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With the ever increasing number of applications of data mining, high-utility itemset mining (HUIM) has
become a critical issue in recent decades. In traditional HUIM, the utility of an itemset is defined as the
sum of the utilities of its items, in transactions where it appears. An important problem with this defini-
tion is that it does not take itemset length into account. Because the utility of larger itemset is generally
greater than the utility of smaller itemset, traditional HUIM algorithms tend to be biased toward finding a
set of large itemsets. Thus, this definition is not a fair measurement of utility. To provide a better assess-
ment of each itemset’s utility, the task of high average-utility itemset mining (HAUIM) was proposed. It
introduces the average utility measure, which considers both the length of itemsets and their utilities,
and is thus more appropriate in real-world situations. Several algorithms have been designed for this
task. They can be generally categorized as either level-wise or pattern-growth approaches. Both of them
require, however, the amount of computation to find the actual high average-utility itemsets (HAUIs). In
this paper, we present an efficient average-utility (AU)-list structure to discover the HAUIs more
efficiently. A depth-first search algorithm named HAUI-Miner is proposed to explore the search space
without candidate generation, and an efficient pruning strategy is developed to reduce the search space
and speed up the mining process. Extensive experiments are conducted to compare the performance of
HAUI-Miner with the state-of-the-art HAUIM algorithms in terms of runtime, number of determining
nodes, memory usage and scalability.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Mining frequent itemsets (FIs) or association rules (ARs) in
transactional databases is a fundamental task in knowledge discov-
ery in databases (KDD) [2,3,6]. Many algorithms have been
designed to mine FIs or ARs. The most common ways of deriving
FIs or ARs from a database are to use a level-wise [3] or a
pattern-growth approach [8,14]. Apriori [3] is the first algorithm
to mine FIs in a level-wise manner. It relies on a minimum support
threshold in the first phase to mine FIs, and then use the discov-
ered FIs in the second phase to derive ARs satisfying a minimum
confidence threshold. The pattern-growth approach was intro-
duced by Han et al. [8] for mining FIs without candidate genera-
tion. FP-growth initially builds an FP-tree structure using
frequent 1-itemsets. Then, during the mining process, conditional
FP-trees are recursively generated, and each tree contains a
designed index table (Header_Table) for mining the FIs.

Traditional frequent itemset mining (FIM) and association rule
mining (ARM) algorithms only consider occurrence frequencies of
items in binary databases. Other important factors such as quanti-
ties, profits, and weights of items are not taken into account by tra-
ditional FIM and ARM algorithms. Another problem is that FIs and
ARs found a transaction database may only contribute a small por-
tion of the overall profit generated by the sale of items, and infre-
quent itemsets may contribute a large amount of the profit. For
example, the sale of diamonds may be less frequent than that of
clothing or shoes in a shopping mall, but diamonds generally con-
tribute a much higher profit per unit sold. It is thus obvious that
only considering the occurrence frequency is insufficient to
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identify highly profitable itemsets or itemsets that are generally
more important to the user. Thus, high-utility itemset mining
(HUIM) [11–13,22] has emerged as a critical issue in recent dec-
ades, as it can reveal the profitable itemsets in real-world situa-
tions. HUIM can be considered as an extension of FIM that
considers additional information such as quantities and unit profits
of items, to better assess how ‘‘useful” an itemset is to the user. An
item/set is considered as a high-utility itemset (HUI) if its utility is
no less than a user-defined minimum utility threshold. Since the
downward closure (DC) property used in traditional FIM and
ARM does not hold in traditional HUIM, Liu et al. [12] designed a
two-phase approach and developed a transaction-weighted down-
ward closure (TWDC) property to reduce the search space by prun-
ing unpromising itemsets early. Several level-wise and pattern-
growth algorithms have been proposed to efficiently mine HUIs,
using the two-phase approach [4,5,7].

In traditional HUIM, the utility of an item/set is defined as the
sum of its utilities in the database. An important problem with this
definition is that it does not take itemset length into account. Thus,
this definition is not a fair measurement of utility. To provide a bet-
ter assessment of each itemset’s utility, the task of high average-
utility itemset mining (HAUIM) was proposed by Hong et al. [9].
The proposed average utility measure estimates the utility of an
itemset by considering its length. It is defined as the sum of the
utilities of the itemset in transactions where it appears, divided
by the number of items that it contains. This measure addresses
the bias of traditional HUIM toward larger itemsets, by considering
the length of itemsets, and can thus more objectively assess the
utility of itemsets. As for traditional HUIM, level-wise and
pattern-growth algorithms have been designed for HAUIM. Level-
wise algorithms [9] require to generate numerous candidates for
mining the actual high average-utility itemsets (HAUIs). Pattern-
growth algorithms [15] require to recursively build conditional
trees for mining HAUIs, which is quite time-consuming. In this
paper, we first design an efficient average-utility (AU)-list struc-
ture and develop an algorithm named HAUI-Miner for mining
HAUIs using a single phase. The key contributions of this paper
are threefold.

1. We first design an efficient HAUI-Miner algorithm to mine high
average-utility itemsets (HAUIs). It relies on a novel condensed
average-utility (AU)-list structure. This structure only keeps
information required by the mining process, thus compressing
very large databases into a condensed structure.

2. An efficient pruning strategy is developed to reduce the search
space, represented as an enumeration tree, by pruning
unpromising candidates early. Using this strategy, building
the AU-lists of extensions of a processed node in the enumera-
tion tree can be avoided to reduce the amount of computation.

