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In construction environments, laser-scanning technologies can perform rapid spatial data collection to
monitor construction progress, control construction quality, and support decisions about how to stream-
line field activities. However, even experienced surveyors cannot guarantee comprehensive laser scan-
ning data collection in the field due to its constantly changing environment, wherein a large number
of objects are subject to different data-quality requirements. The current practice of manually planned
laser scanning often produces data of insufficient coverage, accuracy, and details. While redundant data
collection can improve data quality, this process can also be inefficient and time-consuming. There are
many studies on automatic sensor planning methods for guided laser-scanning data collection in the lit-
erature. However, fewer studies exist on how to handle exponentially large search space of laser scan
plans that consider data quality requirements, such as accuracy and levels of details (LOD). This paper
presents a rapid laser scan planning method that overcomes the computational complexity of planning
laser scans based on diverse data quality requirements in the field. The goal is to minimize data collection
time, while ensuring that the data quality requirements of all objects are satisfied. An analytical sensor
model of laser scanning is constructed to create a ‘‘divide-and-conquer” strategy for rapid laser scan plan-
ning of dynamic environments wherein a graph is generated having specific data quality requirements
(e.g., levels of accuracy and detail of certain objects) in terms of nodes and spatial relationships between
these requirements as edges (e.g., distance, line-of-sight). A graph-coloring algorithm then decomposes
the graph into sub-graphs and identifies ‘‘local” optimal laser scan plans of these sub-graphs. A solution
aggregation algorithm then combines the local optimal plans to generate a plan for the entire site.
Runtime analysis shows that the computation time of the proposed method does not increase exponen-
tially with site size. Validation results of multiple case studies show that the proposed laser scan planning
method can produce laser-scanning data with higher quality than data collected by experienced
professionals, and without increasing the data collection time.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Timely, detailed, and accurate geometrical information for deci-
sion making will improve the safety, quality, and productivity in
construction projects [1,2]. Reliable sensing methods and compre-
hensive data collection are, therefore, requisite and highly desir-
able in construction management environments. Compared with
conventional data collection methods such as laser tapes and the
Global Navigation Satellite System, laser scanning technologies
have many advantages that include high accuracy (mm level),
faster data acquisition (up to hundreds of thousands of
three-dimensional points per second), and more detailed spatial
resolution [3–6]. Researchers and project engineers, thus, have
been actively exploring the uses of laser scanning technology in
construction.

The use of laser scanning in the construction field, however,
comes with its own set of challenges. First, acquiring high quality
3D imagery data within the parameters of changing jobsites and
diverse projects is challenging even for experienced engineers, pri-
marily because data quality, environmental conditions, scanning
locations, and the technical parameters of laser scanners (e.g., data
density options) all combine to create complex interactions [7].
Second, 3D imagery data collection is time-consuming, and in a
fast changing construction environment, the data can become
quickly outdated, which leads to misleading information for deci-
sion makers. Finally, when using sophisticated 3D imagery data
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collection, project managers must hire experienced surveyors who
can properly operate laser scanners and achieve high quality data
collection, which can be costly [8,9].

To overcome the above challenges, this paper describes the
development of a new automatic laser scan planning method. For
a given jobsite, the objective is to determine a laser scan plan by
specifying a sequence of scanning positions and parameters at each
position as a means to minimize the data collection time while
optimize the coverage and quality of the data. A fast and reliable
laser scan planning method can thus save costs related to: (1) poor
decision-making due to low-quality data; (2) interruptions in con-
struction processes caused by data collection activities; and (3)
training and hiring laser scanning professionals for high-quality
data collection.

This paper attempts to address three questions that have
remained unresolved in previous studies about the laser scan plan-
ning problem in construction:

(1) how to quantify and model the relationship between 3D
imagery data quality and data collection parameters to
develop a planning algorithm that uses the quantitative rela-
tionship for guiding the generation and assessment of laser
scan plans [10];

(2) how to explore the extremely large search space of laser
scan plans in the limited time of decision-making in the con-
text of dynamic environments [11,12];

(3) how to achieve scalability of laser scan planning so that
engineers can apply the same scan planning method to sites
of different shapes and sizes [13].

To address the first question, we develop a 3D-imaging sensor
model that shows the mathematical relationship between 3D data
collection parameters and spatial data quality. To explore the sec-
ond question, we propose a ‘‘divide-and-conquer” planningmethod
for achieving efficient optimization of laser scan plans. To ensure
the scalability of this laser scan planning method (question 3), the
divide-and-conquer method adaptively adjusts its parameters
according to building size and shape to produce reliable laser scan
plans.

The organization of the paper is as follows: Section 2 introduces
previous studies about laser scan planning, while highlighting the
contributions of this paper. Section 3 provides a problem state-
ment and a discussion of the three research questions. Section 4
describes the laser scan planning method. Section 5 validates the
developed laser scan planning method using case studies on real
buildings. Sections 6 and 7 present validation results, the conclu-
sion, and future research plans.
2. Background studies

Previous studies have stressed the importance of efficient and
effective construction inspection using laser-scanning technolo-
gies. Akinci et al. [7] and Gordon et al. [11], for example, discuss
how manual inspection could miss important site changes and
defects, while the use of laser scanning could improve construction
inspection through the delivery of timely and comprehensive as-
built data. Turkan et al. [6] emphasize the need for effective laser
scan planning to achieve effective construction progress control.
Park et al. [14] illustrate the need for the best practices in collect-
ing, searching, and reusing defect information for construction
quality control in the field.

While construction industry practitioners acknowledge the
importance of laser scanning, they are also confronted with the
many obstacles that prevent both the effective and efficient use
of laser scanning in construction [15–17]. One such obstacle is
related to acquiring high quality 3D imageries for field applications
[14]. Since 3D image quality greatly influences as-built Building
Information Model (BIM) quality [18–20], examining quantitative
relationships between data quality, scanning locations, and envi-
ronmental factors become critical to the overall process [10,21–
25]. In this context, manually reviewing a large number of such
relationships is a challenging task, even for experienced engineers.
In addition, manual data quality checks of numerous objects on
jobsites against data quality requirements is tedious and error-
prone [13]. This second obstacle is the difficulty of optimizing data
collection time while minimizing interferences from the data col-
lection and productive activities [7,11,26]. It has been shown, for
example, that a badly designed workflow may need up to 300%
data collection time when compared to a standard workflow for
the same laser scanning task [26]. Yet another obstacle relates to
the high cost of training and hiring laser scanning professionals
[8,27]. Eid et al. found that the cost of laser scanning for the eval-
uation of forest inventory is approximately twice the cost of using
photogrammetry [8].

Effective laser scan planning methods are lacking in the litera-
ture to date. Many existing studies focus on occlusion and visibility
analysis for capturing the entire surface of a targeted object, but
these studies lack detailed analysis of data quality [28–33]. Most
are marked by high computational complexities that result in long
computation times when generating laser scan plans [12,28,34].
Finally, the current array of studies fail to use flexible scanning
parameters for each scanning position, according to varying data
quality requirements of different objects [12,13,29,35]. Lack of
flexibility can potentially lead to unnecessary planning computa-
tion time as well as redundant data collection. In a recent study
by Ahn et al. [35], a semi-automatic scan planning method was
used to decide the scanning position for achieving horizontal data
quality requirements. However, it required manually selecting the
same scanning resolution for all scans, thus failing to identify
optimal plans that could have mixed use of scans with different
resolutions. In addition, the proposed semi-automatic method
was not able to handle buildings with curve-shaped walls.

The research methodology presented below will address this
gap in order to improve the quality of field laser scanning signifi-
cantly in dynamic construction environments.
3. Problem statement

The goal of laser scan planning is to create a method that can
automatically generate laser scan plans for efficient collection of
high quality 3D imageries of a given jobsite. The generated laser
scan plans should achieve the following:

(1) The laser scan plans should specify scanning positions and
parameters at those positions, so that an engineer with
limited surveying experiences can rapidly collect compre-
hensive 3D imagery details of the jobsite with sufficient
accuracy.

(2) Following the laser scan plan, the engineer should be able to
achieve optimal data collection time to minimize the inter-
ferences between data collection and construction
workflows.

(3) The time for generating a laser scan plan should be less than
a few minutes in order to satisfy the dynamics of a construc-
tion jobsite.

Fig. 1 shows an IDEF0 process model describing the laser scan
planning problem. The inputs of the IDEF0 process model are point
goals, which include objects of interest or geometric features. Sec-
tion 4.1.1 details the representations of point goals. The outputs of



Fig. 1. IDEF0 process model of the laser scan planning method.
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the IDEF0 are scanning positions and parameters, such as angular
scanning resolutions that determine the 3D data point intensities.
The controls of the IDEF0 process model include:

(1) Data quality requirements: For 3D imagery data, engineers
require a certain level of accuracy (LOA, which indicates
the measurement error) and level of detail (LOD, which
measures the data density). The LOD requirement of laser
scanning data in presented in Section 4.1.2.

