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Conformance with standard corporate and institutional processes and industry best practices are sought
because of regulatory requirements and evidence that best practices lead to improved project perfor-
mance. Automated workflow engine enabled Industry Foundation Processes (IFP) are introduced in this
paper that facilitate process conformance through structural transparency, foundation process inheri-
tance, and automated conformance checking. While IFP processes can be customized to suit particular
project or corporate conditions, they need to conform to a standard core structure and thus behavior.
This has been achieved through defining specific workflow inheritance rules and developing an auto-
mated structural process conformance checking algorithm. The algorithm has been developed based
on graph theory fundamentals using a first-order logic language, which compares two workflows and
detects the conformance of a customized one with its associated IFP. The developed algorithm has been
functionally tested and validated with different structural settings of workflows with a number of critical
cases. Its functionality has been demonstrated in this paper with an example of the commonly used pro-
cess of RFI (Request for Information). A new construct is thus contributed that can help improve process
conformance to industry best practices particularly in the architectural, engineering, and construction
industry, leading to improved project conformance.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Traditionally, information systems have played a vital role in
managing a business, enterprise, or project by supporting
improved decision making. They have been widely used for creat-
ing, organizing, storing, retrieving, manipulating, and distributing
information, and have had a positive impact on productivity and
performance. Over the years, however, their applications and scope
have been expanded from conventional data-aware information
systems, such as database management systems, to process-
aware information systems, such as business process management
(BPM) and workflow management systems (WfMS) [1,2]. Conven-
tional data-centric information systems are still an important
backbone of modern information systems [1], but today’s informa-
tion systems rely on efficient and effective processes and best
practices.

In the domain of the construction industry, several research
studies [3–9] have confirmed that utilization of information
systems and adoption of best practices drive performance and pro-
ductivity improvements. The more recent findings of Kang et al.
[4,10], however, revealed that improvements of automated work
processes via information systems is in fact the main driver of
improved project performance, and thus signified the importance
of well-defined processes and best practices. Based on a statistical
analysis of 133 construction projects from the Construction Indus-
try Institute Benchmarking and Metrics database, they concluded
that using information systems without enough attention to prac-
tices has a limited benefit for project performance, but the com-
bined adoption of best practices and employment of information
systems has a more significant impact on project performance.
Their study challenged the common belief of strong direct correla-
tion between employment of information systems and improved
project performance, and suggested shifting focus to improvement
of work processes to be more efficient or effective by adoption of
best practices.

In accordance to this need, this paper introduces the concept of
Industry Foundation Processes (IFP), workflow processes with min-
imal yet essential features, that are based on industry best prac-
tices. They are enacted via workflow management systems, and
are customizable and evolvable to more complex processes
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suitable for specific corporate and project conditions. The system
of IFP workflow processes facilitates development of a standard
core for construction industry common processes to improve pro-
cess conformance and interoperability. The paper then focuses on
mechanisms and the methodology for maintaining the confor-
mance of customized workflow processes with their associated
IFP, and automating this process.

Customization of IFPs is supported in a controlled manner by
defining particular workflow inheritance rules that restrict or
allow certain structural changes in the workflow. The workflow
inheritance rules ensure that the core structure and the control-
flow of an IFP is preserved within the customized workflow. An
automated conformance checking system is developed using Java
and a first-order logic language to streamline the workflow confor-
mance checking process. This system reads workflow definitions
from Microsoft Visual Studio Workflow Designer, analyzes them
for conformance, and visualizes the result. A prototype example
of an IFP process for industrial construction projects, the Request
for Information (RFI), is used along with the conformant and
non-conformant customized versions of this process to demon-
strate the usefulness of the system.

Integration of IFPs into information systems facilitates more
systematic and consistent adoption of best practices throughout
a project lifecycle and from project to project. Developing and
applying a system of Industry Foundation Processes (IFP) can add
value to the use of information systems. The expected end result
is capital project productivity and performance improvements.
Fig. 1 outlines this rationale.

2. Background

Conventional data-aware information systems evolved around
centralized database management systems. Today’s process-
aware information systems facilitate interaction and collaboration
of stakeholders via distributed systems [2]. Examples include
advanced project management collaboration tools, enterprise
resource planning (ERP) systems [11–14], workflow engines [15–
17], electronic document management systems [18,19],
knowledge-based information systems [20,21], and more specifi-
cally electronic product and process management (EPPM) systems
[22,23].

An Electronic Product and Process Management (EPPM) system
is a workflow management system specifically designed for
managing large-scale construction projects. A workflow engine at
the heart of an EPPM system facilitates enactment of workflow
processes; a document management system supports several types
of files and enables sharing and modifying various types of docu-
ments; and a collaboration management system enables project
delivery by collaboration among several stakeholders. In addition,
the kernel of an EPPM system typically offers services, such as for-
mat management, version control, indexing, search, security, and
publishing. EPPM systems store and manage various types of infor-
mation regarding the lifecycle of a project from inception and plan-
Fig. 1. IFP resear
ning to execution and startup. These systems not only facilitate
enactment of processes via workflow engines, but they also facili-
tate interaction of process stakeholders and tracking and auditing
of process steps. For example, change management, deliverables
management, or interface management processes typically involve
the interaction of several stakeholders, such as contractors, sub-
contractors, suppliers, consulting firms, and the owner(s). An EPPM
system provides the infrastructure for defining, modifying, enact-
ing, and auditing such processes.