3. Substantial experiments are conducted to compare the
performance of the designed HAUI-Miner algorithm with the
state-of-the-art algorithms, in terms of runtime, number of
determining nodes, memory consumption, and scalability.

2. Related work

High-utility itemset mining (HUIM) [12,13,22], an extension of
frequent itemset mining, is based on the measurement of internal
utility and external utility. The internal utility of an item is its pur-
chase quantity in a transaction, and the external utility of an item
can be viewed as its unit profit, importance or weight. The utility of
an item/set in a database is calculated as the total purchase quan-
tity of the itemset in the database, multiplied by its unit profit
(external utility). The purpose of HUIM is to discover the complete
set of high-utility itemsets (HUIs), that are itemsets having a utility
no less than a minimum utility threshold. Yao et al. [22] proposed a
framework for mining HUIs based on mathematical properties of
the utility measure. Two pruning strategies were designed to
reduce the search space for discovering HUIs respectively based
on utility upper bounds and expected utility upper bounds. Since
the downward closure (DC) property of ARM does not hold in tra-
ditional HUIM, Liu et al. [12] then designed a transaction-weighted
downward closure (TWDC) property and developed the
transaction-weighted utilization (TWU) model. This latter provides
upper bounds on the utilities of potential HUIs, which can be used
to reduce the combinatorial explosion of the search space in tradi-
tional HUIM. However, the TWU model still requires to generate
numerous candidates to obtain the actual HUIs. Pattern-growth
algorithms have been proposed to compress the database into a
condense tree structure using the TWU model. Lin et al. [16]
designed a high-utility pattern (HUP)-tree algorithm to recursively
mine high-utility itemsets using the proposed tree structure. Tseng
et al. developed the UP-Growth [20] and UP-Growth+ [21] algo-
rithms to efficiently discover HUIs based on different pruning
strategies. The aforementioned approaches all rely on the TWU
model and its TWDC property for discovering HUIs. The search
space is, however, very large when using the TWU model, and it
is thus very time-consuming to discover the actual HUIs. As an
alternative to the pattern-growth mechanism, Liu et al. [13] devel-
oped the list-based HUI-Miner algorithm to discover HUIs without
candidate generation. The developed utility-list structure is an effi-
cient structure for maintaining the information required for min-
ing HUIs using a limited amount of memory. Fournier-Viger et al.
[7] extended HUI-Miner with a structure named EUCS to store
information about the relationships between 2-itemsets, thus
speeding up the discovery of HUIs. Several extensions of the task
of HUIM have been proposed such as discovering up-to-date HUIs
[17] and top-k HUIs [23].

Similarly to traditional HUIM, several HAUIM algorithms have
been designed using the TWU model. Lin et al. [15] first developed
the HAUP-tree structure and the HAUP-growth algorithm for min-
ing HAUIs. In the HAUP-tree, each node at the end of a path stores
the average-utility upper bound of the corresponding item as well
as the quantities of the preceding items in the same path. This
approach can thus be used to speed up the discovery of HAUIs.
Lan et al. [10] proposed a projection-based average-utility itemset
mining (PAI) algorithm to reveal HAUIs using a level-wise
approach. Based on the proposed upper-bound model, the number
of unpromising candidates can be greatly reduced compared to
previous work based on the TWU model. Lu et al. [18] proposed
the HAUI-tree algorithm to further reduce the number of
unpromising candidates for mining the actual HAUIs using a
designed enumeration tree structure. However, mining HAUIs
using the designed algorithm is still very time-consuming since
the upper-bounds used by these algorithms are loose, and thus
numerous unpromising candidates need to be generated, and the
recursive process for building the complete enumeration tree
remains costly.
3. Preliminaries and problem statement

3.1. Preliminaries

Let I ¼ fi1; i2; . . . ; img be a finite set of m distinct items. A quan-
titative database is a set of transactions D ¼ fT1; T2; . . . ; Tng, where
each transaction Tq 2 D (1 6 q 6 m) is a subset of I and has a
unique identifier q, called its TID. Besides, each item ij in a transac-
tion Tq has a purchase quantity denoted as qðij; TqÞ. A profit table PT
indicates the unit profit value of each item in the database as PT =
{prði1Þ; prði2Þ; . . . ; prðimÞ}, where profit values are positive integers.
A set of k distinct items X = {i1; i2; . . . ; ik} such that X# I is said to
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be a k-itemset, where k is the length of the itemset. An itemset X is
said to be contained in a transaction Tq if X# Tq. A minimum
average-utility threshold d is set according to the user’s preference
(a positive integer). An example quantitative database is shown in
Table 1, which will be used as running example for the rest of this
paper. This database contains six transactions and six distinct
items, denoted with letters from (A) to (F). The profit table indi-
cates the unit profit of each item appearing in the database, and
is shown in Table 2. In the running example, the minimum
average-utility threshold is set to (d = 16%).

Definition 1. The average-utility of an item ij in a transaction Tq is
denoted as auðij; TqÞ, and defined as:

auðij; TqÞ ¼ qðij; TqÞ � prðijÞ
1

; ð1Þ

where qðij; TqÞ is the quantity of ij in Tq, and prðijÞ is the unit profit
value of ij.

