2i and c2j.

(1) Construct a set of pairs J ¼ fðc2i; c2jÞ : i; j ¼ 1; . . . ; k2; i– jg.
(2) Select a pair ðc2im; c2jmÞ, that yields the maximum distance d

in Jd. Here, Jd ¼ fdðc2im; c2jmÞ; i; j ¼ 1; � � � ; k2; i – jg.
(3) Choose the third point c2km from C2 such that the area of the

triangle defined by ðc2im; c2jm; c2kmÞ is the largest.
(4) Search for three points c�1i; c

�
1j, and c�1k from C1 such that the

triangle formed by the points is congruent with that of
ðc2im; c2jm; c2kmÞ.

(4)-1 If such points are found, go to Step (5).
(4)-2 Otherwise, J ¼ J� fðc2im; c2jmÞg and go to Step (2).

(5) Find the correspondence between the vertices of the two
triangles.

In Step (4), an algorithm is designed to reduce the search
domain. A pair of points yielding the maximum distance computed
in Step 2 is searched in C1. This pair is denoted as ðc�1i; c�1jÞ. Next, the
angles h2i and h2j of the triangle ðc2im; c2jm; c2kmÞ at c2im and c2jm are
computed. These angles are then used to restrict the search domain
for the third point c�1k in C1 that forms a triangle congruent to the
triangle of ðc2im; c2jm; c2kmÞ along with the distances dðc2im; c2kmÞ and
dðc2jm; c2kmÞ.
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Once the correspondence between the two sets is established, a
rotation matrix R and a translation vector T can be obtained using
the method by Horn [32].

4.2. Fine registration

The initial registration step uses the centroids of the estimated
sphere targets. Therefore, the registration quality that the initial
registration method can guarantee is entirely dependent on the
accuracy of the sphere estimation. The accuracy, however, cannot
be assured because the estimation is performed using measured
points that may contain noise. Therefore, after the initial registra-
tion, the point clouds should be finely adjusted to obtain more
accurate registration. This second registration is called fine
registration.

For fine registration, ICP-based methods are typically employed.
However, to apply such methods, one condition should hold that
two point clouds overlap, and the correspondence relations
between the points in the overlapped region are utilized for regis-
tration. Without this condition, the ICP-based methods cannot be
correctly performed. However, this condition cannot always be sat-
isfied. It is difficult to extract the points in the overlapped region
with no user-provided input because there exists no information
on which regions of the two point clouds overlap despite the initial
registration of the two point clouds. Moreover, the two point
clouds are so generated that no overlap exists, or only a small frac-
tion of points are obtained in the overlapped region. In this case,
the registration methods based on the overlapped region cannot
be used at all. Next, obtaining appropriate correspondences
between two sets of points in the overlapped region is another
challenge. Although an overlapped region has been identified and
points in the region are extracted, the correct correspondence can-
not be established because the traditional ICP only considers the
positions of points and the minimum Euclidean distances without
considering the underlying geometric shape. A typical example
illustrating this situation is given in Fig. 3, which shows two sets
of points in the overlapped region. One set contains points in the
vertical direction; the other set contains points in a nearly horizon-
tal direction. If the positions of the points are considered, no
unique correspondence can be established. Translating one set of
points horizontally would result in a similar situation. Therefore,
the point-based ICP cannot correctly find the best correspondence
for registration, leading to failed registration.

In this paper, a new registration method is proposed to solve
these problems. The method does not require that two point clouds
overlap. An analytical sphere model is estimated as its underlying
geometry, and the registration is performed with respect to the
Fig. 3. Example of point distribution in the overlapped region.
estimated model. There are two papers addressing the integration
of modeling and registration in one process [33,34]. Both papers
present a similar approach in that modeling and registration are
formulated as one optimization problem, but they differ in the
solution method. In [33], the squared distance minimization
(SDM) scheme was considered, and a quasi-Newton method was
employed to find the parameters, whereas the Levenberg–
Marquardt method was used in [34]. The proposedmethod, termed
the model-based method, combines modeling and registration
using the ICP framework. It does not require a complicated math-
ematical formulation for optimization including derivative calcula-
tion and is designed to be generalized for handling various
geometric shapes other than spheres.
4.2.1. Model-based method
The core idea of the model-based method is to estimate the

underlying geometric shape from the updated registered point
clouds and to register the point clouds to the shape iteratively.
Unlike the ICP-based methods that use the point clouds directly,
the proposed method considers the underlying geometric shape
as a reference and refines it in each iteration. Fig. 4 illustrates
the idea of the proposed method.