Conformance of processes to industry best practices, corporate
rules and regulations, or service level agreements in such systems
is becoming increasingly important. Although conformance has
different aspects and can be defined based on various considera-
tions, conformance checking techniques typically focus on the
control-flow of a process, and analyze the order of steps involved
to determine the conformance of the process with the expected
behavior [24]. There are two primary types of conformance check-
ing: (1) forward conformance in which the restrictions are
enforced in the process design stage to prevent designing a non-
conformant process and (2) backward conformance in which the
steps and flow of work in an implemented process is examined
to discover non-conformant behavior [25].

Implementation of processes on EPPM systems requires cus-
tomization of processes for each construction project, because of
unique project characteristics, including size, deliverymethod, exe-
cution plan, and organizational structure. For example, a change
request is distributed among the individuals and organizations that
are particular to the project, with approval thresholds particular to
that project. So, practice implementation through EPPM systems
improves conformance through transparency and automation, but
the required customization tends to work against best practice con-
formance. A potential solution is introduced based on the Industry
Foundation Processes (IFP) construct presented here.

3. Industry Foundation Processes (IFP)

We define Industry Foundation Processes (IFP) as a simple stan-
dard definition of common workflows with particular properties
and components that facilitate process conformance and interop-
erability. IFPs are defined as structured processes, so that the
sequence of activities and their execution constraints are fully
defined. They simplify the integration of best practices into work-
flowmanagement systems and support their consistent implemen-
tation throughout project lifecycle and from project to project.

Industry Foundation Processes are process-based and
workflow-driven. They focus on the flow of information or work,
while abstracting from execution constraints, such as data depen-
dencies and resource constraints. They are defined in their simplest
form, containing all the essential steps, but with no extra or redun-
dant activity. As such, they are general enough to be extendable to
many situations, yet simple and streamlined. The idea of IFPs is
inspired by the ideas of abstraction, inheritance, and modularity
in object-oriented programming languages.
ch rationale.
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IFPs are abstracted to organizational-level processes, but
include a minimum of operational-level details that are required
for their enactment through workflow management systems. The
workflow inheritance concept enables IFP workflow processes to
be customized to more complex processes in a controlled manner
to suit particular types and conditions of projects, while not losing
their core structure. The system of Industry Foundation Processes
may be defined for many common construction industry processes,
such as change management, contract management, materials
management, and deliverables management, as simple structured
processes that incorporate the essence of best practices.

The use of IFP system has several practical advantages. It offers
a standard core structure for implementation of common pro-
cesses, and thus provides visibility to the core structure of complex
processes. IFP system facilitates integration of best practices into
workflow management systems, and improves process confor-
mance and interoperability. It can be used to efficiently implement
and manage systems of customized interoperable processes that
conform to the best practices, and thus support improved project
performance.

There are two primary approaches for deriving IFP processes:
(1) define structured processes based on well-known best practices
in the construction industry and (2) identify and extract the com-
mon core of different project/corporate implementations of a
known process. The former approach involves exploring well-
known construction industry best practices, developing high-
level organizational processes that include the main steps for
adopting those practices, transforming the organizational pro-
cesses based on the roles and responsibilities of actors into struc-
tural processes implementable into workflow management
systems, and defining IFPs based on the core structure of the struc-
tured processes.

The latter approach requires employing business process mod-
eling tools and techniques to compare different implementations
of a process that has been subject to the process improvement
cycle over time, extracting a common core as a simple structured
process, and defining an IFP based on that common core. For
instance, Fig. 2 demonstrates a Request for Information (RFI) work-
flow that has been used in a recent mega-construction project in
Canada. This workflow includes eight versions that have been
revised and improved throughout the project lifecycle. RFI work-
flow is a method of requesting a design clarification, field construc-
tion clarification, or to provide supplemental instructions from
either the project management team, or any company engaged in
a construction project. The magnified portion shows some of core
activities. The common core structure of the RFI process, based
on an analysis of several implementations in different projects, is
presented in Fig. 4.
4. Proposed IFP ontology

The system of Industry Foundation Processes offers a standard
core for common construction industry processes in such a way
as to improve process conformance to best practices and facilitate
process interoperability. Based on synthesis of the literature,
examination of functional and operational requirements for IFP
system, and consultation with industry experts, this paper pro-
poses an ontology for the IFP system which includes seven compo-
nents (Fig. 3): (1) an applicable scope, (2) a core structure and
functionality, (3) defined abstraction level to essential details, (4)
associated data structures, (5) workflow inheritance property, (6)
conformance to best practice, and (7) interoperability with other
workflow processes. The last two — conformance and interoper-
ability — are the end-result of using the IFP system and are depen-
dant on the other components, but they also affect the structure
and behavior of the process, and thus should be considered while
developing an IFP process.

The ontology components will be discussed within the follow-
ing sections, except the interoperability which will be discussed
in more detail in a separate publication.

4.1. Scope

The domain of the IFP system, similar to the domain of the Indus-
try FoundationClasses (IFC), is definedas theArchitecture, Engineer-
ing, Construction, and Facilities Management (AEC/FM) industry;
however, the concept of the IFP system and the development
methodology can be adopted by any industry. In addition, each indi-
vidual IFP workflow process (i.e., contract management, change
management, or material management) is defined for a particular
type of project, and thus has a more specific scope. The scope of an
individual IFP process is defined according to project type, size,
delivery method, etc. For example, a change management IFP pro-
cessdeveloped for large-scale industrial oil andgas projects is differ-
ent froma changemanagement IFPprocess defined for smaller-scale
residential or commercial projects. Each of these change manage-
ment IFP processes then can be customized for specific projects.