For example, the average-utility of items (A), (B), (C), (D), and (F)
in T1 are respectively calculated as auðA; T1Þ ¼ 1�5

1

� �ð¼ 5Þ,
auðB; T1Þ ¼ 6�1

1

� �ð¼ 6Þ, auðC; T1Þ ¼ 3�2
1

� �ð¼ 6Þ, auðD; T1Þ ¼ 3�3
1

� �ð¼ 9Þ,
and auðF; T1Þ ¼ 6�1

1

� �ð¼ 6Þ.

Definition 2. The average-utility of a k-itemset X in a transaction
Tq is denoted as auðX; TqÞ, and defined as:

auðX; TqÞ ¼
P

ij2X^X# Tq qðij; TqÞ � prðijÞ
jXj

¼
P

ij2X^X# Tq qðij; TqÞ � prðijÞ
k

; ð2Þ

where k is the number of items in X.

For example, the average-utility of itemsets ðABÞ and ðABCÞ in T1

are respectively calculated as auðABÞ = 1�5þ6�1
2 = (5.5) and

auðABCÞ = 1�5þ6�1þ3�2
3 (=5.66).

Definition 3. The average-utility of an itemset X in D is denoted as
auðXÞ, and is defined as:

auðXÞ ¼
X

X# Tq^Tq2D
auðX; TqÞ: ð3Þ

For example, the average-utilities of itemsets ðABÞ and ðABCÞ in
the database depicted in Table 1 are respectively calculated as
auðABÞ = auðAB; T1Þ + auðAB; T4Þ + auðAB; T5Þ = 5.5 + 7 + 12 (=24.5),
and auðABCÞ = auðABC; T1Þ + auðABC; T4Þ + auðABC; T5Þ = 5.66 + 6.66
+ 10 (=22.32).
Definition 4. The transaction utility of a transaction Tq is denoted
as tuðTqÞ, and defined as:

tuðTqÞ ¼
X

ij2Tq
uðij; TqÞ: ð4Þ
Table 1
A quantitative database.

TID Transaction (item, quantity)

1 A:1, B:6, C:3, D:3, F:6
2 B:2, C:3, E:2
3 A:2, C:1, D:2, E:1
4 A:1, B:9, C:3, D:2, F:2
5 A:3, B:9, C:3, D:1, E:1
6 C:4, D:1, E:1
For example, the utilities of transactions in Table 1 are respec-
tively calculated as tuðT1Þ = 5 + 6 + 6 + 9 + 6 (=32), tuðT2Þ(=16),
tuðT3Þ(=22), tuðT4Þ(=28), tuðT5Þ(=37), and tuðT6Þ(=15).
Definition 5. The total utility of a database D is denoted as TU, and
defined as the sum of all transaction utilities, that is:

TU ¼
X

Tq2D
tuðTqÞ: ð5Þ

For example, the total utility in the running example of Table 1
is calculated as TU = 32 + 16 + 22 + 28 + 37 + 15 (=150).
3.2. Problem statement

The problem of mining high average-utility itemsets is to dis-
cover the complete set of high average-utility itemsets (HAUIs).
An itemset X is an HAUI in a database D if its utility is no less than
the minimum average-utility count, specified by the user. The set
of HAUIs is thus formally defined as:

HAUIs fXjauðXÞP TU � dg: ð6Þ
4. The proposed HAUI-Miner algorithm

In this paper, we design an average-utility (AU)-list structure to
store the information needed by the mining process. Moreover, an
algorithm named HAUI-Miner is also developed to mine HAUIs
more efficiently than previous works. In traditional association rule
mining (ARM), the downward closure (DC) property is used to
reduce the search space and avoid the problem of the combinato-
rial explosion for mining HAUIs. In HAUIM, this property does not
hold for the average utility measure. To restore this property and
effectively reduce the search space, this paper introduces a
transaction-maximum utility downward closure (TMUDC) prop-
erty. It allows to prune unpromising candidates early, and thus
to reduce the search space to efficiently discover the actual HAUIs.

Definition 6. The transaction-maximum utility of a transaction Tq

is denoted as tmuðTqÞ, and defined as the maximum utility of items
in a transaction Tq, that is:

tmuðTqÞ ¼ maxðfuðijÞjij 2 TqgÞ: ð7Þ
For example, the transaction-maximum utility of T1 is calcu-

lated as muðT1Þ =maxf5;6;6;9;6gÞ(=9). The transaction-
maximum utilities of the other transactions are calculated in the
same say, and are shown in Table 3.
Definition 7. The average-utility upper-bound of an itemset X is
denoted as auubðXÞ, and defined as the sum of the transaction-
maximum utilities of transactions containing X, that is:

auubðXÞ ¼
X

X# Tq^Tq2D
tmuðTqÞ: ð8Þ
Table 2
A profit table.

Item Profit

A 5
B 1
C 2
D 3
E 4
F 1



Table 3
The transaction-maximum utilities.

