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Wide spread monitoring cameras on construction sites provide large amount of information for construc-
tion management. The emerging of computer vision and machine learning technologies enables auto-
mated recognition of construction activities from videos. As the executors of construction, the
activities of construction workers have strong impact on productivity and progress. Compared to
machine work, manual work is more subjective and may differ largely in operation flow and productivity
among different individuals. Hence only a handful of work studies on vision based action recognition of
construction workers. Lacking of publicly available datasets is one of the main reasons that currently hin-
der advancement. The paper studies worker actions comprehensively, abstracts 11 common types of
actions from 5 kinds of trades and establishes a new real world video dataset with 1176 instances. For
action recognition, a cutting-edge video description method, dense trajectories, has been applied.
Support vector machines are integrated with a bag-of-features pipeline for action learning and classifica-
tion. Performances on multiple types of descriptors (Histograms of Oriented Gradients – HOG,
Histograms of Optical Flow – HOF, Motion Boundary Histogram – MBH) and their combination have been
evaluated. Discussion on different parameter settings and comparison to the state-of-the-art method are
provided. Experimental results show that the system with codebook size 500 and MBH descriptor has
achieved an average accuracy of 59% for worker action recognition, outperforming the state-of-the-art
result by 24%.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Productivity in the construction industry has been declining
during the past few decades [1]. Since labor accounts for 33–50%
of the total cost of a project, their productivity is a key factor in
schedule and budget control [2]. One efficient way to manage
workers’ performance is to monitor their activity on site, analyze
the operation in real time, optimize the work flow dynamically
[3–6]. Historical observation can also benefit future worker train-
ing and education.

To monitor worker activities, current efforts usually lean on
foremen collecting information from construction site by means
of onsite observations, survey or interview [7]. Post processing is
often required to analyze the collected data manually. The entire
procedure is labor intensive, cost sensitive and can be prone to
error. As reported in [8], for a case study of 870 m2 tiling trade,
336 manual observations are required to measure the six workers’
productivity. The observation has to be made four rounds a day,
lasting for 14 days. Not to mention each observation has to record
the specific task in detail, as well as the active and inactive time.
There is an urgent need of automated activity analysis of construc-
tion workers.

Recent years, with the prevalence of cameras in construction
sites, images and videos become low-cost and reliable information
resources. The emerging of computer vision and machine learning
technologies enables analyzing construction activities automati-
cally. In the past decade, many researchers have dedicated to this
field and made remarkable achievements [9–11]. However, some
open challenges remain unsolved. For example, the behavior of
construction workers needs to be further explored.

Recognition of worker behavior can be performed at various
levels of abstraction. As suggested by Moeslund et al. [12], there
are ‘‘action primitives”, ‘‘actions”, and ‘‘activities”. An action prim-
itive is an atomic movement usually in limb level, e.g., pick up a
brick. An action is composed by a series of action primitives, either
sequential different primitives or repetitive single primitive, e.g.,
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laying a brick contains steps of ‘‘pick up a brick”, ‘‘get mortar with a
trowel”, ‘‘smear the mortar”, ‘‘place the brick”, and ‘‘knock the
brick with the trowel to fasten”. An activity is in the highest level,
involving in a number of subsequent actions, e.g., building a wall
requires measuring, alignment, and laying bricks.

In this paper, we focus on worker action recognition from pre-
segmented video clips. If integrating with action detection or seg-
mentation in longer videos, worker productivity can be assessed
automatically. Furthermore, action recognition can form initial
steps towards worker activity analysis.

The contributions of this paper are twofold. First, a large scale
dataset of worker actions covering a wide range of trades has been
constructed. Existing human action data sets mainly focus on gen-
eral body movements (walking, waving, turn around) [13–15] or
common daily activities (sports [16,17], cooking [18–22], etc.).
Datasets on specialty activities are rare, which by their nature have
smaller inter-class difference and introduce difficulties in recogni-
tion. Second, how existing action recognition algorithm will per-
form on a large scale construction dataset is unknown, especially
when both coarse-grained and fine-grained actions coexist. By
adopting a cutting-edge video representation method – dense tra-
jectories and evaluating on various feature descriptors, we achieve
an average accuracy of 59% for worker action recognition, outper-
forming the state-of-the-art result by 24%.