4.2. Core structure

Any process has a core structure that includes essential activi-
ties and their relationships. Selecting a complex process, and
repeatedly substituting its activities and relationships with more
abstract ones, ends up with a set of activities and relationships that
are minimal, but sufficient for representing the purpose of that
process [26]. Additional activities and relationships are typically
added to the core structure to customize the process for specific
purposes or conditions, but if any of the essential activities and
relationships removed, the meaning of the process might not be
preserved. Extracting the minimal yet essential elements of a com-
plex process, developed based on the industry best practices and
improved over time through the process improvement cycle,
results in the core structure required for defining an IFP process.
For example, as outlined previously, extracting the core structure
of implementation-level RFI processes, such as the process shown
in Fig. 2, results in the minimal yet essential activities and relation-
ships presented as a simple structured process in Fig. 4.

As such, the core structure of an RFI process includes the follow-
ing steps. A project team member initiates a request (1). A coordi-
nator verifies the request for accuracy and completeness (2), and
assigns/confirms participants. If any clarification is necessary (3),
the request is being sent to the initiator for clarification (4); if
not, it is being sent to one or more participants (5), typically a lead
engineer or a construction manager, for composing a response. The
consolidator is then responsible for consolidating responses (6),
approving and issuing the response to initiator (7); and finally all
process stakeholders are informed and the workflow is closed (8).

4.3. Abstraction level

The abstraction level of a workflow process is important
because it determines the amount of detail that the process is rep-
resented with. A process can be characterized in a high-level
abstraction level that simply explains the process steps, or it can
be defined as a structured process in which the sequence of activ-
ities and their execution constraints are completely defined. Fur-
thermore, a process can be presented with operational details
that include activities and their relationships, or it can be defined
with implementation details that contain information on execu-
tion and technical details required for enactment of the process
in a computerized system. Based on an examination of industry



Fig. 2. An implemented version of the RFI process in Skelta software format as deployed by research partner.
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Fig. 3. Proposed IFP ontology.

Table 1
Workflow abstraction levels.

Abstraction level Description

Meta-level workflow A conceptual description of the process flow
Includes organizational-level details

Foundation-level
workflow

A high-level structured definition with particular
properties
Includes operational-level details

Workflow template A customized workflow with the most common
components
Includes operational-level details

Workflow
implementation

An implemented workflow for a specific organization
or project
Includes implementation-level details

Workfow instance An executed instance of an implemented workflow
Includes implementation-level details
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practices, an analysis of the literature, and the required level of
details for the IFP system, this paper classifies workflow processes
into the following five abstraction levels (Table 1), and proposes
the foundation-level as the appropriate level of abstraction for
IFP processes: (1) meta-workflows, (2) foundation-level work-
flows, (3) workflow templates, (4) workflow implementations,
and (5) workflow instances.

A meta-workflow is a conceptual definition of a workflow,
either textual or in a flow-charting format. It is not a structured
definition of a workflow and its main purpose is to describe the
workflow behavior. A foundation-level workflow, associated with
the concept of Industry Foundation Processes, however, is a struc-
tured definition of a process, with some operational and imple-
mentation level details that are required for its proper
functioning. It is the highest abstraction level implementable in a
workflow engine enabled environment, such as Skelta or Microsoft
Workflow Foundation, which are the environments used in this
research. A workflow template is a customized workflow, based
on an IFP, that contains the most common activities and relation-
Fig. 4. The core structure of a
ships for a particular type of project. It can be used as the starting
point for deriving more detailed implementation-level workflows
suitable for a specific project. Workflow implementations typically
include all the required human-oriented tasks, as well as auto-
mated tasks, such as writing to databases and sending notifications
to participants, as required.

An executed version of an implementation-level workflow is
called aworkflow instance. For any implementation level workflow,
several workflow instances are typically created throughout the
lifecycle of the project. Some workflow instancesmight have a rela-
tively short lifetime, and somemight be active for a longer period of
time, before completing their execution and closing out. Eachwork-
flow instance typically stores all the data associated with its execu-
tion steps. For example, the execution details of an activity called
‘‘Verify Details”, which is one step within the RFI workflow, include
details such as, instance identification code, accessed time and date,
completed time and date, name of responsible and responding
party, current status of workflow, and more. All workflow instance
execution data are stored in databases for retrieval and analysis,
for auditing purposes, or to improve the definition of the workflow.
n IFP for the RFI process.
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As an example, an IFP process for deliverables management
with the domain of AEC/FM and the scope of industrial projects,
can be customized to a deliverables management workflow tem-
plate suited for oil and gas projects, and then customized and
implemented for a specific project, with several instances of the
workflow running simultaneously on a workflow management
system.
4.4. Data structures

Processes rely on particular data structures for their proper
functioning throughout the execution steps. A process stores,
manipulates, and passes information with the flow of work from
one step to another. For example, the execution of a request for
information (RFI) process requires data fields, such as RFI ID, Con-
tract ID, Title, Description, Request Date, and Response Date. Some
data structures are being manipulated within the subsequent exe-
cution steps, such as ‘‘Response Note”, and some of them even
determine the flow of work while executing the process. For exam-
ple, the flow of work might be redirected to a different person
depending on the time or cost impact of the request. An IFP is
defined with a minimal set of data structures that are required
for its proper implementation. Table 2 presents a minimal data
set that is associated with an RFI process.