(2) Sensor model: An analytical sensor model describes the geo-
metric principles of laser scanning, such as the relationship
between laser scanning parameters and the point density
of a laser scanning data. Given a sensor model, one can
derive the scanning positions and the parameters at each
position (e.g., angular resolution) to meet the data quality
requirement (LOD). We use the concept of ‘‘feasible space”
to visualize recommended data collection locations accord-
ing to 3D data quality prediction based on a sensor model.
Sections 4.1.3 and 4.1.4 present the sensor model developed
in this research, and methods to utilize them for deriving
feasible spaces of 3D data collection.

(3) Schedule, budget, and space limits of a jobsite: These
controls specify the spatiotemporal requirements of con-
struction activities on a construction site, as well as cost
information for quantifying the losses due to interferences
between data collection and field activities.

Based on the IDEF0 model, we formulate here an optimization
model of laser scan planning (Section 4.1.5). However, solving this
optimization model is computationally expensive and challenging
due to the exponentially large combinations of possible scanning
locations and parameter values. For example, for a given a jobsite
of 5000 m2, the optimization model consists of more than 1500
constraints, 10,000 possible scanning positions, and 1060 calcula-
tions for solving this model with enumeration.

To shorten the calculation time, we propose a ‘‘divide-and-con
quer” method to calculate the laser scan plan in a computationally
efficient way. First, an algorithm is used to divide the overall con-
struction site into several parts so that the large-scale optimization
problem becomes smaller problems that require significantly
fewer computations (Section 4.3). For each part of the construction
site, the algorithm generates a laser scan plan and examines
whether the correct execution of the plan could still result in any
missing data (Section 4.4). Finally, the algorithm generates laser
scan plans for addressing portions that are still missing (if there
are any) in generated plans for parts of sites; it then combines
the scan plans of all parts of the site together to form a complete
laser scan plan for the entire site (Section 4.5).
4. Research methodology

4.1. Technical concepts related to a laser scan planning problem

4.1.1. Point goals on construction sites
Inspection goals are targets of construction inspection for

various purposes, such as progress monitoring, site analysis, and
quality control [11]. This study uses ‘‘point type” inspection goals
(termed ‘‘point goals” hereafter) as the inputs of the laser scan plan-
ning method. The term ‘‘point goal” can be defined as important
points that represent geometric information, e.g., the corners of a
wall. For instance, if an engineer acquires precise midpoint and
endpoint positions (considered as point goals) of a beam using laser
scanning data, he or she can easily derive the length and deforma-
tion of this beam from point goals. We plan to analyze how point
goals influence other types of inspection goals in future studies.

The purpose of identifying point goals on a construction site is
to achieve a computationally efficient analysis of a site for rapid
scan planning. Blaer et al. [12] used 1 m3 cubes termed as ‘‘voxels”
to represent the 3D model of a large jobsite during laser scan plan-
ning. However, this study found that such representation would be
computationally expensive because the number of voxels grew
exponentially with the size of the jobsite. On the other hand, the
number of point goals can be around 100–200 depending on the
number of objects on site, much less than the number of voxels.
Handling point goals thus will consume considerably less compu-
tational time than processing voxels.

Point goals contain two elements of information necessary for
laser scan planning: (1) coordinates of points and (2) the normal
vector of the surface where a point goal locates. The latter indicates
the direction from which laser scanners can capture the point goal
[36–38]. The proposed laser scan planning method will conduct
visibility checks of point goals, requiring both locations and surface
orientations of point goals, as detailed in Section 4.3.2.

4.1.2. Level of Detail (LOD) of a point cloud
Level of Accuracy (LOA) and Level of Detail (LOD) are data qual-

ity requirements of point clouds. LOA represents the tolerance of
positioning and dimensional errors, while LOD measures the data
density within the neighborhood of each point goal in a point
cloud. In this paper, the focus is on laser scan planning based on
LOD requirements; LOA aspects will be studied in the future. In
practice, different point goals can have different LOD requirements.
For example, dense data may not be needed for simple geometries
(e.g. flat walls). Instead, LOD may need to be increased for complex
shapes, such as edges, openings, and decorations. Insufficient LOD
causes missing details in data for further data processing and
modeling, while excessively high LOD causes extra time and effort
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in data collection. As a result, if engineers specify LOD requirement
for each point goal, they can collect 3D imageries containing all
required geometric information while avoiding unnecessary dense
data, which contributes to wasted time in data collection and
processing.

At present, there is no widely accepted definition of LOD for 3D
point clouds. Generally, researchers use two different methods to
quantify LOD of point clouds. Dai et al. [9] use the number of points
in a unit area (e.g., 1 cm2, 1 m2, etc.) to define the data density.
MacKinnon et al. [39] assume that the laser source of a scanner
rotates vertically to generate ‘‘scanning lines,” such that the dis-
tance between two adjacent points along a vertical scanning line
is a measurement of the data density along the vertical direction.
In addition, the laser source also rotates horizontally to create
scanning lines to form a 3D image. The distance between neighbor-
ing scanning lines defines the data density along the horizontal
direction. This study defines LOD similar to MacKinnon et al.
[39]. The vertical LOD (LODv) is the distance between a point and
the next scanned point, and the angular resolution dv is the differ-
ence between the elevation angles of these two adjacent points on
a vertical scanning line. Horizontal LOD (LODh) is the distance
between two adjacent scanning lines, and the angular resolution
dh is the difference between the azimuths of the two adjacent scan-
ning lines. For normal laser scanners, dh ¼ dv � d.

4.1.3. 3D feasible space
The laser scan planning algorithm needs to generate scanning

parameters (scanning positions, angular resolutions at those posi-
tions) that can ensure acquiring 3D point cloud data with required
LOD for all point goals. Therefore, it is essential to understand the
geometric relationship between the data collection parameters and
the densities of collected point clouds. In this paper, we define a
‘‘3D feasible space” as the set of scanning positions where a laser
scanner can scan a point goal with required LOD using a defined
angular resolution. Mathematically, a 3D feasible space Si of point
goal i is the set of positions ðx; y; zÞ in 3D space that satisfy:

Si ¼ ðx; y; zÞjshðx; y; z; dÞ < LODh; svðx; y; z; dÞ < LODvf g ð1Þ
where d is the angular resolution of the laser scanner; sv is vertical
surface sampling distance along the scanning line [10] and sh is the
horizontal surface sampling distance, which is the spacing between
adjacent scanning lines. If the scanning position is within the 3D
feasible space Si of point goal i using angular resolution d, the col-
lected point cloud of point goal i will satisfy the horizontal LOD
(LODh) and vertical LOD (LODvÞ.

Fig. 2 shows the geometric principle of horizontal/vertical sur-
face sampling distance of a laser scan. Without losing generality,
we set the coordinate of the point goal as ð0;0;0Þ, the normal vec-
tor of the surface as ð0;1;0Þ, and the coordinate of the laser scanner
as ðx; y; zÞ. In order to derive the mathematical representation of
the 3D feasible space of the point goal at (0, 0, 0), we derive the
mathematical representations of sampling distances along vertical
and horizontal directions:

sv ¼ dD
cosiv

¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ffiffiffiffiffiffiffiffiffi
x2þy2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2
p

¼ dðx2 þ y2 þ z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ;

sh ¼ dD
cosih

¼ dðx2 þ y2 þ z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p

where D is the laser traveling distance; ih and iv are the horizontal
and vertical incidence angle, respectively. The horizontal and verti-
cal surface sampling distance in the point cloud around a point goal
should satisfy the horizontal and vertical LOD requirement:

sh 6 LODh; y > 0 ð2Þ
sv 6 LODv ; y > 0 ð3Þ
Fig. 3(a) and (b) presents the space consisting of all scanning posi-
tions that enable Eqs. (2) and (3), respectively. In practice, the data
within the neighborhood of a point goal should satisfy both vertical
and horizontal LOD requirements. As a result, the 3D feasible space
of a point goal should be the intersection of these two 3D feasible
spaces, as shown in Eq. (4) and visualized in Fig. 3(c).

Si ¼ ðx; y; zÞj
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
� LODv

2d Þ
2 þ x2 6 LODv

2d

� �2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� LODh

2d Þ
2 þ z2 6 LODh

2d

� �2

y > 0

8>>><
>>>:

9>>>=
>>>;

ð4Þ
4.1.4. 2D feasible area
A 2D feasible area is the horizontal cutting area of a 3D feasible

space at the height of the selected laser scanner. If a surveyor
installs the laser scanner on the ground, then the 2D feasible area
of point goal i (Ai) should show the scanning positions on the
ground to scan the point goal iwith LOD requirements, as shown in

Fig. 3(d) and described in the equation below:

Ai ¼ ðx; yÞjshðx; y; dÞ < LODh; svðx; y; dÞ < LODvf g
where sv is the vertical surface sampling distance; sh is the horizon-
tal sampling distance; d is the angular resolution (see 3.2.3). Consid-
ering a case where all point goals are on the surface perpendicular to
the ground, such as points on a vertical wall, we set up the laser
scanner position as ðx; y;DhÞ, where Dh is the vertical distance
between the point goal and the laser scanner. Themathematical rep-
resentation of the 2D feasible area of a point goal is as Eq. (5) below.