TID Transaction (item, quantity) tmu

1 A:1, B:6, C:3, D:3, F:6 9
2 B:2, C:3, E:2 8
3 A:2, C:1, D:2, E:1 10
4 A:1, B:9, C:3, D:2, F:2 9
5 A:3, B:9, C:3, D:1, E:1 15
6 C:4, D:1, E:1 8
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For example, consider the database of Table 1. The value
auubðAÞ is calculated as auubðAÞ = tmuðT1Þ + tmuðT3Þ + tmuðT4Þ
+ tmuðT5Þ = 9 + 10 + 9 + 15 (=43). The average-utility-upper-
bounds of other items are calculated in the same way, and are
given in Table 4.
Definition 8. An itemset X is called a high average-utility upper-
bound itemset (HAAUUBI) if its average-utility upper-bound is no
less than the minimum average-utility count, which is defined as:

HAUUBI fXjauubðXÞP TU � dg: ð9Þ
Theorem 1 (Transaction-maximum-utility downward closure
(TMUDC) property of HAUUBI). The average-utility-upper-bound
measure is downward-closed. The TMUDC property holds for any
HAUUBI itemsets.
Proof. Let Xk be a k-itemset, and Xk�1 be any of its subsets. Since

Xk�1 is a subset of Xk, the set of TIDs of transactions containing

Xk is a subset of the set of TIDs of Xk�1. Assume that Xk is a HAUUBI.
Thus:

auubðXkÞ ¼
X

Xk # Tq^Tq2D
tmuðTqÞ 6

X

Xk�1 # Tq^Tq2D
tmuðTqÞ ¼ auubðXk�1Þ:

) auubðXkÞ 6 auubðXk�1Þ: �

By Theorem 1, auubðXk�1ÞP auubðXkÞ. Therefore, if Xk is a
HAUUBI, any subset Xk�1 of Xk is also a HAUUBI.

Corollary 1. If an itemset Xk is a HAUUBI, all subsets of Xk are also
HAUUBIs.
Corollary 2. If an itemset Xk is not a HAUUBI, all supersets of Xk are
not HAUUBIs.
Theorem 2 (HAUUBI#HAUIs). The TMUDC property ensures that
HAUUBI#HAUIs. Thus, if an itemset is not a HAUUBI, none of its
supersets are HAUIs.
Table 4
The average-utility upper-bounds of
items.

Item auub

A 43
B 41
C 59
D 51
E 41
F 18
Proof. 8X in D,

auðXÞ¼P
X#Tq^Tq2DauðX;TqÞ6

X

X#Tq^Tq2D

tmuðX;TqÞ�jXj
jXj ¼

X

X#Tq^Tq2D
tmuðX;TqÞ

¼auubðXÞ:
)auðXkÞ6auubðXkÞ:

�

Thus, if an itemset X is not a HAUUBI, it is also not a HAUI. This
property can be used to reduce the search space by pruning
numerous unpromising candidates, which speeds up the mining
process.

4.1. The revised and projected databases

The proposed HAUI-Miner algorithm scans the database twice
to calculate tight upper bounds on the average-utilities of candi-
date itemsets. During the first database scan, the set of high
average-utility-upper-bound 1-itemsets (1-HAUUBIs) is discov-
ered. This latter is needed to construct the AU-lists of 1-itemsets.
During the second database scan, 1-itemsets that are deemed
non-HAUUBI (according to the minimum average-utility count)
are removed. In other words, for an itemset X, if auubðXÞ is less
than the minimum average-utility count (d� TU), X is not a
HAUUBI, and X can thus be removed from the database. The data-
base obtained after removing all such items from a database D is
called the revised database of D, and is denoted as D0. The pseu-
docode of the algorithm for obtaining 1-HAUUBIs and the revised
database, is presented in Algorithm 1.

Algorithm 1. Algorithm to obtain 1-HAUUBIs and the revised
database
In Algorithm 1, the database is initially scanned to find the
transaction-maximum utility of each transaction. This is done by
comparing the utility values of items for each transaction (Lines
1–2). After that, the average-utility upper-bound value of each
item is calculated (Lines 3–4) and unpromising 1-HAUUBIs are
removed from the database to obtain the revised database (Lines
5–6). The remaining items in each transaction in the revised data-
base are then sorted in ascending order of auub values (Lines 7–8).
After that, the revised database and the discovered HAUUBIs are
returned by the method, and will be used by the mining process
(Line 9). The revised database for the running example is shown
in Table 5, where the discovered 1-HAUUBIs and their sorted order
is {B � E � A � D � C}.

After the original database has been revised, the sub-database
corresponding to each item in 1-HAUUBIs is then projected, form-
ing a smaller database that is used for constructing the correspond-
ing AU-list. If an item is not an HAUUBI in the sub-database, the



Table 6
The projected sub-database of (B).

TID Items

1 B:6, A:1, D:3, C:3
2 B:2, E:2, C:3

Table 5
The revised database.

TID Items

1 B:6, A:1, D:3, C:3
2 B:2, E:2, C:3
3 E:1, A:2, D:2, C:1
4 B:9, A:1, D:2, C:3
5 B:9, E:1, A:3, D:1, C:3
6 E:1, D:1, C:4
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item is removed from the sub-database. In this way, a projected
database is smaller than the revised database, and can thus accel-
erate the construction of AU-lists. For example, consider item (B) in
Table 5. Transactions are projected, forming the sub-database of
(B). The result is shown in Table 6. Then, the auub value of each
item in the sub-database is compared with the minimum
average-utility count to determine if it satisfies the condition to
be an HAUUBI. In the example of Table 6, the transaction-
maximum utilities of the four transactions are respectively: tmu
(T1) = 9, tmu(T2) = 8, tmu(T3) = 9, and tmu(T4) = 15; the auub value
of each item is calculated as: auub(B) = tmu(T1) + tmu(T2) + tmu
(T3) + tmu(T4) = 41, auub(E) = 23, auub(A) = 33, auub(D) = 33, and
auub(C) = 41. Since auub(E)(=23 < 24), the item (E) is not a 1-
HAUUBI in the sub-database of (B). Thus, (E) is removed from
Table 6, and the result of this process is shown in Table 7, which
is called the projected sub-database of (B).
3 B:9, A:1, D:2, C:3
4 B:9, E:1, A:3, D:1, C:3

Table 7
The revised projected sub-database of (B).