Some of the data and metadata fileds are automatically
assigned by the workflow management system, i.e. Process ID,
Response Date, and Approve Date, and some of them are entered
by process participants in each step of the process. Additional
fields can be added when required, but the minimal set that is
defined within an IFP is kept while customizing a process.
4.5. Inheritance

In computer science, inheritance is a key programming concept.
Inheritance enables reuse of code by keeping certain properties of
an object called a super-class, while transforming it into a new
object called a sub-class. Sub-classes typically include extra or
more detailed features. The inheritance concept can be applied to
the IFP system whereby the core structure and particular proper-
ties of an IFP workflow is inherited, and additional activities or
properties are added to form a customized version of the workflow.
The idea of using the inheritance concept for workflow processes is
not new. Van der Aalst explored the concept of workflow inheri-
tance [27–29], and developed four types of workflow structural
inheritance: protocol, projection, protocol/projection, and life-
cycle inheritance. A detailed description of these workflow inheri-
tance notions is beyond the scope of this paper, and the reader is
referred to the cited references for more information.

This paper offeres three categories of inheritance for workflow
processes to facilitate conformance with regulatory requirements
or institutional practices: (1) structural, (2) organizational, and
(3) temporal, and defines sets of workflow inheritance rules for
structural and organizational inheritance to allow or restrict cer-
tain workflow transformations. These inheritance rules control
Table 2
Minimal set of data structure fields for an RFI process.

RFI ID Title Request reason
Contract ID Description Need date
Project ID Unit Respondor
Request type Area Response note
Requested by Discipline Response date
Request date System Coordinator
Cost impact Status Approve date
Schedule impact Priority Final response
how more detailed implementation-level processes are derived
from an IFP, while maintaining conformance to the IFP. Structural
inheritance rules restrict the flow of work or information in sub-
classes of a workflow to the sequence and set of core activities
defined in a superclass IFP. This ensures that the core structure
of an IFP process does not change when it is customized to suit
specific projects.

Organizational inheritance rules ensure that the level and
sequence of authorization defined in an organization or project is
met with the execution of the workflow process. For example, if
someone is not available who would be the next responsible per-
son to whom the work or information be directed, or who could
be assigned as a delegate for somebody who is not available for a
period of time. For this purpose, a responsibility assignment
matrix, i.e. a RACI chart is used to define the participation of vari-
ous process stakeholders with their defined roles, responsibilities,
and deliverables in completing each step of the process. RACI is
an acronym that stands for Responsible, Accountable, Consulted,
and Informed. A sample of a RACI chart is presented in Table 3.

Temporal inheritance rules define allowable durations for each
activity according to regulatory or contractual obligations or indus-
try best practices. For example, how much time is allowed for an
approval activity to be finalized according to regulatory, institu-
tional, or contractual obligations. Table 4 presents a set of struc-
tural inheritance rules to preserve the presence and the sequence
of core activities in a customized workflow process. In addition,
it offeres a sample of organizational inheritance rules. Organiza-
tional and temporal rules are defined as properties associated with
the core structure of an IFP process, and thus the structural inher-
itance rules are the most important rules for conformance check-
ing. In this paper we focus on the structural inheritance rules.

Fig. 5 graphically presents accepted and prohibited transforma-
tions for a simple specification workflow A ! B ! C ! D in which
the flow of work is only possible through A then B then C and then
D. As demonstrated in Fig. 5(a), it is accepted for the super-class
specification workflow of A ! B ! C ! D to be transformed into
sub-class workflows presented as W1 through W5. In all of these
transformations none of the core activities can be skipped or their
sequence be altered. W2 represents dividing an activity into two, in
which part of the enactment of task B is performed in task B1 by
one person, and the rest is performed in B2 by someone else.

Fig. 5(b) presents a set of transformations for the specification
workflow A ! B ! C ! D that are prohibited according to the
defined workflow inheritance rules. Sequence of activities should
not be changed (W6). Parallel paths are not allowed (W7, W8) by
which the execution of some core activities might be circum-
vented. While new blocks of activities might be added between
two adjacent existing activities, they should not be connected to
any successor activities (W9, W10). For instance, W3 is an accepted
transformation, but W10 is not. The inheritance rules ensure that
all the core activities are present, and the sequence of their execu-
tion is not altered. Workflow inheritance is a key feature of Indus-
try Foundation Processes. It enables reusability and customization
of IFPs for different project circumstances, and is a basis for IFP
conformance and interoperability.
Table 3
Sample of a RACI chart.

Activities Role 1 Role 2 Role 3 Role 4 Role 5 Start Finish

Activity 1 I R A A I 10-March 18-July
Activity 2 R I A A I 11-September 15-December
Activity 3 I I R I C 14-September 16-November
Activity 4 A R I I A 12-October 03-December



Table 4
Sample IFP inheritance rules to ensure conformance with regulatory requirements or institutional practices.