Fig. 3(e) visualize this 2D feasible space.

Ai ¼ ðx; yÞj

dðx2þy2þDh2Þffiffiffiffiffiffiffiffiffiffiffiffi
y2þDh2
p 6 LODh

dðx2þy2þDh2Þffiffiffiffiffiffiffiffiffi
x2þy2
p 6 LODv

y > 0

8>>>><
>>>>:

9>>>>=
>>>>;

ð5Þ

The set Ai in Eq. (5) should not be an empty set; otherwise, no posi-
tions can achieve the required LOD for point goal i. To guarantee
that Ai is non-empty, d, Dh, LODh, and LODv should meet certain
requirements described in Eq. (6):
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Fig. 3. 3D feasible space and 2D feasible area. (a) shows 3D feasible space of horizontal LOD of a point goal; (b) shows the 3D feasible space of vertical LOD of a point goal; (c)
shows the 3D feasible space of a point goal with the wall where the point goals is on, which is the intersection of (a) & (b); (d) shows the intersection of 3D feasible space and
the horizontal plan passing laser source; (e) is the 2D feasible area generated by process (d).
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Dh � d 6 dðx2þy2þDh2Þffiffiffiffiffiffiffiffiffiffiffiffi
y2þDh2
p 6 LODh

2Dh � d 6 dðx2þy2þDh2Þffiffiffiffiffiffiffiffiffi
x2þy2
p 6 LODv

8><
>: ) d 6 min

LODv

2Dh
;
LODh

Dh

� �
ð6Þ

The maximum value of d that satisfies Eq. (6) will be the sparsest
resolution dsparsest qualified to capture a certain point goal with the
required LOD. Otherwise, the feasible spaces of these points could
have no intersections with the horizontal plane passing through
the laser source, so that no positions on the ground could achieve
the required LOD for the considered point goal.

4.1.5. Optimization model of the laser scan planning problem
This section uses an optimization model to show the computa-

tional complexity of solving the laser scan planning problem. The
decision variables of this optimization model are:

(1) The number of scans needed is k. When solving the opti-
mization model, the optimal number of scans needed for
the entire jobsite is unknown. As a result, we will try differ-
ent iterations of k increasing from 1 to m, where m is the
possible upper limit of the number of scans.

(2) Angular resolution of the scanner resolutionj;k, which is the
scanning angular resolution used at the scanning position j
when the total number of scans is k.

The objective function of the optimization model is the scan-
ning time T:

Min : T ¼
Xk

j¼1
Tðresolutionj;kÞ; j 6 k; k 6 m ð7Þ

where Tðresolutionj;kÞ is the scanning time of the jth scan, a function
of resolutionj;k.
The constraints of this optimization model (Eq. (8)) should be
that at least one scan exists within the feasible area of every point
goal. In these constraints, six parameters form the representation of
a point goal: ½xi; yi; zi; xoi; yoi; LODi�. ðxi; yi; ziÞ represents the
coordinates of point goal i. The number of point goals is n. ðxoi; yoiÞ
represents the unit normal vector of the surface where point goal
i locates. This is because this study assumes that all point goals
are on flat surfaces perpendicular to the ground (i.e., vertical walls).
LODi represents the level of detail requirements of i. h is the height
of the laser scanner. In addition, ½x�; y�� is the horizontal coordinates
of scanning position in the local point goal coordinate system,
which has the origin at point goal i, y-axis is the normal vector of
the surface where point goal i locates, and z-axis is the zenith direc-
tion. ½xj;k; yj;k� is the horizontal coordinate of the scanning position j

in the global coordinate system. sj;ki shows whether the scan at

scanning position j covers point goal i. When sj;ki ¼ 1, the scan at
scanning position covers the point goal i with sufficient LOD with
the angular resolution dj;k when the number of scans is k.

sj;ki ¼
1; if

ðx�2þy�2þðh�ziÞ2Þdj:kffiffiffiffiffiffiffiffiffiffiffiffi
x�2þy�2
p 6 LODi

ðx�2þy�2þðh�ziÞ2Þdj;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y�2þðh�ziÞ2
p 6 LODi

xj;k
yj;k
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>>>>>>:
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8>>>>>>>>><
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Assuming that 10,000 possible scanning positions and 200 point
goals are in the whole jobsite. Also, the maximum number of scans

necessary is 20. We need to solve 200� 3�P20
k¼1C

k
10000 � 9 ¼

2:182 � 1065 (‘‘9” is the number of resolution options available from
the laser scanner) inequalities and equations to find the solution
using exhaustive searching, which is infeasible using any existing
computing platform. We thus explore a new approach for solving
such a large-scale optimization problem in a more efficient way,
namely, the ‘‘divide-and-conquer” approach, as described in the fol-
lowing section.

4.2. Overview of the ‘‘divide-and-conquer” method

In order to reduce the computational complexity of the opti-
mization problem described in the previous section, the laser scan
planning algorithm developed in this study first divides the jobsite
into parts. It generates a laser scan plan for each part of the jobsite,
and then combines the solutions of these jobsite parts into a com-
prehensive laser scan plan for the whole jobsite. We term this
approach as the ‘‘divide-and-conquer” method of laser scan
planning.

The inputs of this divide-and-conquer method are point goals.
Field engineers can derive point goals from as-designed models
of jobsites, field photos, or sparse 3D imageries. Specifically, some
studies generate point goals based on as-designed building infor-
mation models [7]. Some image analysis methods can identify
parts of the images where detailed spatial data is necessary, such
as parts that have discontinuities of color and changes in curva-
tures [40]. Given point goals extracted from various data sources,
the proposed algorithm can then automatically generate the laser
scan plan through three steps, as shown in Fig. 4:
a 

Scan 1a Scan 1b Scan 2b Scan 2a

Scan 3Scan 4
c 

Fig. 4. A framework of divide-and-conquer method of laser scan planning. (a) Top vie
Determine scanning positions in each cluster. Some scans may only cover a few point go
the blue group) so that adding them into the plan would actually cause redundancies. (d)
scans as the ‘‘garbage”, and determine scanning positions and resolutions for the ‘‘garba
1. Clustering the point goals into different clusters according to
contradicting visibility relationship analysis (Section 4.3,
Fig. 4b):

Different areas on a jobsite may require different LODs, leading
to different angular resolution requirements. If the algorithm con-
figures scanning resolution for each individual point goal, the com-
putational complexity of the algorithm will be high. On the other
hand, if the algorithm configures the angular resolution for all
point goals as a whole, the imaging plan will always satisfy the
most LOD-demanding point goals, and thus waste time on generat-
ing unnecessary dense data for point goals that require lower LODs.
Instead of using the above two inefficient planning strategies, the
divide-and-conquer method will first cluster point goals that have
similar LOD requirements and locate close to each other and then
determine laser scanning positions and resolution for each
clusters.

Overall, the algorithm automatically detects whether a single
scan is able to capture two point goals with sufficient data quality,
termed as the ‘‘contradicting visibility relationship” between two
goals. Then the algorithm groups all point goals that have no con-
tradicting visibility relationship with each other into one cluster, so
that the number of clusters is the minimum number of necessary
scans to satisfy the data quality requirements of all point goals.

2. Determining scanning positions and resolutions for clusters
of point goals to satisfy the data quality requirements
(Section 4.4, Fig. 4c):

Within each cluster, the algorithm first derives the feasible area
(discussed in Section 4.1.4) for every point goal. The algorithm then
b 

Scan 1 Scan 2

Scan 3Scan 4

Scan 5

d 

w of all point goals of a building. (b) Clustering the point goals into clusters. (c)
als at the borders between clusters (e.g. scan 1b in the orange group and scan 2b in
Identify point goals that are at the borders between clusters and causing redundant
ge”.
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determines the minimum scanning positions according to the fea-
sible areas, ensuring the coverage of all point goals in the current
cluster. Some scans may only cover a few point goals at the borders
between clusters (e.g., scan 1b in the orange group and scan 2b in
the blue group in Fig. 4c) so that adding them into the plan would
actually cause redundancies. The algorithm thus ignores any scans
that only cover a small portion of total point goals in order to
address most point goals with least number of scans to improve
scanning efficiency. In the next step, the planning algorithm will
address those missed point goals through a ‘‘garbage collection”
step.