Suppose that two point clouds have been registered using the
centroids of the detected spheres. mai is a set of points on the i-
th detected sphere from the point cloud PCa . spðmiÞ is the operator
of sphere estimation from mi. Si is the estimated sphere. The
pseudo-code for the model-based registration method is given as
follows.

Suppose that cP1 ¼ fm1i;1 6 i 6 k2g and cP2 ¼ fm2j;

1 6 j 6 k2g.

1. Compute cP ¼ fm12i ¼ m1i [m2i;1 6 i 6 k2g.
2. Compute Si ¼ spðm12iÞ; 1 6 i 6 k2.
3. ðR;TÞ ¼ RtrðSi;m2iÞ for all i.
4. m2i ¼ Transf ðm2i; R;TÞ; 1 6 i 6 k2.
5. E ¼ ErrðSi; m1i;m2iÞ.
6. Go to 1 while E > d.

Lines 1 and 2 are the core steps in the proposed method. In Line
1, two point sets from cP1 and cP2 are merged into one point set
with respect to one coordinate system. In Line 2, a model approx-
imating the merged point set is computed, which is used as a ref-
erence in the registration calculation. This model is approximated
byminimizing the error to the point set. In Line 3, the point set that
produces a larger error to the model is selected and registered onto
Fig. 4. Graphical illustration of the model-based method. An approximated sphere
is computed from the point clouds cP1 and cP2. The point cloud cP2 is then
registered to the sphere. The union of cP1 and the registered cP2 is then computed
for the next iteration.
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the model. Then, the point set is updated in Line 4. After the loop is
terminated, P�

C2
¼ Transf ðPC2 ; R;TÞ is computed. For Si ¼ spðm12iÞ

the least squares fitting method is employed. One best sphere
can be estimated in this step and is then used as a true underlying
sphere in the registration process. Rtr is an operator for computing
a rotation matrix and a translation vector that register the points
onto the sphere. For this computation, an orthogonal projection
method [35] and the quaternion-based method [32] are employed.
In Step 6, d is a user-defined tolerance.
4.2.2. Analysis
The iterative process of sphere estimation and registration is a

main part of the proposed method. The convergence of the method
is verified as follows.

Consider the value Eb ¼ ErrðSbi ; m1i;m2iÞ, which is the sum of

the Euclidean distances between the sphere, Sbi , and the points,

m1i andm2i, for the b-th iteration. After Step 2, Eb is obtained. Steps
3–5 adjust the position and orientation of m2i, yielding m�

2i and

subsequently resulting in a reduced Eb. This new Eb is denoted as

Eb� with Eb� 6 Eb. At the bþ 1-th iteration, m2i ¼ m�
2i and a new

sphere Sbþ1
i is obtained based on m1i and m2i. Next, the updated

value of Ebþ1 is computed. Consider the relation between Ebþ1

and Eb. Because Sbþ1
i is obtained using m1i and m2i, which have

smaller error values than those before transformation, it can be

found that Ebþ1 6 Eb�. Therefore, Ebþ1 6 Eb is satisfied. This relation
indicates that the algorithm converges. The convergence of the
proposed method is demonstrated using five examples.

Consider six point clouds, S1; S2; S3; S4; S5 and S6. The num-
bers of points in each point cloud are 14,748,777, 3,818,803,
5,059,272, 3,447,131, 4,516,864 and 4,385,237, respectively. In
these tests, d ¼ 10(mm) is used as a termination condition. The five
test cases are ðS1; S3Þ, ðS1; S4Þ, ðS2; S3Þ, ðS3; S5Þ and ðS4; S6Þ.

The error values for each test are plotted as shown in Fig. 5,
where the horizontal axis is the number of iterations and the ver-
tical axis is the error at each iteration. As shown in the figure, the
error values monotonically decrease as the iteration continues.
However, they decrease considerably at the first few iterations
and converge to certain values gradually afterward. Although the
test results show a somewhat similar decrease pattern of error,
the rate of convergence is different for each case. This convergence
rate depends on the distribution patterns, the numbers of points
detected on each sphere and the positions of the detected spheres,
Fig. 5. Convergence of errors with respect to the number of iterations. The horizon
which are not analytically characterized. Therefore, it is hard to
find a general model representing the convergence rate.

4.3. Extension to multiple-point-cloud registration

The proposed model-based registration method can be
extended to the registration of multiple point clouds. Suppose that
npc point clouds are given. The successive pair-wise registration
may suffer from error accumulation; when two point clouds are
registered, a certain amount of error is induced. When the next pair
of point clouds is registered, the error in the first pair is directly
passed on to the registration of the next pair. Therefore, the error
of the first and the last point clouds may become larger than
expected.