Category Inheritance rules

Core activities Core activities should not be removed, e.g. request, verify details, respond, and approve in an RFI process
The sequence of core activities should not be modified (W6)
A connection from an activity to any of its predecessor activities might be added (W1)
One core activity may be distributed into two or more activities (W2), e.g. a double-stage approval

Additional activities Additional activities might be added between core activities (W3)
Additional activities should not create a parallel path in the workflow (W7, W8)
But, additional activities might bring the flow to a predecessor activity (W4)
An additional activity can be in relationship to one activity (W5)

Roles & responsibilities Extra roles might be added
A lower-ranked role cannot approve the work of a higher-ranked role
Responsibilities of a role might be delegated to another role
Different roles might have the same responsibility

A

B

C

D

E

A

B

C

D

K

A

B

C

D

G

H

A

B1

C

D

B2

A

B

C

D

L

M

A

B

C

D

A

B

C

D

A

C

B

D

A

B

C

D

G

H

A

B

C

D

N

PF

(b) Prohibited Transformations(a) Accepted Transformations

Fig. 5. Examples of accepted and prohibited transformations.
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4.6. Conformance

Conformance of customized complex processes to their associ-
ated IFP process facilitates transparency, and streamlines process
improvement and reengineering. IFP inheritance as a key property
of the IFP system provides a method for systematic evolution of IFP
processes into more complex customized implementations for a
specific project, while maintaining conformance to requirements.
Enforcing the inheritance rules at the workflow design stage
ensures that sub-classes of a particular workflow are in confor-
mance with its associated IFP. This is called forward conformance
checking. On the other hand, a workflow process can be designed
with no structural restrictions at the design stage. In this case
the customized version of a workflow can then be compared with
its associated IFP according to the inheritance rules, to discover
whether it is in conformance or not. This is called backward confor-
mance checking.

For instance, Fig. 6(a) demonstrates a customized version of the
RFI process which is in conformance with the RFI-IFP process pre-
sented in Fig. 4. However, based on the defined workflow inheri-
tance rules the workflow demonstrated in Fig. 6(b) is not in
conformancewith the RFI-IFP process, because of the direct connec-
tion between activity 6 and activity 18which creates a parallel path.
In Fig. 6, all the core activities that are associated with the set of
activities available in the IFP process are outlined in gray. The addi-
tional activities are outlined in white. The backward conformance
checking is not an easy task for complex implemented versions of
processes, and thus cannot effectively be guaranteed. In this paper,
we present a practical solution for automated backward confor-
mance checking of workflow processes using a first-order logic
language.
5. Validation (functional demonstration)

To illustrate the deployment process for the IFP system and to
validate its functionality and benefits, this paper presents: (1) an
implementation of the RFI-IFP process into aworkflowmanagement
system and its evolution and customization to workflow processes
demonstrated in Fig. 6, using both workflow inheritance rules and
object-oriented programming inheritance constructs and (2) an
application of the principles of the workflow conformance checking
according to the defined workflow inheritance rules, using a first-
order logic language and its associated analyzer tool. Validation
experiments are conducted using over twenty test cases.
6. IFP deployment usingWorkflow Foundation (WF) technology

The IFP system can be deployed via any of several available
open-source or commercial workflow management systems, such
as Activiti, IBM BPM, SAP Business Workflow, Skelta BPM, and several
others. TheWorkflow Reference Model [30] defines the general spec-
ifications of workflow management systems. In this paper we have
used Microsoft Windows Workflow Foundation (WF) technology for
deployment of the IFP system. WF technology is a component of
the .NET Framework in Microsoft Visual Studio. WF 4.5 offers a
declarative programming environment in which the code is sepa-
rated into programming chunks defined as activities. Each activity
is defined as a class, and the flow of code is modeled as a workflow
through the objects of these classes. This model driven develop-
ment is especially useful for managing complex applications and
large codes, to avoid losing the outline of the program through
the code details [31,32].
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The model is then executed by a runtime engine. The runtime
engine or more specifically the Common Language Runtime
(CLR), not only manages the memory but also provides control
for asynchronous (execution of code in a separate thread of CPU)
and parallel execution in a distributed system [33].

WF in the .NET Framework 4.5 offers three control flow struc-
tures: sequence, flowchart, and state-machine. The sequence
workflow model defines the flow of code as a sequence of activi-
ties. The flowchart contains flow control elements and is typically
used to implement non-sequential workflows. In the flowchart
model, the flow of execution of activities is based on the values
of variables. State-machine provides an alternative approach to
model the flow of events that cannot usually be predicted in
advance. This approach relies on states and transitions between
states, and is suitable for modeling workflows that involve human
interactions [31,34].

C# programming language along with Microsoft Windows
Workflow Foundation (WF) has been used to implement three ver-
sions of the RFI workflow: an RFI-IFP workflow that is shown in
Fig. 4, and two more detailed RFI workflows presented in Fig. 6,
one in conformance with the IFP workflow and one that is non-
conformant. For the implementation of workflows, the state-
machine model is used. A graphical representation of the model
for the RFI-IFP prototype is presented in Fig. 7.