3. Addressing point goals not covered by the laser scan plan
through ‘‘garbage collection” (Section 4.5, Fig. 4d)

After determining scanning positions and the angular resolution
for each cluster of point goals, the algorithm identifies point goals
at the borders between clusters and assigns redundant scans as the
‘‘garbage”. The algorithm then combines these point goals into a
new cluster, thereby determining the angular resolution and posi-
tions of this new cluster. This particular algorithm is named as
‘‘garbage collection” in this paper. Finally, the algorithm combines
all scanning positions and their respective angular resolutions to
form the laser scan plan based on plans that address clusters of
point goals.
4.3. Divide: clustering of point goals

The proposed laser scan planning method uses two levels of
simplification to reduce the computational complexity. The first
level of simplification generates point goals to represent critical
information requirements across the whole jobsite. The second
level of simplification clusters point goals to decompose the jobsite
into parts, and generates laser scan plans for each cluster of point
goals, which are parts of the jobsite. The objective of point goal
clustering is to divide them into the minimum number of clusters
so that the planning method would consider fewer clusters, while
having as many possible point goals within one cluster that are vis-
ible to a single scanning position. This enables the algorithm to
choose the optimal scanning position and resolution for the point
goals in each cluster. Therefore, the method strives to minimize
the number of scans for covering all point goals, thereby improving
the overall computational efficiency.

Fig. 5 shows that the clustering algorithm uses several rules to
assess whether every pair of point goal is visible at certain scanning
positions, hereby termed as ‘‘contradicting visibility relationship.”
For example, if two point goals are on two sides of a wall, the
visibility of these two points contradicts with each other. Another
example of contradicting visibility relationship is two point goals
that are too far away from each other. The rules assessing the con-
tradicting visibility relationship of point goals (Section 4.3.2)
involve three variables: (1) the angle between the surface
Featured 
length (4.3.1)

Distance between 
two point goals

Contradicting visibility relationship of point 
goals (4.3.2)

Clustering of point goals 
(4.3.3)

Angle between the surface 
orientation at two point 

goals

Fig. 5. Overview of the point goals clustering algorithm.
orientation at two point goals, (2) the distance between two point
goals, and (3) ‘‘featured length” of the jobsite determined by the
elevation and LOD of all point goals (Section 4.3.1). Knowing
the contradicting visibility relationship of any pair of point goals,
the clustering algorithm is able to cluster point goals without con-
tradicting visibility relationship into the same cluster, in order to
obtain the minimum number of clusters. Section 4.3.3 presents
the algorithm of clustering point goals according to the visibility-
contradict assessment rules.

4.3.1. Featured length
Generally, the clustering algorithm will cluster all the point

goals that one single scan can possibly cover. The clustering algo-
rithm thus needs to determine the likelihood of capturing certain
point goals in one scan. The ‘‘featured length” of a building facade
is the horizontal range that one single scan will cover using the
sparsest angular resolution that can secure all goals on the façade
with the required LOD, which is equal to the width of the 3D fea-
sible space of the point goal requiring the densest scanning resolu-
tion. If the distance between two point goals is longer than the
featured length, a sparse scan will not capture both goals, and
increasing the data density will cause significant increase in scan-
ning time.

Fig. 6 demonstrates the geometric concept of featured length.
The distance between point goals A and B in Fig. 6(a) is 15 m, while
the distance between point goals A’ and B’ in Fig. 6(b) is 25 m. A
and B are 4 m above the height of the laser scanner, while A’ and
B’ are 24 m above the scanner. The LOD requirements of all four
goals (A, B, A’, B’) are 0.025 m. Among all the point goals in the
building shown in Fig. 6(a), A and B require the densest scanning
resolution to meet the LOD requirement because of their elevation.
According to Eq. (6) in Section 4.1.4, engineers need to choose the
scanning angular resolution of 2:51� 10�3 rad to scan the wall
that AB is on in order to satisfy the LOD requirements. In the point
cloud of the wall, the horizontal range with required LOD is equal
to the width of the 3D feasible space of the point goal A or B, which
is around 4.97 m. We identify this length as the featured length of
the building in Fig. 6(a). Similarly, the featured length of building
(b) is l’ = 39.78 m because engineers need to use a much denser
angular resolution of 3:14� 10�4 rad to scan A’ and B’. Therefore,
AB > 3l while A’B’ < l’, which means that it is efficient to scan point
A’ and B’ in a single sparse scan in (b), while it is not necessary to
cover A and B in one scan in (a) because that needs denser scanning
that significantly increases the data collection time. Section 4.3.2
will show more details about how featured length will help the
grouping of point goals.

The first step of deriving the featured length is to determine the
sparsest angular resolution that can cover any point goal on all
facades of the building on the jobsite with required LOD, djobsite,
which relates to the elevation and LOD of each point goal:

djobsite ¼ minðdsparsest;iÞ; i ¼ 1;2;3 . . .n

where

dsparsest;i 6
LODi

2Dhi

where n is the number of point goals at the jobsite, and i refers to
any point goals at the jobsite. dsparsest;i is the sparsest resolution
applicable for point goal i, and Dhi is the vertical distance between
point goal i and the laser scanner (Section 4.1.4).

The second step in deriving the featured length l is determining
the range that one single scan can cover based on djobsite and the
LOD of the point goals that need to be scanned with djobsite:

l ¼maxðLODj=ð2dsparsest;jÞÞ; j 2 ðjjdsparsest;j ¼ djobsiteÞ
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Fig. 6. Comparison between point goals of buildings with different feasible length. Yellow shades indicate the approximate range one laser scan can cover with required LOD
using an adequate angular resolution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.3.2. Contradicting visibility relationship analysis using featured
length and orientations

Contradicting visibility relationship analysis determines the
likelihood of having one scan cover two point goals with required
LOD. This also means the possibility of having the 3D feasible
spaces of two point goals intersect. Instead of calculating the 3D
feasible spaces of all point goals and then checking for overlaps,
which is time-consuming, this approach will instead calculate
the contradicting visibility relationship using a fast and approxi-
mate approach. The inputs of the contradicting-visibility-relation
ship analyzing algorithm include the distances between pairs of
point goals, angles between the surface orientations at pairs of
point goals, and the featured length of the jobsite. In the clustering
stage, the algorithm assumes the angular resolution used as djobsite
(defined in 4.3.1). This algorithm utilizes an extensive library that
contains a number of visibility-contradict analysis rules generated
from geometric relationships of 2D feasible areas of point goals and
experimental results. The following rules are some examples
selected from this library:
1. Fig. 7 (a) shows two point goals, A and B, and the possible outer
boundaries of their feasible areas, which are the projections on
the x–y plane of the 3D feasible spaces of these two point goals.
Fig. 7(a) shows that if the distance between A and B is larger
than four times of the featured length l, then the two point goals
contradict in visibility. Hence, it is not efficient to use unneces-
sarily high scan resolution to cover distance goals, A and B, in
the same scan, because other areas covered in this scan will
be over sampled. No matter what the orientations of point goal
A and B are, it is impossible for the feasible spaces to intersect
with each other if the distance between A and B is larger than 4
times the featured length.

2. Fig. 7(b) shows two point goals that have the surfaces between
them form a 90-degree angle. According to the geometric rela-
tionship of two feasible areas of point goals shown in Fig. 7(b), if
the distance between A and B is larger than ð2þ

ffiffiffi
2
p
Þ times of

the featured length l, and the angle between the surfaces at A
and B varies from 90 to 180 degrees, then the two point goals
have contradicting visibility relationship. If the distance
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Fig. 8. Point goal clustering algorithm. (a) Top view of all point goals in a jobsite. (b) One clustering result shown by color and shape of points. This result involves the first
rule of point goal clustering (visibility contradict). The number of clusters is the minimum but the points in the same cluster are more sparsely distributed. (c) Optimized
point goal clustering result. This clustering result has a minimum number of clusters, and point goals in the same cluster are close to the geometric center of the cluster.
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increases or the angle decreases, then it is impossible for the
two feasible spaces to intersect with each other.

3. Fig. 7(c) shows two surfaces with 305-degree angles and close
to each other. If the angle between the surfaces at A and B
was between 305 and 360 degrees, then the two point goals
have contradicting visibility relationship. One example is that
two point goals are on two sides of a wall. In this case, the ori-
entation angle of two point goals is 180 degrees. If two point
goals are close enough, their feasible area may intersect.
However, this case is very rare in actual jobsites. Therefore,
two point goals are in contradicting visibility relationship as
long as the angle of the surface is larger than 305 degrees.

4. Fig. 7(d) shows that two point goals A and B are occluded by an
object, which has point goals A’ and B’ on its two sides. In prac-
tice, A is often occluded by the object when B is visible, and vice
versa. Therefore, A and B have a contradicting visibility relation-
ship due to the occlusion of the object between A and B.
Furthermore, such an object between A and B often contains
point goals with contradicting visibility relationships, shown
in rule 3 (A’ and B’ in Fig. 7d). As a result, this rule means that
A and B have a contradicting visibility relationship if: 1) two
point goals (A and B) are ‘‘close” to another pair of point goals
(A’ and B’) with contradicting visibility relationship described
in (3); and 2) the distance AB is greater than A’B’. Here, ‘‘close”
is defined as ‘‘the length of AA’ (or BB’) in x–y plane is less than
10% of the featured length.”