TID Items

1 B:6, A:1, D:3, C:3
2 B:2, C:3
3 B:9, A:1, D:2, C:3
4 B:9, A:3, D:1, C:3

tid tmu

B

1 6 9

2 2 8

3 9 9

4 9 15

iu

A

1 5 9

3 5 9

4 15 15

D

1 9 9

3 6 9

4 3 15

C

1 6 9

2 6 8

3 6 9

4 6 15

B A D C

Fig. 1. The AU-lists constructed using the projected sub-database of (B).
4.2. The average-utility (AU)-list structure

A projected database that has been revised twice can then be
used to efficiently construct the average-utility-list (AU-list) struc-
ture of each item/set. The AU-list of an item/set X is a list of ele-
ments such that there is an element representing each
transaction Tq where X# Tq. An element consists of three fields,
defined as follows:

� The tid field indicates the transaction of Tq.
� The iu field indicates the utility of X in Tq, i.e., uðX; TqÞ.
� The tmu field indicates the transaction-maximum utility of X in
Tq, i.e., tmuðX; TqÞ.
AU-lists constructed using the projected sub-database of (B),

depicted in Table 7, are shown in Fig. 1.
In Fig. 1, the first element (1,6,9) in the constructed AU-list of

ðBÞ indicates that ðBÞ appears in transaction T1, has a utility of 6
in that transaction, and that the transaction-maximum utility of
ðBÞ in that transaction is 9. If the sum of the uðXÞ values of all ele-
ments in an AU-list is no less than the minimum average-utility
count, it is directly output as a high average-utility itemset (HAUI).
To construct AU-lists of k-itemset (k P 2), it is unnecessary to res-
can the original database. They can be constructed by performing
an intersection operation using AU-lists of smaller itemsets (by
comparing TIDs in AU-lists). Suppose that the lengths of two item-
sets are respectively m and n. Performing the intersection of two
AU-lists only requires at most (mþ n) comparisons for deriving
the AU-list of a k-itemset. The construction algorithm of AU-lists
for k-itemsets (k P 2) is shown in Algorithm 2.

Algorithm 2. AU-list construction
The AU-list construction algorithm takes the AU-lists of three
itemsets as input (P; Px and Py). Here, the notation Px denotes the
union of itemset P with an item x, i.e. P [ fxg. It is assumed that
x � y. The output of the algorithm is the AU-list of itemset Pxy.
The algorithm is applied as follows. First, the AU-list of Pxy is ini-
tialized as empty (Line 1). A loop is then performed over all ele-
ments Ex in Px:AUL (Lines 2–10) to fill the AU-list of Pxy by
combining Px:AUL and Py:AUL. If P ¼ ;; Pxy is a 2-itemset, and ele-
ments in its AU-list structure are directly constructed by compar-
ing elements in the AU-lists of Px and Py (Lines 4–5). Otherwise,
Pxy is a k-itemset ðk P 3Þ, and its AU-list is constructed by also con-
sidering the AU-list of P (Lines 7–10). For example, consider the
construction of the AU-list of ðBAÞ using the AU-lists of ðBÞ and
ðAÞ, as illustrated in Fig. 1. This is done by performing the intersec-
tion of elements having the same TIDs in the AU-lists of ðBÞ and ðAÞ.
The set of TIDs of ðBAÞ is thus {1,2,3,4} \ {1,3,4} = {1,3,4}. The val-
ues of u and tmu in the AU-lists are also updated. The constructed
AU-list of ðBAÞ is shown in Fig. 2.

4.3. Search space of AU-list

Based on the designed AU-list structure, the search space for
mining high average-utility itemsets (HAUIs) can be represented
as an enumeration tree, where each node represents a distinct
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Fig. 3. The enumeration tree of (B).
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itemset, which may be a potential HAUI. The proposed algorithm
explores this tree using a depth-first search. It relies on a pruning
strategy (presented in the next sub-section) to determine whether
the AU-lists of the child nodes of the processed one need to be con-
structed or can be pruned directly. The sub-tree of itemset (B) for
the running example of Table 7 is shown in Fig. 3.

4.4. Pruning strategy

Mining HAUIs is very costly in terms of runtime and memory if
the search space is very large (if a huge amount of itemsets is con-
sidered). Suppose that the number of items in a database is k. A

naive approach would require to consider all 2k � 1 possible non-
empty itemsets as potential HUIs. To avoid this combinatorial
explosion, this paper introduces an efficient pruning strategy that
is effective at reducing the search space.