To derive more detailed workflows from an IFP, both tradi-
tional programming inheritance which is part of object-oriented
programming languages as well as the workflow inheritance
which is based on the defined inheritance rules are required.
The programming inheritance is used whenever a new activity
can be defined as part of an existing activity. For example, in
Fig. 6(a) activity 9 is an automated warning to activity 8, and thus
can be implemented inside activity 8 using programming inheri-
tance available in the programming language – in this case C#.
However, in many cases the new activity cannot be merged into
its predecessor or successor, i.e. when the new activity is per-
formed by a different role, or when the nature of work performed
Fig. 7. Implementation of the RFI-IFP workflow as a state machine model.
by the new activity is different. For example, activity 7 in Fig. 6(a)
cannot be merged into activity 8, because they are being per-
formed by different roles (people). In such cases the programming
language inheritance is not sufficient – the workflow inheritance
is then used.

Construction industry workflow processes, such as the RFI pro-
cess, are typically enacted over distributed systems. The flow of work
or information is being sent to different stakeholders who are able to
login and perform one or more steps of the workflow. Microsoft Win-
dows Workflow Foundation fully supports parallel and distributed
computing and is a suitable platform for developing distributed sys-
tems. In WF 4.5 the process logic is defined as a workflow which is
executed by the runtime engine. The selected project type in Visual
Studio determines the type of application (distributed or centralized)
and the required user interface. Console applications print on the
default console, but windows-client applications and web-client
applications require their own user interfaces.

Web-client applications which are used for distributed systems
are the most representative implementation for the RFI process.
However, to scale down the complexity for functional demonstra-
tion and validation, a windows-client desktop application has been
developed using Microsoft Workflow Foundation technology and
C# programming language. Since we have used classes in the desk-
top implementation that are typically used in distributed systems
for long-lasting processes, the implementation would not be con-
siderably different on a distributed setting, and thus the validation
is realistically valid even for a distribute system.

While the application is running in the system, several
instances of the RFI workflow process can be initiated and be
enacted simultaneously. Different users can login and complete
their associated tasks. When an instance is waiting for response,
it is unloaded from memory to a database, and as soon as a
response from a process stakeholder is received, it is loaded to
memory and continues its execution steps. The process model is
saved in a XAML file – a type of XML file developed by Microsoft.
This XAML file is used as an input to the automated workflow con-
formance checking tool, as described next.

7. Automated workflow conformance checking

Workflow inheritance/conformance is formally defined in terms
of the graph dominators concept from compilers [35–37]. The dom-
inators concept applies to directed graphs with distinguished start
and end nodes. The graph must be connected: that is, every node
must be reachable from the start, and the end must be reachable
from every node. These conditions are true of well-formed com-
puter control flow graphs and also of workflow graphs.

A node d dominates node n if every path from the start node to n
mustgo throughd [35–37]. Similarly, a nodeppost-dominatesnoden
if every path from n to the end nodemust go through p [35–37]. The
immediate dominator is the dominator closest to the node. Similarly,
the immediate post-dominator is the post-dominator closest to the
node. Graph dominators can be computed in quadratic time [36].

A customized workflow is said to conform to a specification
workflow if the following three conditions are met:

1. The customized workflow contains all of the steps (nodes) in
the specification workflow.

2. For every step X that exists in both the specification and cus-
tomized workflows, X’s immediate dominator in the specifica-
tion workflow is one of its dominators in the customized
workflow.

3. For every step Y that exists in both the specification and cus-
tomized workflows, Y’s immediate post-dominator in the spec-
ification workflow is one of its post-dominators in the
customized workflow.
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These conditions formalize the intuitions that steps in the spec-
ification workflow cannot be skipped and that new steps may be
added. Using these conditions, an edge e from source node s to tar-
get node t is classified as a skip edge if either the source node s fails
to meet condition 2 above, or the target node t fails to meet condi-
tion 3.

An algorithm to assess workflow conformance is as follows:

1. Confirm that both the specification workflow and the cus-
tomized workflow are well-formed. If not, report malformed
workflow and terminate.

2. Confirm that the customized workflow contains all of the steps
in the specification workflow (condition 1). If not, report non-
conformance due to step deletion and terminate.

3. Compute dominators and post-dominators for every node, in
both the specification workflow and the customized workflow.

4. For every node that exists in both specification and customized
workflows, check that the immediate dominator in the specifi-
cation workflow is still a dominator in the customized workflow
(condition 2 above). If not, report edges that terminate at such
nodes as skip edges.

5. For every node that exists in both specification and customized
workflows, check that the immediate post-dominator in the
specification workflow is still a post-dominator in the cus-
tomized workflow (condition 3 above). If not, report edges that
originate at such nodes as skip edges.

6. If no skip edges, then report conformance.
7. Terminate.

This algorithm has been implemented in the Alloy logic lan-
guage [38], so that specific pairs of workflows can be automatically
checked for conformance using the associated Alloy Analyzer tool.
An alternative implementation could be written in a conventional
imperative programming language (e.g., Java, C, etc.) using one of
the well known algorithms for graph dominators (e.g., [36,37]).
7.1. The Alloy language

Alloy has three advantages over a conventional imperative lan-
guage for this task. First, the Alloy language is designed for working
with rich graph-like structures, whereas conventional imperative
programming languages are not (SETL is a notable exception
[39]). Second, the Alloy Analyzer includes a visualizer for inspect-
ing the inputs, outputs, and state of the program. Finally, in addi-
tion to running the program with specific inputs, the Alloy
Analyzer can also automatically generate test inputs for sub-
procedures or the program as a whole.