4.3.3. Clustering of point goals
The clustering algorithm will group all point goals that satisfy

two conditions. The first condition is that the point goals without
contradicting visibility relationships are in the same clusters while
ensuring the least possible number of clusters. The second condi-
tion is that the point goals in the same cluster should be close to
the geometric center of the cluster.

The first clustering condition uses the following statement: n
vertices are in a graph to represent n point goals; an edge connects
two vertices if they are contradicting in visibility. The algorithm
will label two connected vertices as different colors to indicate that
they belong to different clusters. So the least number of colors
needed to color the whole graph, called the ’chromatic number’
of the graph [41], is the smallest positive integer k that allows
the algorithm to partition the set of point goals into k parts
containing point goals not contradicting with each other. Vertices
coloring is a heavily discussed topic in modern graph theory and
there are multiple coloring algorithms available in the literature
[42–44]. The clustering algorithm uses the greedy coloring algo-
rithm, which considers the vertices of the graph in sequence and
assigns each vertex its first color without contradiction [43]. The
‘‘divide” algorithm will run greedy coloring algorithm repeatedly
and choose a clustering result with the minimum number of clus-
ters as the starting point for further optimization of clustering
result. Fig. 8(a) and (b) shows the clustering of point goals accord-
ing to the first clustering condition.

The result of the coloring of graph nodes using a greedy algo-
rithm is not unique [43]. There could be multiple clustering results
achieving the same minimum number of clusters. Therefore, the
‘‘divide” algorithm will further improve the clustering results
according to the second clustering condition. Without losing gen-
erality, a clustering result has k clusters, and a cluster i has ni point
goals. In one cluster, the performance index of clustering results is
the sum of the square distance between point goals and the geo-
metric center of clusters:

C ¼
Xk

i¼1

Xn
j¼1
½ðxji � xciÞ2 þ ðyji � yciÞ2� ð9Þ

where xji and yji are the (x, y) coordinates of the jth point goal in
cluster i, respectively. xci and yci are the (x, y) coordinates of the cen-
ter point of cluster i, respectively.

Based on the clustering result that satisfies the first clustering
condition (Fig. 8b), the divide algorithm will iteratively improve
the result by moving the point goals between clusters to minimize
C defined in Eq. (9), keeping the point goals having contradicting
relationship in different clusters (the first clustering condition).
Fig. 8(b) and (c) shows the algorithm for improving the
performance of the clustering result. The result shown in Fig. 8c
is different from the starting point (Fig. 8b), because of moving
point goals between clusters to minimize C.
4.4. Conquer: generating laser scan plans for clusters of point goals

After clustering point goals, the algorithm will generate a laser
scan plan for each cluster called the ‘‘conquer” algorithm. These
laser scan plans for clusters are thus parts of a complete laser scan
plan that covers the whole jobsite. The pseudo code of the conquer
algorithm below shows the process of scanning position detection
and resolution configuration in each cluster.
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This algorithm of generating ‘‘local” plans includes four steps:
first, the ‘‘conquer” algorithm will set a sparse angular resolution
value for initializing the generations of feasible spaces of point
goals within a cluster. Second, the ‘‘conquer” algorithm will
generate scanning positions according to the feasible areas, called
‘‘next-best-view” algorithm [13,45,46]. Third, the algorithm will
progressively densify the angular resolutions and repeat step 2,
and then compare the total scanning time of the plans generated
based on different angular resolution values. In this way, the ‘‘con-
quer” algorithm will find the most time-efficient combination of
scanning resolution and positions for this cluster of point goals.
In the fourth step, the algorithm will identify the point goals that
were ignored by the ‘‘next-best-view” algorithm, for the algorithm
ignores a percentage of total point goals when scanning those
single goals can significantly increase the data collection time.
Parameter ‘‘a” is the function of the number of clusters, the highest
resolution used in all clusters, and the resolution determined in the
current cluster. For example, in one of the case studies, the algo-
rithm ignored two point goals in one cluster, which is less than
1% of total point goals. If the algorithm planned a scan for the
ignored point goals, the total scanning time would have increased
by about 10%.

The outputs of this algorithm of generating laser scan plans for
clusters of point goals include the scanning positions and the cor-
responding angular resolutions, as well as the ‘‘garbage” - point
goals that remain un-scanned in the current cluster. Section 4.5
presents a garbage collection algorithm that addresses these
remaining point goals.
Pseudo code of the ‘‘Conquer” algorithm
1:
 Input: point goal information in one cluster

2:
 Output: Scanning positions in the cluster; scanning

resolution; point goals un-scanned

3:
 resolution  sparsest_resolution_in_current_cluster //

set initial value of scanning resolution

4:
 [scanning_position]  next_best_view(pointgoals,

resolution) // Use next-best-view algorithm to generate
the scanning positions according to initial scanning
resolution
5:
 scan_time_previous  scan_time_initial

6:
 scan_time_current  scan_time_initial

7:
 while scan_time_current <= scan_time_previous do //

find the optimal scanning resolution

8:
 scan_time_previous  scan_time_current

9:
 [scanning_position, scan_time_current, un-

scanned_point_goals]  next_best_view(pointgoals,
resolution)
10:
 resolution  higher_resolution (resolution)

11:
 end while

12:
 return scan_position, scan_time_current, un-

scanned_point_goals
4.5. Combine: ‘‘garbage collection” and finalizing scan configurations

The ‘‘conquer” algorithm only requires the scans to cover most
of the point goals in one cluster and ignore some difficult point
goals that significantly increase the data collection time.

For each cluster, the algorithm will collect point goals that
remain un-scanned after determining the local laser scan plans.
These un-scanned point goals from all clusters form a new cluster,
and the algorithm will carry out the laser scan planning for this
new cluster using the same process described in the previous sec-
tion. We name this algorithm as ‘‘garbage collection”. The pseudo
code of ‘‘garbage collection” algorithm below shows the detailed
information of this step.
Pseudo code of the ‘‘Garbage collection” algorithm
1:
 Input: all point goal remain un-scanned from all
clusters, scanning positions from other clusters
2:
 Output: Scanning position(s) and scanning resolution for
‘‘garbage” cluster
3:
 if scanning positions from other clusters cover any un-
scanned_pointgoals do
4:
 delete current un-scanned_ pointgoals

5:
 end if // Because the scans for Cluster A may cover the

‘‘garbage” point goals in Cluster B, the algorithm
examines whether previous scans has already cover any
of the point goals from other clusters. If so, delete these
point goals from the ‘‘garbage” cluster.
6:
 [scanning_position, scanning_resolution, pointgoals_cov
ered_in_each_scan]  ‘‘Conquer” algorithm(un-
scanned_pointgoals)
7:
 for each scanning_position

8:
 if pointgoals_covered_in_each_scan < a% ⁄

total_number_of_ pointgoals do

9:
 delete current scan_position

10:
 end if

11:
 end for // If a scan will only cover a% of total number of

point goals, we consider it inefficient and discard this
scan. This is a trade-off between data quality and
scanning efficiency. In addition, doing this improves the
robustness to outlier point goals due to inaccurate data
or model.
12:
 return scanning_positions, angular_resolutions
5. Validation

5.1. Runtime analysis of the laser scan planning algorithm

In this study we conducted big-O analysis [28] to show the
upper bound on the runtime of the laser scan planning method.
The inputs of the planning method are point goals, so the big-O
analysis examines how the computational time increases with
the number of point goals n. The runtime of ‘‘divide” algorithm is
O(n2) because the algorithm needs to check the contradicting visi-
bility relationship between all goals. The runtime of ‘‘conquer” and
‘‘combine” is also O(n2) because the algorithm needs to calculate
the feasible area for each point goal. As a result, the computational
complexity of the laser scan planning method developed in this
study is O(n2).

In order to validate the big-O analysis, we executed the devel-
oped laser scan planning algorithm for multiple sites with different
numbers of point goals and buildings of various shapes. We devel-
oped the laser scan planning algorithm using Matlab R2014b, and
tested the algorithm on a computer with 3.60 GHz CPU and 32 GB
RAM. Fig. 9 shows that the square root of the running time of this
algorithm increases linearly with respect to the number of point
goals, and so does the square root of the number of contradicting
visibility relationships between point goals. This reveals a compu-
tational complexity of Oðn2Þ. Looking into these results, we found
that in one case study, the number of a large campus building with
a gross area of 13,015 m2 had 258 point goals. The runtime of the
algorithm for this building was 381.6 s, about 6.36 min. This shows
the potential of achieving real-time laser scan planning on
construction sites that require timely and detailed spatiotemporal
information for proactive project control.
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5.2. Case study: a campus building of complex shape

To validate the proposed laser scan planning method, we con-
ducted laser scanning on a campus building based on the optimal
plan automatically identified by the algorithm and several plans
generated by a 3D imaging researcher and a laser scanning profes-
sional who has been using laser scanners in more than ten large
building projects. Fig. 10a shows the as-designed model of this
campus building at Arizona State University (ASU). All the auto-
matic and manual laser scan plans use 258 point goals specified
by an engineer on the as-designed model (Fig. 10b–c) of the
building, according to the General Services Administration (GSA)
manual of laser scanning for building facades [47]. The point goals
include the corners of windows, points along the edges of walls,
and the corners of walls. In addition, we set the LOD requirement
of each goal as 25 mm (one inch), which is GSA Level 2, a
commonly adopted standard for building exterior design and ren-
ovation [47].
5.2.1. Overview of performance evaluation
In the study of the campus building, we compared the

performance of three laser scan plans. Plan A: a plan automatically
generated by the developed laser scan planning algorithm; Plan B:
a plan manually created by a 3D imaging researcher, and Plan C: a
plan manually created by a laser scanning professional from a
construction general contractor who built this studied building.