To solve this problem, all point clouds should be considered
simultaneously in the registration process. The extension of
fine registration for two point clouds to fine registration for
multiple point clouds is straightforward. The algorithm remains
the same except for Step 1. cP is the union of all the input point
clouds. From Steps 2 to 4, the rigid body transformations for each
point cloud against the computed sphere Si are computed and
applied. The overall error is computed at Step 5. This process is
repeated until the error falls below the user-defined tolerance.

4.4. Implementation

The proposed procedure is implemented as a software system.
The structure of the system is shown in Fig. 6. The arrows indicate
the data flow between the modules.

The kernel module takes user inputs, reads and writes point
clouds, maintains data structures, including Kd-trees for storing
and managing point clouds, and provides various vector and
matrix operators. In the filtering module, an efficient method
[36] is employed to search for the nearest neighboring points.
The visualization module provides interactive functions for dis-
playing point clouds, navigating the points, zooming in/out on
the points, and rotating/translating the points. For these functions,
OpenGL was used. The sphere detection module detects spheres
from the point clouds using the RANSAC-based method and the
least-squares method introduced in this paper. The registration
module performs the initial and fine registration for point clouds.
For the implementation, Visual C++ 2010 was used as a develop-
ment language on a computer system with an Intel Core i7 CPU
(3.5 GHz) and 32 GB of RAM.
tal and vertical axes are the number of iterations and the error, respectively.



Fig. 6. Structure of the program for the registration of point clouds.
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5. Examples

5.1. Validation

Various examples were used to test the proposed method. Two
point clouds, S4 and S6, were selected, as shown in Fig. 7. The num-
bers of points of each point cloud were 3,447,131 and 4,358,042,
respectively.

The input point clouds were filtered leaving, 1912 and 2970
points for S4 and S6, respectively. From S4, five spheres were
detected. From point cloud S6, four spheres were detected. Exam-
ples of detected spheres of the registered point clouds are shown in
Fig. 8.

The initial registration module selected three centroids for S4
and another three centroids for S6. These two sets of centroids
were chosen by the algorithm in Section 3.1. Before the initial reg-
istration, the average distance between the two sets of centroids
Fig. 7. Example of registration. (a) Point cloud S4, (b
was 155061:32 mm. Based on the selected centroids, the initial
registration computed a rotation matrix and a translation vector
for registration, which were then applied to S6 to produce the reg-
istered centroids. The average error was reduced to 624:78 mm.

The registered spheres were provided as input to the fine regis-
tration module. In this registration step, the error is computed
using the equation in Section 3.2.1. Before the fine registration
the value was 1:77 mm. After the fine registration, the error was
reduced to 0:71 mm.

The registered point clouds are shown in Figs. 7(c) and 8. For
this registration, the total computation times for processing S5
and S6 were 63 and 87 s, respectively. The initial and fine registra-
tion times were less than 1 s.

As a next example, registrations of five point clouds
(S1; S2; S3; S5 and S6) were tested. The numbers of points of each
point cloud and the numbers of points after filtering are summa-
rized in Table 1. Registration was performed for two pairs of point
) point cloud S6, and (c) registered point clouds.



Fig. 8. Detected spheres in S4 and S6. The two point clouds have been registered using the spheres. The arrows indicate the detected sphere targets.

Table 1
The numbers of points of each point cloud before and after filtering.

No. of points S1 S2 S3 S5 S6

Before 14,748,777 3,818,803 5,059,272 4,516,864 4,358,042
After 8899 2407 2031 3284 2970

Fig. 9. Registration result of point clouds S1; S2; S4; S5 and S6.
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clouds in a sequential manner. Namely, S1 was considered to be a
base, and each remaining point cloud was registered with respect
to S1.

The total computation time for registering the five point clouds
was 600.75 s. Most of the time was spent on filtering; the
registration took a few seconds. The registered result is given in
Fig. 9.
5.2. Comparison

In this section, the proposed method is compared with two
existing commercial programs bundled with Leica and FARO scan-
ners. One is Leica Cyclone, a 3D point cloud processing program.
The other is FARO Scene for FARO scanners. They provide functions
for 3D point cloud processing and registration designed for the 3D



Table 2
Comparison of the proposed method with the existing commercial software for
sphere detection.

Method S1 S2 S3

No. Time (s) No. Time (s) No. Time (s)

Proposed 5 35.3 3 9.6 4 12.11
Cyclone 5 49.12 3 67.06 4 78.19
Scene 5 61.20 3 20.14 2 39.03

S4 S5 S6

No. Time (s) No. Time (s) No. Time (s)

Proposed 5 9.73 5 15.48 5 30.12
Cyclone 5 90.09 5 63.18 4 63.08
Scene 5 19.04 5 23.12 3 17.20
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scanners. All the programs register point clouds using sphere tar-
gets. Unfortunately, however, the core algorithms that the two
commercial programs are based on cannot be disclosed because
of company policy.