The Alloy language is a first-order logic with sets, relations, and
transitive closure. It is typically used for writing specifications of
rich graph-like data structures, which are structurally similar to
workflows. The Alloy Analyzer translates the Alloy first-order logic
to propositional logic (i.e., Boolean formulas) by providing finite
bounds for the quantifiers. If the finite bounds used for translation
are insufficient, then the resulting Boolean formula is an approxi-
mation of the original first-order formula. For example, if the orig-
inal formula quantifies over an infinite set such as the integers then
the bounds will be insufficient. Since workflows are always finite
structures, and from a computational standpoint not particularly
large, the bounds for the translation can always be adequate for
workflows.

The computational complexity of computing dominator trees is
merely quadratic [36], which is well within the expressiveness of
Boolean formulas (NP-complete [40]). So the Boolean formula pro-
duced by the Alloy Analyzer is a faithful representation of the prob-
lem of computing the conformance of two workflows. Modern
Boolean Satisfiability solvers routinely solve formulas with tens
of thousands of variables and hundreds of thousands of clauses.
The Boolean formulas produced for workflow conformance check-
ing typically have several thousand variables and several thousand
clauses, and solve in a few tenths of a second using MiniSAT [41]
on an old laptop (AMD A4-3300 M processor running at 1.9 GHz;
manufactured in 2011). Workflow conformance checking is well
within the capabilities of modern SAT solvers.

In software engineering, Alloy is used for analyzing software
designs, including analyzing imperative programs for conformance
with their logical specifications [42]. The workflow-specification
conformance problem is similar to, but importantly different from
the program-specification problem: most importantly, workflow
conformance checking is only concerned with the arrangement of
the steps, and not with the outputs of the workflow. Program-
specification checking is concerned with the outputs computed by
the program. Workflows involve highly trained people exercising
professional judgments in complex real-world situations, rather
than computers merely following instructions. The workflow-
specification conformance problem is more similar to the subgraph
isomorphism problem [43]: are the steps of the specification
workflow embedded in the customized workflow in a way that
preserves their ordering? The subgraph isomorphism problem is
simplified here by fixing the node correspondences based on the
node labels. Order preservation is relaxed from the subgraph
isomorphism problem by permitting the insertion of nodes and the
insertion and removal of edges. Permissible order-preserving
modifications are formalized in terms of dominators and post-
dominators.

7.2. An example

Fig. 8 shows the Alloy visualization of the conformance check of
example workflow W9 from Fig. 5. Fig. 8a shows the specification
workflow (ABCD). Fig. 8b shows the customized workflow (W9).
Fig. 8c shows the conformance analysis. The gray nodes are those
that exist in both the specification and customized workflows.
The white nodes are new nodes in the customized workflow. Black
edges are those that exist in both workflows. Gray edges
exist in the specification workflow, but have been deleted in the
customized workflow ðB ! CÞ. Green edges are new legal forwards
edges in the customized workflow ðN ! P; P ! CÞ.

As discussed above, workflowW9 does not conform to the spec-
ification workflow. This is illustrated in the analysis by the red skip
edges in the analysis: B ! N and P ! D (Fig. 8c). The dominator
subset analysis reports that node B has a problem because in the
specification workflow B’s post-dominators include C and D;
whereas in the customized workflow B’s post-dominators include
D;N, and P: it is fine to add N and P, but not to remove C. Similarly,
the dominator subset analysis reports that node D has a problem
because in the specification workflow D’s dominators include
A; B, and C; whereas in the customized workflow D’s dominators
include A; B; N, and P: it is fine to add N and P, but not to remove
C. As a consequence of this dominator analysis, the edges B ! N
and P ! D are reported as skip edges.

7.3. Code listing

Fig. 9 lists an excerpt of the Alloy code for workflow confor-
mance checking that shows the classification of skip edges based
on the dominator analyses. An expression such as n.idom1 evalu-
ates to the immediate dominator of node n in the specification
workflow. An expression such as n.îdom2 evaluates to the set of
all dominators of n in the customized workflow. Here idom1 and
idom2 are functional binary relations that map nodes to their
immediate dominator in the specification or customized workflow,



Fig. 9. Alloy specification (excerpt) of workflow conformance for steps 4 and 5 of the algorithm.

Fig. 8. Visualization of conformance check for workflow W9 (Fig. 5).
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respectively. The tilde (^) operator computes the transitive closure
of a binary relation: i.e., finds the entire set of dominators. This
code is more concise in Alloy than it would be in a conventional
imperative programming language.

7.4. Case study

Fig. 10 shows the overlay analysis and visualization of the cus-
tomized RFI workflow from Fig. 6b with respect to the IFP specifi-
cation workflow in Fig. 4. Fig. 10 was generated automatically,
from XAML files representing the RFI and IFP workflows of
Figs. 6b and 4, respectively. The XAML files are automatically trans-
lated to Alloy and then checked for conformance.

The visual conventions in Fig. 10 are the same as in Fig. 8: gray
nodes are those in the specification workflow; white nodes are
those added in the customization; black edges exist in both
workflows; gray edges are those that have been removed in the
customization; green edges are new forward edges; blue edges
are new back edges; red edges are skips. One of the purposes of this
customization was to add the path to RespondDirectly, bypassing
the ConsolidateAndEndorse and Approval steps. Of course bypass-
ing steps is not permitted, so this customization is deemed to be
non-conformant with the specification (Fig. 4). The Alloy imple-
mentation correctly identifies the edge from RespondDirectly to
ResponseCloseOut as the skip edge.