This study uses two metrics to measure the performances of
laser scan plans: (1) data collection time, and (2) data quality.
The data collection time consists of scanning time, time for moving
scanners between stations, and time for setting up at each station.
The data quality assessment focuses on level of detail (LOD)
Fig. 10. A campus building in Arizona State University (ASU): (a) As-designed model with
the point goals. (For interpretation of the references to color in this figure legend, the r
captured in the collected data. The metric of data quality is the per-
centage of point goals captured with their required LODs (P).

The evaluation of a laser scan plan has three phases: Phase 1,
collecting laser scanning data of the building according to the
developed plan; Phase 2, calculating the percentage of point goals
captured with their required LODs; Phase 3, performing additional
scans for addressing point goals that were missing or lacking
details. Overall, we compared laser scan plans in terms of: (1)
Percentage of point goals captured with the required LODs (P); (2)
time for completing the scans in phase 1; (3) time for completing
the scans in phase 1 plus additional time required to perform scans
in phase 3.
5.2.2. Generating laser scan plans
Given the point goals as the inputs for manual laser scan plan-

ning, the developed algorithm generated the automated scanning
plan (Plan A). The researcher and the laser scanning professional
generated plans B and C, respectively, by following the Building
Information Model Guide for Laser Scanning of the United States
General Services Administration (GSA BIM Guide) [47]. GSA BIM
guide specifies that the distances between adjacent scanning
locations should be between 20 m to 40 m to capture high quality
data. The yellow stars in Fig. 11(a)–(c) show the scanning positions
of the three laser scan plans. In these plans, the numbers next to
the scanning positions (e.g. 1/5, 1/4, etc.) are the scanning resolu-
tions used at those scanning positions. The noise level of laser
scanning data were kept at constant for all scans, which is the
other parameter influencing the laser scanning time. The corre-
sponding angular resolution of 1/5, for example, equals to
d1=5 ¼ p

20000� 1
5ð Þ ¼ 7:85� 10�4 rad [48].
5.2.3. Comparison of manually planned and automatically generated
data collections

The data quality of the 3D laser scanning point clouds of the
studied campus building were evaluated using the software
‘‘CloudCompare” [49]. Fig. 12 visualizes all points where the LOD
requirements were satisfied in the point clouds collected through
the three compared plans. The red circles in these figures highlight
areas where the point cloud does not satisfy the GSA Level 2 LOD
requirements due to poorly designed scanning positions and
resolutions.

Fig. 12 shows that the data collected according to the automat-
ically generated plan cover more areas with sufficient LODs
compared with the data collected according to manually generated
plans. In the results of automatic laser scanning planning (Fig. 12a),
all 258 point goals were with the required GSA Level 2 LOD (denser
than 25 mm along both vertical and horizontal directions). How-
ever, only 151 out of 258 point goals have the required GSA Level
point goals (red crosses). (b) Elevation view of all the point goals. (c) Top view of all
eader is referred to the web version of this article.)
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Fig. 12. Data quality comparison of point clouds collected according to three different plans: (a) a plan automatically-generated by the proposed method (b) a plan manually
created by an experienced laser scanning researcher, and (c) a plan manually created by a laser scanning professional. Red circles highlight the areas with low data quality.
Fig. (d) shows details of three areas marked as having insufficient LOD in (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Table 1
Statistics comparing manual and automatic laser scan planning.

Laser scan plans No. of scans
in Phase 1

Scanning time
in Phase 1 (s)

Index of data
quality (P) (%)

No. of scans
in Phase 3

Scanning time
in Phase 3 (s)

Total scanning
time (s)

Automatic 11 8495 100 0 0 8495
Manual plan by the laser scanning researcher 12 6788 58.5 5 5201 11,989
Manual plan by the laser scanning professional 13 7017 75.6 4 4652 11,669
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2 LOD in data collected through manual planning by the experi-
enced laser scanning researcher (Fig. 12b). Only 195 out of 258
point goals meet LOD requirement in data collected according to
the plan manually created by a laser scanning professional
(Fig. 12c).

In order to address point goals missed by manual planning, we
conducted five additional scans for Plan B, and four additional
scans for plan C. Red stars and corresponding numbers in Fig. 11
(b) and (c) shows the locations and resolutions of these extra scans.
Table 1 shows a detailed comparison of the performances of man-
ual and automatic laser scan planning.

The above results indicate that it is difficult for manually gener-
ated laser scan plans to achieve 100% coverage of point goals with
required LOD. The first difficulty is in choosing the right scanning
resolution. For example, for these areas shown in Fig. 12d, only
scanning with the resolution of 1/2 can ensure the LOD because
the elevation of these areas is high above the ground. The second
difficulty is in estimating the area that one scan can cover with suf-
ficient LODs. In the case study, the curved shape of the studied
building caused additional challenges for a human to precisely
choose the scanning positions so that areas with required LOD
would connect without gaps.

The case study of this campus building shows that the coverage
of automatically planned laser scanning is better than that of man-
ually planned laser scanning (100% point goals in automatic plan-
ning versus 58.3% (researcher) and 75.6% (surveying professional)
point goals in manual planning satisfy the required LOD), although
the data collection time of automatically generated laser scan plan
is longer than that of the manually generated plan. This is because
the laser scan planning method uses data quality requirements as
the priority. When both automatic and manual planning generates
high-quality 3D imageries, automatic laser scan planning is time-
efficient (8495 s versus 11989 s and 11669 s) because the laser
scan planning method will optimize the data collection time while
ensuring that data quality requirements are satisfied.

6. Discussions

6.1. Limitations and future research

The developed new laser scan planning method in this study
comes with a number of limitations as detailed next, which serve
as objectives for future research.

(1) The generation of point goals for the laser scan planning
algorithm is manual. In future research, we plan to explore
methods that can automatically identify point goals based
on patterns in collected imageries (images, videos, etc.) that
will help guide the divide-and-conquer method, particularly
if the as-designed model of the building is not available. In a
separate publication, we have explored the use of pictures
and the ‘‘structure from motion” method [50] to generate
sparse 3D point clouds of a building, and then identify areas
that are visually complex in the point cloud as point goals for
guiding scan planning [40]. In addition, we will extend the
jobsite presentation from point goals to goals of different
geometric elements, including lines, planes, cylinder
surfaces, and spheres. The analytical solution of scanning
goals of different geometric elements could simplify the scan
planning process.

(2) Different construction environments and tasks have differ-
ent LOD requirements. Currently, the developed approach
still requires engineers to specify LOD requirements of point
goals based on GSA requirements and the experiences of
experts. Future studies will focus on automatically deriving
the LOD of every point goal to fully reflect the dynamic prop-
erties and visual information requirements (e.g., shapes and
colors) for comprehensive monitoring of different kinds of
building features and structures.

(3) In the proposed method, contradicting visibility relationship
analysis is able to help identify the scanning locations where
no point goal blocks the visibility of any other point goal.
However, objects that do not have a point goal (e.g., vegeta-
tion) may block the visibility of other point goals during
laser scanning, thus causing occlusion problems in the col-
lected point data. Therefore, utilizing previously collected
sparse 3D imagery data, future studies will develop a time-
efficient visibility checking process to reduce the influence
of the unknown environment on data quality.

(4) This study does not cover how the laser scanning positions
and parameters influence the accuracies of 3D measure-
ments, and how to coordinate multiple scanning stations
to achieve accurate and detailed imageries. In surveying
science, there is a theory about arranging surveying posi-
tions for maximum accuracy by ensuring the ‘‘strength of
figure” of the network consisting of all surveying positions
[51], which we believe could be applied to the laser scan
planning method. In the future, we plan to enable the scan
planning algorithm to cover all given point goals with suffi-
cient LOD and LOA by maximizing the strength of figure of
the automatically generated scan plans.

(5) In addition, we will try to integrate the laser scan planning
method with construction scheduling. We expect that the
optimization of construction workflows for inspection activ-
ities will realize real-time and proactive construction quality
control while minimizing interferences between data collec-
tion activities and construction workflows.