Definition 9. Let SUM:X:iu denotes the sum of the utilities of an
itemset X in a database D, that is:
SUM:X:iu ¼
X

X# Tq^Tq2D
uðX; TqÞ: ð10Þ

For example in Fig. 2, SUM:B:iu (=6 + 2 + 9 + 9)(=26), and
SUM:A:iu (=5 + 5 + 15)(=25).
Definition 10. Let SUM:X:tmu denotes the sum of the transaction-
maximum utilities of transactions containing an itemset X in a
database D, that is:
SUM:X:tmu ¼
X

X# Tq^Tq2D
tmuðX; TqÞ: ð11Þ

For example in Fig. 2, SUM:B:tmu = 9 + 8 + 9 + 15 (=41), and
SUM:A:tmu = 9 + 9 + 15 (=33).
Definition 11. Given an itemset X and a transaction T such that
X# T, the set of all items appearing after X in T is denoted as T=X
and defined as T=X ¼ fiji 2 T ^ i � j 8j 2 Xg .
For example in Table 5, T1=ðBÞ = ðADCÞ, and T1=ðAÞ = ðDCÞ.

Definition 12. Let there be some itemsets X and Y. Y is said to be
an extension of X if there exists an itemset Z – ; such that
Y ¼ X [ Z, and 8j 2 Z; 9= i 2 X such that i � j. Furthermore, Y is said
to be a 1-extension of X if it is an extension of X and jZj ¼ 1.
To mine HAUIs efficiently, it is necessary to reduce the search
space. This can be done by identifying and pruning unpromising
itemsets early. In the designed AU-list structure, the sum of the
iu and tmu fields provides enough information to achieve this goal.
B

1 6 9

2 2 8

3 9 9

4 9 15

A

1 5 9

3 5 9

4 15 15

BA

1 11 9

3 14 9

4 24 15

Fig. 2. The construction of the AU-list of ðBAÞ.
Theorem 3. Let there be an itemset X. If the value SUM:X:tmu
calculated using the AU-list of X is less than the minimum average-
utility count, all extensions of X are not high average-utility itemsets
(HAUIs).
Proof. *i 2 X# T , and uði; TÞ 6 tmuði; TÞ,
)uðX; TÞ ¼P

i2Tuði; TÞ 6
P

i2T tmuðX; TÞ ¼ tmuðX; TÞ � jXj.
8T � X0;*X0 is an extension of X.

)auðX0; TÞ ¼ uðX0 ;TÞ
jX0 j ¼

P
i2T uði;TÞ
jX0 j 6 tmuðX0 ;TÞ�jX0 j

jX0 j ¼ tmuðX0; TÞ.
Let idðTÞ denotes the tid of transaction T, and X:tids denotes the

set of tids in the AU-list of X, and X 0:tids in X0. Thus:
*X � X0 ) X0:tids#X:tids.

)auðX 0Þ¼
X

idðTÞ2X0 :tids
auðX 0;TÞ6

X

idðTÞ2X0 :tids
tmuðX0;TÞ 6

X

idðTÞ2X:tids
tmuðX;TÞ

¼SUM:X:tmu:
�

Thus, if the sum of the transaction-maximum utilities of the
transactions containing an itemset X is less than the minimum
average-utility count, all extensions of X are not high average-
utility itemsets (HAUIs) and can thus be ignored, and their AU-
lists do not need to be constructed. For example, consider the 3-
itemset ðBADÞ, which is an extension of the 2-itemset ðBAÞ. The
sum of the tmu values of ðBAÞ is calculated as (9 + 9 + 15)(=33),
which is larger than the minimum average-utility count
(33 > 24). Thus, the AU-lists of extensions of ðBAÞ in the enumera-
tion tree need to be considered by the depth-first search and the
AU-list of its 1-extensions need to be generated. The full pseu-
docode of the proposed HAUI-Miner algorithm is presented in
Algorithm 3.

Algorithm 3. HAUI-Miner
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Table 10
Characteristics of the datasets.

Dataset #jDj #jIj AvgLen MaxLen Type

Chess 3196 75 37 37 Dense
Mushroom 8124 119 23 23 Dense
SIGN 730 267 52 94 Sparse
Retail 88,162 16,470 10.3 76 Sparse
T10I4D100K 100,000 870 10.1 29 Sparse
Kosarak 990,002 41,270 8.1 2498 Sparse

Table 8
Final derived HAUIs.

Itemset au Itemset au

(B) 26 (BC) 25
(A) 35 (AD) 29.5
(D) 27 (AC) 27.5
(C) 34 (DC) 27.5
(BA) 24.5 (ADC) 26.3

Table 9
Parameters used to describe datasets.

#jDj Total number of transactions
#jIj Number of distinct items
AvgLen Average transaction length
MaxLen Maximal transaction length
Type Dataset type
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The HAUI-Miner algorithm takes as input (1) the AU-list of an
itemset P, (2) the AU-lists P:AUL of all 1-extensions of P, (3) the pre-
defined high average-utility threshold, and (4) the total utility of
the database D. The algorithm first loops to consider each AU-list
Y:AUL in P:AUL. If the sum of the transaction maximum utilities
in Y:AUL divided by the number of elements in Y :AUL is less than
the minimum average-utility count (=d� TU), Y is an HAUI and it
is output (Lines 2–3). Then, if the sum of the transaction-
maximum utilities in Y:AUL exceeds d (line 4), the designed algo-
rithm will explore the search space by intersecting Y and each
AU-list Z appearing after Y in AULs (Lines 6–7). The construction
function ðP:AUL;Y ; ZÞ (Line 7) is then called to construct the AU-
list of the itemset Y [ Z. Then the algorithm is called recursively
to explore extensions of Y [ Z (Line 8). When the algorithm termi-
nates, all HAUIs have been successfully discovered.
5. An illustrated example