In summary, the automated workflow conformance checking
tool is comprised of three components: (1) Workflow Designer,
(2) Workflow Analyzer, and (3) Visualizer, which all work well
together to streamline the process of workflow conformance check-
ing. Specification and customized workflows are being designed in
Visual Studio Workflow Designer and are stored as XAML files. A
Java application converts XAML files (state-machine or flowchart)
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Fig. 10. Overlay analysis of non-conformant customization of the RFI process.
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to Alloy format. The Analyzer uses the developed Alloy algorithm to
analyze and compare workflows using inheritance rules and deter-
mine conformance or non-conformance of the customized work-
flows compared to the specification workflow. The analysis result
is then demonstrated via the Visualizer (see Fig. 11).
Fig. 11. Three components of the deve
8. Limitations and future work

Despite the potential benefits of the Industry Foundation Pro-
cesses for the construction industry, this study has particular
limitations:
loped conformance checking tool.
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1. Although the development approach, implementation tools,
and validation methodology for conformance checking of the
proposed IFP system have been functionally demonstrated in
this paper, a full scale validation via implementation of the
IFP system in one or two real projects have not been performed
yet, and is considered a future work. Such a full scale imple-
mentation and validation would be a better examination and
evaluation for the practical benefits of the IFP system within
the construction industry.

2. Two main benefits of the IFP initiative are facilitation of confor-
mance and interoperability for complex construction industry
workflow processes. The definitions and discussion in this
paper are limited to the process conformance details and the
automatic conformance checking tool. The IFP interoperability
will be discussed in a separate publication.

3. In the construction industry, workflows are often executed in a
distributed setting. The prototype implementation presented in
this paper has been developed using Microsoft Workflow Foun-
dation technology that fully supports distributed systems, but it
has been implemented as a desktop application. Since Work-
flow Foundation facilitates separation of process design and
process enactment from the type of application, and because
the same classes that are typically used in distributed systems
have been used in this desktop application, the implemented
system can be considered an impartial validation for implemen-
tation of the RFI process. However, it is still a limitation of this
study which can be addressed in future work by developing a
web-based distributed system.

4. The IFP system and its ontology components have been defined
based on careful investigation and analysis of several process
implementations, and consultation with industry experts; how-
ever, having access to and analyzing process implementations
in more projects might lead to some updates on the definition
of components or details.

5. The inheritance rules that have been used for workflow confor-
mance checking in this paper are strict rules that do not allow
skipping any of the core activities or changing the sequence of
them. As a future work these rules can be relaxed to some
extent, i.e. to allow change in the sequence of particular core
activities, or to allow skipping particular core activities in cer-
tain situations, and investigating how these changes affect the
conformance checking algorithm.

6. The CAP Theorem [44,45] states that any distributed system
may have at most two out of the three of Consistency, Availabil-
ity, and Partitioning. The prototype presented here requires a
distributed system foundation that provides Consistency and
Availability, and therefore cannot be Partitioned. Future work
could explore different points in this system-design trade-off
space.

9. Summary and conclusions

This paper introduces the concept of Industry Foundation Pro-
cesses (IFP) and provides an ontology for its development and
application. IFPs are simple structured processes with the essence
of industry best practices. They possess particular features, such as
abstraction and inheritance that enable them to systematically be
expanded to more complex processes tailored for specific types
and conditions of construction projects. Explicit workflow inheri-
tance rules not only allow methodical customization of IFP pro-
cesses, but also enable automated conformance checking of any
workflow with its associated IFP process. In addition, an accepted
core structure for an IFP process facilitates process interoperability,
which will be discussed in more detail in a separate publication.

Furthermore, this paper discusses the workflow inheritance
notion and compares it with the traditional programming inheri-
tance concept. It clarifies that they are different, and both are nec-
essary for implementation of the IFP system. A prototype example
of an IFP for the Request for Information (RFI) process – a com-
monly used process in the construction industry – has been devel-
oped in this paper, using C# programming language and Microsoft
Workflow Foundation technology, to demonstrate the concept of
an IFP system. The concept and methodology introduced, however,
can be applied to any other common process in the construction
industry, such as risk management, contract management, quality
management, and lessons learned.

In addition, automated conformance checking of any workflow
with its associated IFP, based on the workflow inheritance rules,
has been addressed in detail by developing an algorithm in a
first-order logic language. Alloy, a structural modeling language
based on first-order logic, developed by the Software Design Group
at MIT, is used to compare a customized version of a workflowwith
its associated IFP. The XAML file of the developed workflow in
Visual Studio environment contains the structure of the workflow.
This structure is transformed into the format accepted by Alloy to
automate the conformance checking process directly from the
workflow development environment.

Introducing the theory, application, and potential value of the
IFP system is expected to open new research initiatives to enhance
process conformance and improve process interoperability in the
domain of the construction industry. Developing IFP processes
for some of the known processes, such as Change Management,
Risk Management, or Lessons Learned, based on industry best prac-
tices, and expanding the concept of IFP interoperability in more
detail are among the next steps of this research initiative.

While industry partners and experts consulted in this research
process highly value the automated conformance checking demon-
strated here as a tool for quality assurance and risk management
purposes, future research that would compare its deployment on
a large set of mega-projects with current workflow management
and implementations protocols would be worthwhile for also val-
idating the relationships hypothesized in Fig. 1.
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