6.2. Toward fully automated 3D inspection of construction sites

According to engineers in the construction industry, acquiring
detailed as-built 3D building information model will cost tens of
thousands of dollars, varying with the scale of the projects. As a
result, full automation of 3D site inspections will save time and
money for contractors. In the future, using the proposed laser scan
planning method, unmanned aerial vehicles (UAVs) or robots could
enable autonomous robots that carry sensors and process 3D ima-
gery collection with minimum human involvement. This will help
autonomous high quality data collection in remote areas that are
dangerous for human inspectors, such as underwater structures,
top of skyscrapers, or rescue missions after an earthquake. Auto-
matic laser scan planning will make laser scanning autonomous,
safer, more precise, and more efficient on various dynamic sites.
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7. Conclusion

This paper describes the development of a rapid laser scan plan-
ning method that generates scanning positions and recommends
angular resolutions for different positions in order to achieve effi-
cient and effective laser scanning data collection. Compared with
previously developed sensor planning methods, this new approach
not only guarantees the density of collected 3D data, but also
optimizes the data collection time. Moreover, the new laser scan
planning method is able to achieve a computational complexity
of Oðn2Þ, which is more efficient than previously developed
algorithms. Evaluation results on different buildings show the
effectiveness of the proposed method, and how this method out-
perform manual laser scan planning conducted by experienced
researchers and professional surveyors. Laser scan plans generated
by the new method will benefit high quality data collection with-
out wasting time and resources. In future research, we will focus
on the automation of point goal generation in order to achieve
an automatic data-driven workflow of 3D data collection on
dynamic jobsites.
Acknowledgements

This material is based on work supported by the National
Science Foundation (NSF) under Grant No. 1443069 and Grant
No. 1454654. NSF’s support is gratefully acknowledged. In addi-
tion, the authors would like to thank DPR Construction, the City
of Phoenix Water Service Department, and HDR Inc. for their help
with the laser scanning data collection on construction sites, as
well as for sharing their experiences and Building Information
Models and project materials. Any opinions, findings, conclusions,
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of NSF, DPR Con-
struction, the City of Phoenix, and HDR Inc.
References

[1] M. Golparvar-Fard, F. Peña-Mora, S. Savarese, Monitoring of construction
performance using daily progress photograph logs and 4D as-planned models,
in: Comput. Civ. Eng., American Society of Civil Engineers, Reston, VA, 2009, pp.
53–63, http://dx.doi.org/10.1061/41052(346)6.

[2] X. Zhang, N. Bakis, T.C. Lukins, Y.M. Ibrahim, S. Wu, M. Kagioglou, et al.,
Automating progress measurement of construction projects, Autom. Constr. 18
(2009) 294–301, http://dx.doi.org/10.1016/j.autcon.2008.09.004.

[3] W. Boehler, A. Marbs, Investigating laser scanner accuracy, Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 34 (2003) 696–701, http://dx.doi.
org/10.1002/pbc.ABSTRACT.

[4] E.J. Huising, L.M. Gomes Pereira, Errors and accuracy estimates of laser data
acquired by various laser scanning systems for topographic applications, ISPRS
J. Photogramm. Remote Sens. 53 (1998) 245–261, http://dx.doi.org/10.1016/
S0924-2716(98)00013-6.

[5] F. Bosché, M. Ahmed, Y. Turkan, C.T. Haas, R. Haas, The value of integrating
scan-to-BIM and scan-vs-BIM techniques for construction monitoring using
laser scanning and BIM: the case of cylindrical MEP components, Autom.
Constr. (2014), http://dx.doi.org/10.1016/j.autcon.2014.05.014.

[6] Y. Turkan, F. Bosché, C.T. Haas, R. Haas, Toward automated earned value
tracking using 3D imaging tools, J. Constr. Eng. Manag. 139 (2013) 423–433,
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000629.

[7] B. Akinci, F. Boukamp, C. Gordon, D. Huber, C. Lyons, K. Park, A formalism for
utilization of sensor systems and integrated project models for active
construction quality control, Autom. Constr. 15 (2006) 124–138, http://dx.
doi.org/10.1016/j.autcon.2005.01.008.

[8] T. Eid, T. Gobakken, E. Næsset, Comparing stand inventories for large areas
based on photo-interpretation and laser scanning by means of cost-plus-loss
analyses, Scand. J. For. Res. 19 (2004) 512–523, http://dx.doi.org/10.1080/
02827580410019463.

[9] F. Dai, A. Rashidi, I. Brilakis, P. Vela, Comparison of image-based and time-of-
flight-based technologies for three-dimensional reconstruction of
infrastructure, J. Constr. Eng. Manag. 139 (2013) 69–79, http://dx.doi.org/
10.1061/(Asce)Co.1943-7862.0000565.

[10] P. Tang, F.S. Alaswad, Sensor modeling of laser scanners for automated scan
planning on construction jobsites, in: Constr. Res. Congr. 2012, American
Society of Civil Engineers, Reston, VA, 2012, pp. 1021–1031, http://dx.doi.org/
10.1061/9780784412329.103.

[11] C. Gordon, B. Akinci, J.H. Garrett, Formalism for construction inspection
planning: requirements and process concept, J. Comput. Civ. Eng. 21 (2007)
29–38, http://dx.doi.org/10.1061/(ASCE)0887-3801(2007) 21:1(29).

[12] P.S. Blaer, P.K. Allen, View planning and automated data acquisition for of
complex sites, J. Field Robotics 26 (2009) 865–891, http://dx.doi.org/10.1002/
rob.

[13] M. Song, Z. Shen, P. Tang, Data quality-oriented 3D laser scan planning, in:
Constr. Res. Congr. 2014, American Society of Civil Engineers, Reston, VA, 2014,
pp. 984–993, http://dx.doi.org/10.1061/9780784413517.101.

[14] C.S. Park, D.Y. Lee, O.S. Kwon, X. Wang, A framework for proactive construction
defect management using BIM, augmented reality and ontology-based data
collection template, Autom. Constr. 33 (2013) 61–71, http://dx.doi.org/
10.1016/j.autcon.2012.09.010.

[15] H.S. Park, H.M. Lee, H. Adeli, I. Lee, A new approach for health monitoring of
structures: Terrestrial laser scanning, Comput. Civ. Infrastruct. Eng. 22 (2007)
19–30, http://dx.doi.org/10.1111/j.1467-8667.2006.00466.x.

[16] Y. Nie, Q. Chen, T. Chen, Z. Sun, B. Dai, Camera and lidar fusion for road
intersection detection, in: 2012 IEEE Symp. Electr. Electron. Eng., 2012, pp.
273–276, http://dx.doi.org/10.1109/EEESym.2012.6258642.

[17] R. Volk, J. Stengel, F. Schultmann, Building information modeling (BIM) for
existing buildings – literature review and future needs, Autom. Constr. 38
(2014) 109–127, http://dx.doi.org/10.1016/j.autcon.2013.10.023.

[18] L. Klein, N. Li, B. Becerik-Gerber, Imaged-based verification of as-built
documentation of operational buildings, Autom. Constr. 21 (2012) 161–171,
http://dx.doi.org/10.1016/j.autcon.2011.05.023.

[19] P. Tang, D. Huber, B. Akinci, R. Lipman, A. Lytle, Automatic reconstruction of as-
built building information models from laser-scanned point clouds: a review
of related techniques, Autom. Constr. 19 (2010) 829–843, http://dx.doi.org/
10.1016/j.autcon.2010.06.007.

[20] X. Xiong, A. Adan, B. Akinci, D. Huber, Automatic creation of semantically rich
3D building models from laser scanner data, Autom. Constr. 31 (2013) 325–
337, http://dx.doi.org/10.1016/j.autcon.2012.10.006.

[21] E.B. Anil, P. Tang, B. Akinci, D. Huber, Deviation analysis method for the
assessment of the quality of the as-is building information models generated
from point cloud data, Autom. Constr. 35 (2013) 507–516, http://dx.doi.org/
10.1016/j.autcon.2013.06.003.

[22] A. Bhatla, S.Y. Choe, O. Fierro, F. Leite, Evaluation of accuracy of as-built 3D
modeling from photos taken by handheld digital cameras, Autom. Constr. 28
(2012) 116–127, http://dx.doi.org/10.1016/j.autcon.2012.06.003.

[23] C. Weber, S. Hahmann, H. Hagen, Sharp feature detection in point clouds, in:
2010 Shape Model. Int. Conf., 2010, pp. 175–186, http://dx.doi.org/10.1109/
SMI.2010.32.

[24] P. Tang, B. Akinci, D. Huber, Quantification of edge loss of laser scanned data at
spatial discontinuities, Autom. Constr. 18 (2009) 1070–1083, http://dx.doi.org/
10.1016/j.autcon.2009.07.001.