In this section, a simple example is given to illustrate how the
proposed HAUI-Miner algorithm is applied step-by-step to dis-
cover HAUIs. Consider the example dataset and profit table respec-
tively shown in Tables 1 and 2. Moreover, assume that the
minimum average-utility threshold d is set to 16% by the user.
The dataset is first scanned to calculate the auub values of all 1-
items. The results are shown in Table 4. Since the minimum
average-utility count is (150� 0:16)(=24), the set of 1-HAUUBIs is
{A;B;C;D; E}. The database is then revised to remove unpromising
itemsets and the remaining items are sorted in ascending order
of their auub values in each transaction. The resulting revised data-
base is shown in Table 5.
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After that, the projected sub-databases of items in the set of 1-
HAUUBIs are generated. The projected sub-database of (B) is shown
in Table 6. In each projected database, the local HAUUBIs are iden-
tified, and their utility-lists are constructed. For instance, the local
AU-lists of (B), (A), (D), and (C) are built using the projected data-
base of item (B), and are shown in Fig. 1. The AU-lists of (B)’s 1-
extensions (BA, BD, BC) are then constructed by intersecting the
AU-list of (B) with the AU-lists of the other 1-items. Using the con-
structed AU-lists of (B)’s 1-extension, it is found that auðBAÞ(=24.5),
auðBDÞ(=21), auðBCÞ(=25), and auubðBAÞ(=33), auubðBDÞ(=33),
auubðBCÞ(=41). Since au(BA)(=24.5P 24) and au(BC)(=25P 24),
itemsets (BA) and (BC) are HAUIs, and are directly output. If the
auub value of an itemset is no less than d� TU, for example, the
itemset (BD), its AU-list will then used to generate extensions, to
pursue the depth-first search using that itemset. This process is
recursively performed until no AU-lists can be generated. After
all itemsets with the prefix item (B) have been considered, the
other 1-HAUUBIs (E, A, D, C) are processed in the same way. The
final set of HAUIs obtained for the running example is shown in
Table 8.
6. Experimental results

In this section, the performance of the proposed HAUI-Miner
algorithm is compared with the three state-of-the-art algorithms,
named HAUP-growth [15], PAI [10] and HAUI-tree [18] algorithms
on several datasets. All algorithms were implemented in Java and
experiments were carried on a computer having an Intel(R) Core
(TM) i7-4790 3.60 GHz processor with 8 GB of main memory, run-
ning the 64 bit Microsoft Windows 7 operating system. Experi-
ments were conducted on six datasets, including five real-world
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Fig. 5. Number of determining nodes for va
datasets [19] and one synthetic dataset generated using the IBM
Quest Synthetic Data Generator [1]. A simulation model [12] was
developed to generate quantities (internal utilities) and unit profit
values (external utilities) of items in transactions for all datasets.
External utilities have been generated in the [0.01,10] interval
using a log-normal distribution, and internal utilities have been
randomly chosen in the [1,5] interval. Parameters used to describe
the six datasets are shown in Table 9, and the characteristics of
these datasets are shown in Table 10.

To assess the performance of each algorithm, the execution
time, number of visited nodes in the search space, maximummem-
ory usage, and the scalability were respectively analyzed. Results
are reported below. In the performed experiments, if an algorithm
ran for more than 10,000 s or if it ran out of memory, the algorithm
was stopped.
6.1. Runtime

In this section, runtimes of the three state-of-the-art algorithms
for mining HAUIs are compared with the proposed HAUI-Miner
algorithm for various minimum average-utility threshold values,
on the six datasets. Results are shown in Fig. 4.

It can be observed in Fig. 4 that the proposed HAUI-Miner algo-
rithm outperforms previous algorithms for various minimum
average-utility thresholds, on all six datasets. In particular, the pro-
posed HAUI-Miner algorithm can be one to two orders of magni-
tude faster than the PAI, HAUP-growth and HAUI-tree algorithms.
For example in Fig. 4(b), the runtime of HAUP-growth, PAI, and
HAUI-Tree are respectively 233.7, 4.5 and 6.6 s, while the proposed
algorithm only took 1.3 s when the minimum average-utility
threshold was set to 4%. For the HAUP-growth algorithm, no results
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are provided in Fig. 4(a), (c), (d) and (f). Moreover, the HAUP-
growth algorithm has no results in Fig. 4(b) and (e) when the min-
imum average-utility threshold is respectively set to 3.8%, and 0.3%
or below. The reason is that the HAUP-growth algorithm utilizes
more memory to mine HAUIs based on its designed tree structure
because it use additional arrays to maintain the information to be
used by the mining process. If the array size is m, HAUP-growth
generates up to 2m candidates for mining HAUIs. The performance
of the HAUI-tree algorithm can be explained in the same way.

The PAI algorithm uses an iterative mining method to discover
HAUIs and performs an additional database scan to determine the
actual HAUIs from the set of promising candidates. This approach
is more efficient than that of the HAUP-growth and HAUI-tree algo-
rithm, and thus it is faster. Another observation is that the gap
between the designed HAUI-Miner algorithm and PAI is smaller
when the minimum average-utility thresholds is set to large val-
ues, as well as with the other compared algorithms. This is also
reasonable since when the minimum average-utility threshold is
set higher, fewer candidates are generated and it is more easier
to discover the actual HAUIs from a small set of candidates.
6.2. Node analysis

In this section, the number of nodes generated for discovering
the actual HAUIs using each algorithm is compared. Results are
shown in Fig. 5.