First, the performance of sphere detection is compared using six
point clouds, S1; S2; S3; S4; S5, and S6. Note that Leica Cyclone
does not provide a function for automatic sphere detection and
makes the user select a point on a sphere manually. Table 2 sum-
marizes the test results of the three programs. Note that the com-
putation time for Leica Cyclone includes the time elapsed for
manual selection. As shown in the table, the proposed method
found more spheres than FARO Scene and the same number of
spheres as Leica Cyclone. This means that the proposed method
can detect spheres robustly. The computation times for sphere
detection by the proposed method are better than those of the
two products. It can be considered that the run time advantage
of the proposed method is mainly due to the exploitation of paral-
lel computing and data structures, not to the proposed algorithm
itself. However, the proposed method is built upon parallel compu-
tation and data structures, which are tightly combined into one
optimal package. Therefore, the performance of target detection
becomes superior to that of existing commercial methods in terms
of speed and detection rate.

Next, the time for registration and the registration errors are
compared. In this comparison, pair-wise registration is considered.
The accuracy of the registration software bundled with the com-
mercial scanners is suitable for practical use. Therefore, achieving
accuracy up to that level would be satisfactory. The final registra-
tion errors by the three methods, given in Table 3, show that the
proposed method can produce reasonable registration results. In
addition, the proposed method is the fastest among them.

These experiments show that the proposed method is equiva-
lent to and/or superior to the existing software packages in terms
of performance and robustness.
Table 3
Comparison of the proposed method with the existing commercial software for
registration. Here, E stands for the average error.

Method Test 1 Test 2 Test 3

E
(mm)

Time
(ms)

E
(mm)

Time
(ms)

E
(mm)

Time
(ms)

Proposed 9.28 11 7.04 12 20.06 11
Cyclone 9.17 13 6.85 13 20.26 26
Scene 9.16 12 7.16 24 21.50 16

Test 4 Test 5

E (mm) Time (ms) E (mm) Time (ms)

Proposed 2.47 12 67.28 12
Cyclone 1.46 13 67.23 13
Scene 1.49 20 67.18 16
6. Conclusion

In this paper, the problem of registration of point clouds is
addressed, and a new method for registering point clouds using
sphere targets is proposed. The procedure consists of filtering
and registration. The filtering step processes a point cloud, elimi-
nates unnecessary points and detects sphere targets. The registra-
tion step registers two input point clouds using the detected
targets through the initial and fine registration. The initial registra-
tion uses the centroids of the targets and brings the point clouds
together as closely as possible. The fine registration refines the reg-
istration to improve the accuracy of registration. In particular, an
innovative method for fine registration is proposed utilizing the
underlying component geometry during registration.

Theoretically, it would be possible for a CAD model to be used
instead of sphere targets for registration. However, to use it as a
replacement for sphere targets, the point clouds should be pro-
cessed to detect the CAD model from an input point cloud. Once
the model is detected, it could be used as features for registration.
A CAD model may consist of various parts. Robustly detecting a
CAD model from a point cloud is, however, a very difficult process
in general because the model may contain complex shapes that are
difficult to detect from a point cloud. In contrast, sphere targets are
easy to detect robustly because of their well-defined geometric
properties. Therefore, using sphere targets in the registration pro-
cess, instead of using a CAD model, is preferable.

Three issues need to be considered before the proposed auto-
mated registration system can be employed in a practical applica-
tion. First, the critical aspect of the target-based registration is
robustness in the target detection. The automated registration will
fail when targets are not properly detected. Particularly, if the mea-
sured point clouds do not contain the minimum number of targets
necessary for registration, the registration cannot be performed
because the proper correspondence between the targets cannot
be established. To handle such a case, a manual registration
method must be introduced as a supplemental method to the auto-
mated registration system. Next, the range of points for the evalu-
ation of registration accuracy needs to be extended. In this work,
the accuracy of the initial and fine registration was evaluated using
the Euclidean distances between the centroids of targets and those
distances of points to the targets. However, these methods only use
the targets for evaluation and do not consider the accuracy of reg-
istration for the points far away from the targets. A reasonable
measure that considers all the points is necessary. Finally, the
number of points of a typical input point cloud is more than a
few million, possibly reaching into the tens of millions. Therefore,
the processing of such point clouds would take a long time, and a
reduction of the processing time is required. These three issues are
recommended for future work.
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