[25] S. Granshaw, Close-Range Photogrammetry and 3d Imaging, second ed., in: T.
Luhmann, S. Robson, S. Kyle, J. Boehm (Eds.), De Gruyter, Berlin, Germany,
2014. ISBN: 978 3 11 030269 1. e-ISBN 978 3 11 030278 3. 239 mm � 169 mm.
xviii + 684 pages. Price €79�95 or US$112�00 pape, Photogramm. Rec. 29 (2014)
125–127. doi:10.1111/phor.12056.

[26] G.B. Dadi, P.M. Goodrum, KamelS Saidi, C.U. Brown, J.W. Betit, A case study of
3D imaging productivity needs to support infrastructure construction, Bridg.,
vol. 10, 2012, http://dx.doi.org/10.1061/9780784412329.146.

[27] C. Gordon, B. Akinci, Technology and process assessment of using LADAR and
embedded sensing for construction quality control, Constr. Res. Congr. 2005
(2005) 1–10, http://dx.doi.org/10.1061/40754(183)109.

[28] E. Latimer, D. Latimer, R. Saxena, C. Lyons, L. Michaux-Smith, S. Thayer, Sensor
space planning with applications to construction environments, IEEE Int. Conf.
Robot. Autom. 2004. Proceedings. ICRA ’04. 2004, vol. 5, IEEE, 2004, pp. 4454–
4460, http://dx.doi.org/10.1109/ROBOT.2004.1302419.

[29] R. Pito, A sensor-based solution to the ‘‘next best view” problem, Proc. 13th Int.
Conf. Pattern Recognit, vol. 1, 1996, pp. 941–945, http://dx.doi.org/10.1109/
ICPR.1996.546162.

[30] S. Son, H. Park, K.H. Lee, Automated laser scanning system for reverse
engineering and inspection, Int. J. Mach. Tools Manuf. 42 (2002) 889–897,
http://dx.doi.org/10.1016/S0890-6955(02)00030-5.

[31] K.H. Lee, H. Park, S. Son, A framework for laser scan planning of freeform
surfaces, Int. J. Adv. Manuf. Technol. 17 (2001) 171–180, http://dx.doi.org/
10.1007/s001700170187.

[32] P. Fernández, J.C. Rico, B.J. Álvarez, G. Valiño, S. Mateos, Laser scan planning
based on visibility analysis and space partitioning techniques, Int. J. Adv.
Manuf. Technol. 39 (2008) 699–715, http://dx.doi.org/10.1007/s00170-007-
1248-9.

[33] H.K. Biswas, F. Bosché, M. Sun, Planning for scanning using building
information models : a novel approach with occlusion handling, ISARC. Proc.
Int. Symp. Autom. Robot. Constr., vol. 32, Vilnius Gedim. Tech. Univ. Dep.
Constr. Econ. Prop., 2015, pp. 1–8.

[34] A. Nüchter, H. Surmann, J. Hertzberg, Planning robot motion for 3d
digitalization of indoor environments, in: Proc. 11th Int. Conf. Adv. Robot.,
2003, pp. 222–227. https://robotik.informatik.uni-wuerzburg.de/
telematics/download/icar2003.pdf.

[35] J. Ahn, K. Wohn, Interactive scan planning for heritage recording, Multimed.
Tools Appl. (2015) 1–21, http://dx.doi.org/10.1007/s11042-015-2473-0.

http://dx.doi.org/10.1061/41052(346)6
http://dx.doi.org/10.1016/j.autcon.2008.09.004
http://dx.doi.org/10.1002/pbc.ABSTRACT
http://dx.doi.org/10.1002/pbc.ABSTRACT
http://dx.doi.org/10.1016/S0924-2716(98)00013-6
http://dx.doi.org/10.1016/S0924-2716(98)00013-6
http://dx.doi.org/10.1016/j.autcon.2014.05.014
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000629
http://dx.doi.org/10.1016/j.autcon.2005.01.008
http://dx.doi.org/10.1016/j.autcon.2005.01.008
http://dx.doi.org/10.1080/02827580410019463
http://dx.doi.org/10.1080/02827580410019463
http://dx.doi.org/10.1061/(Asce)Co.1943-7862.0000565
http://dx.doi.org/10.1061/(Asce)Co.1943-7862.0000565
http://dx.doi.org/10.1061/9780784412329.103
http://dx.doi.org/10.1061/9780784412329.103
http://dx.doi.org/10.1061/(ASCE)0887-3801(2007)21:1(29)
http://dx.doi.org/10.1002/rob
http://dx.doi.org/10.1002/rob
http://dx.doi.org/10.1061/9780784413517.101
http://dx.doi.org/10.1016/j.autcon.2012.09.010
http://dx.doi.org/10.1016/j.autcon.2012.09.010
http://dx.doi.org/10.1111/j.1467-8667.2006.00466.x
http://dx.doi.org/10.1109/EEESym.2012.6258642
http://dx.doi.org/10.1016/j.autcon.2013.10.023
http://dx.doi.org/10.1016/j.autcon.2011.05.023
http://dx.doi.org/10.1016/j.autcon.2010.06.007
http://dx.doi.org/10.1016/j.autcon.2010.06.007
http://dx.doi.org/10.1016/j.autcon.2012.10.006
http://dx.doi.org/10.1016/j.autcon.2013.06.003
http://dx.doi.org/10.1016/j.autcon.2013.06.003
http://dx.doi.org/10.1016/j.autcon.2012.06.003
http://dx.doi.org/10.1109/SMI.2010.32
http://dx.doi.org/10.1109/SMI.2010.32
http://dx.doi.org/10.1016/j.autcon.2009.07.001
http://dx.doi.org/10.1016/j.autcon.2009.07.001
http://dx.doi.org/10.1061/9780784412329.146
http://dx.doi.org/10.1061/40754(183)109
http://dx.doi.org/10.1109/ROBOT.2004.1302419
http://dx.doi.org/10.1109/ICPR.1996.546162
http://dx.doi.org/10.1109/ICPR.1996.546162
http://dx.doi.org/10.1016/S0890-6955(02)00030-5
http://dx.doi.org/10.1007/s001700170187
http://dx.doi.org/10.1007/s001700170187
http://dx.doi.org/10.1007/s00170-007-1248-9
http://dx.doi.org/10.1007/s00170-007-1248-9
http://refhub.elsevier.com/S1474-0346(16)30046-5/h0165
http://refhub.elsevier.com/S1474-0346(16)30046-5/h0165
http://refhub.elsevier.com/S1474-0346(16)30046-5/h0165
http://refhub.elsevier.com/S1474-0346(16)30046-5/h0165
http://refhub.elsevier.com/S1474-0346(16)30046-5/h0165
https://robotik.informatik.uni-wuerzburg.de/telematics/download/icar2003.pdf
https://robotik.informatik.uni-wuerzburg.de/telematics/download/icar2003.pdf
http://dx.doi.org/10.1007/s11042-015-2473-0


232 C. Zhang et al. / Advanced Engineering Informatics 30 (2016) 218–232
[36] K.L. Low, A. Lastra, An adaptive hierarchical next-best-view algorithm for 3D
reconstruction of indoor scenes, in: Proc. 14th Pacific Conf. Comput. Graph.
Appl. (Pacific Graph. 2006), 2006, pp. 1–8.

[37] P. Oskouie, B. Becerik-Gerber, Lucio Soibelman, A data quality-driven
framework for asset condition assessment using LiDAR and image data, in:
ASCE Int. Work. Comput. Civ. Eng., 2015.

[38] W.R. Scott, G. Roth, J.-F. Rivest, View planning for automated three-
dimensional object reconstruction and inspection, ACM Comput. Surv. 35
(2003) 64–96, http://dx.doi.org/10.1145/641865.641868.

[39] D. MacKinnon, J.A. Beraldin, L. Cournoyer, F. Blais, Evaluating laser range
scanner lateral resolution in 3D metrology, in: J.A. Beraldin, G.S. Cheok, M.
McCarthy, U. Neuschaefer-Rube (Eds.), 2009, p. 72390P-1–72390P-11. doi:
http://dx.doi.org/10.1117/12.805868.

[40] C. Zhang, P. Tang, Visual complexity analysis of sparse imageries for automatic
laser scan planning in dynamic environments, in: Comput. Civ. Eng. 2015,
American Society of Civil Engineers, Austin, TX, 2015, pp. 271–279, http://dx.
doi.org/10.1061/9780784479247.034.

[41] C. Berge, Graphs and hypergraphs, North-Holl. Math. Libr. 6 (1973) 3–528,
http://dx.doi.org/10.1007/978-1-84800-201-2.

[42] H. Elghazel, T. Yoshida, V. Deslandres, M. Hacid, A. Dussauchoy, A new greedy
algorithm for improving b-coloring clustering, in: Graph-Based Represent.
Pattern Recognit., Springer Berlin Heidelberg, Berlin, Heidelberg, 1918, pp.
228–239, http://dx.doi.org/10.1007/978-3-540-72903-7_21.
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