It can be observed in Fig. 5 that the number of nodes generated
by the proposed HAUI-Miner algorithm is much less than the
HAUP-growth, PAI and HAUI-Tree algorithms for various minimum
average-utility threshold values on all datasets. This is because the
compared algorithms are all sensitive to transaction length. This is
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Fig. 6. Memory consumption for various min
especially the case for the HAUP-growth algorithm since an extra
array is attached to each node of its tree structure to keep informa-
tion to be used by the mining process. When more information is
stored in these arrays, the number of nodes (candidates) generated
exponentially increases. No results are provided for the HAUP-
growth algorithm in Fig. 5(a), (c), (d) and (e) since it exceeds the
setup maximum time limit. In the other figures such as Fig. 5(b)
and (e), the HAUP-growth algorithm generates a large amount of
candidates to obtain the HAUIs. The PAI and HAUI-tree algorithms
both use a projection mechanism to generate smaller datasets for
the later mining process. Thus, the number of itemsets considered
as candidates for mining the HAUIs is less than using the HAUP-
growth algorithm, as shown in Fig. 5(b)–(e). Based on the designed
pruning strategy, the number of determining nodes is greatly
reduced, as it can be observed in Fig. 5.
6.3. Memory usage

The memory usage of the algorithms was also compared when
varying the minimum average-utility thresholds, for all datasets.
Results are shown in Fig. 6.

It can be observed that the proposed HAUI-Miner algorithm
performs well in terms of memory usage. The proposed HAUI-
Miner algorithm needs less more memory than PAI. The reason is
that PAI only uses its projection mechanism to find HAUIs, while
the designed HAUI-Miner algorithm constructs the AU-lists for
storing the necessary information. The HAUP-growth and the
HAUI-tree algorithms both requires more memory to generate
their tree structures for keeping the information needed to dis-
cover HAUIs. If the depth of the constructed tree is high, the
amount of memory required by the HAUP-growth algorithm
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greatly increases since an array is attached to each node, as it can
be observed in Fig. 6(b) and (e). Therefore, it can be concluded that
HAUI-Miner has good performance on memory usage, and requires
less memory to mine the actual HAUIs in all datasets.

6.4. Scalability

The scalability of the proposed HAUI-Miner algorithm was also
compared with the same three state-of-the-art HAUI mining algo-
rithms on a series of synthetic datasets T10I4N4KDjXjK, where the
number of transactions was varied from 100k to 500k transactions
using a 100k increment. The minimum average-utility threshold
was fixed at 0.27%. Results are shown in Fig. 7.

It can be observed in Fig. 7, that all compared algorithms have
longer runtimes and require more memory to find HAUIs when
the dataset size increases. Although the HAUI-tree algorithm can
efficiently reduce the number of candidates for mining HAUIs
using its tree structure, the information kept in the HAUI-tree is
large and thus the memory usage considerably increases with
the dataset size. The designed HAUI-Miner algorithm utilizes the
proposed AU-list structure for storing the information needed to
discover HAUIs. The pruning strategy used in the designed HAUI-
Miner algorithm effectively prunes unpromising candidates, while
ensuring the correctness of the designed algorithm. It can also be
found that all compared algorithms and the designed HAUI-
Miner have good scalability, with the exception of the HAUI-tree
algorithm when the dataset is very large. Nonetheless, the pro-
posed algorithm outperforms the other algorithms in terms of run-
time, number of determining nodes, memory usage and scalability.
The effectiveness and efficiency of the proposed HAUI-Miner algo-
rithm is thus quite acceptable for real-world applications.

7. Conclusion and future work

Traditional high-utility itemset mining (HUIM) considers pur-
chase quantities and unit profits of items to discover high-utility
itemsets (HUIs). Because the utility of larger itemset is generally
greater than the utility of smaller itemset, traditional HUIM
algorithms tend to be biased toward finding large itemsets. Thus,
the traditional utility measure is not a fair measurement in real-
world applications. To address this issue, the problem of high
average-utility itemset mining (HAUIM) has been proposed.
HAUIM has attracted a lot of attention since it provides a useful
alternative interestingness measure to evaluate the discovered
patterns. In this paper, an efficient average-utility (AU)-list
structure is designed to store the information needed to discover
HAUIs. The HAUI-Miner algorithm discovers HAUIs by exploring
a set-enumeration tree using a depth-first search. An efficient
pruning strategy is also developed to prune unpromising candi-
dates early and thus reduce the search space. Substantial experi-
ments were conducted on both real-life and synthetic datasets to
evaluate the efficiency and effectiveness of the designed algorithm
in terms of runtime, number of determining nodes, memory con-
sumption usage, and scalability. Performance was compared with
the state-of-the-art HAUP-growth, PAI and HAUI-Tree algorithms.

In this paper, the HAUI-Miner algorithm was designed to dis-
cover HAUIs efficiently in a static database. However, in real-life
situations, transactions are frequently updated. New transactions
may be frequently added to the original database. In future work,
we will thus consider developing several algorithms to mine HAUIs
in incremental databases and in data streams. Besides, with the
rapid growth of information technology, it is also a critical issue
to mine HAUIs in big data.
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