The proposed worker action dataset is available upon request. A
preliminary version of this article has appeared in [23].

The rest of the paper is organized as follows. Section 2 reviews
the related literatures and discusses existing challenges. Section 3
describes the methodology in detail by illustrating dense trajecto-
ries algorithm and related feature descriptors, as well as the classi-
fication method. Section 4 presents the new data set. Section 5
gives out experimental results with discussion on parameters set-
ting and comparison against state-of-art results. Section 6 con-
cludes the paper.
2. Related work

This section introduces the state-of-the-art human action
recognition from different aspects and discusses open challenges
in worker action recognition.
2.1. Action recognition in computer vision field

Action recognition has gained plenty of interest in computer
vision field due to its potential in a wide range of applications, such
as robotics, video surveillance, and human–computer interface
[24,25]. During the past decades, numerous approaches have been
proposed for human action recognition. One of the most successful
line of work is the Bag-of-Feature (BoF) [26], which detects local
features in video frames, represents videos with feature descrip-
tors, generates codebook by clustering on features and obtains a
sparse histogram representation over the codebook for learning
and classification. Action is spatial movement across time. Local
spatio-temporal features encode video information at a given loca-
tion in space and time [27]. Therefore they are suitable for action
recognition. Feature detection approaches range from extended
Harris detector [28], Gabor filter-based detector [29] to Hessian
matrix based detector [30]. Some widely used feature descriptors
are higher order derivatives, gradient information, optical flow
and brightness [14,26,29]. Other researchers extend successful
image descriptors to spatio-temporal domain for action recogni-
tion, such as 3D-SIFT [31], HOG3D [32], extended SURF [30], and
Local Trinary Patterns [33]. Instead of representing features in
the joint 3D space–time domain (wherein spatial information in
images is 2D), a more intuitive option is to track feature points
across time. Wang et al. [34] proposed to track the densely sam-
pled feature points across the optical field and represent features
combining multiple descriptors. Their method achieved a state-
of-the-art performance on several common datasets. However,
how it will score on specialty activities is still unknown.

2.2. Vision-based construction operation analysis

During the past decade, many researchers have applied com-
puter vision technologies for construction operation analysis. For
more comprehensive reviews, please refer to [9–11]. One main
stream method is to detect, track workers and equipment and ana-
lyze their activities by poses or trajectories combining prior knowl-
edge. Zou and Kim [35] track the excavator by appearance and
judge the idle time through its movement status. Azar et al. [6]
detect and track the excavator and dump truck simultaneously to
analyze the dirt loading cycle. Gong and Caldas [36,37] detect a
concrete bucket in video streams through machine learning and
estimate its travel cycles based on the prior knowledge of con-
struction site layout. Yang et al. [38] perform similar work of mon-
itoring concrete placement activity by tracking the crane jib
through 3D pose estimation. Peddi et al. [39] track workers tying
rebar through blob matching, extract skeletons for pose estimation
and classify their working status into effective, ineffective and con-
tributory by poses. Gong and Calda [40] evaluate several popular
algorithms for construction object recognition and tracking and
develop a prototype system for construction operation analysis.
Bugler et al. [41] propose a novel scheme to combine tracking
based activity monitoring with photogrammetry based progress
measurement for excavation process analysis.

However, in cluttered construction scenarios, it is difficult to
detect and track construction entities stably through a long dura-
tion [42]. Errors from previous stages (detection and tracking)
might accumulate and affect the activity analysis adversely. To
solve this problem, a recent trend is to adopt the Bag-of-Feature
pipeline for action recognition without detecting or tracking any
construction entities explicitly. Gong et al. [43] utilize the 3D-
Harris detector [28] as the feature detector, HoG (Histogram of
Gradient) and HoF (Histogram of Optical Flow) as the feature
descriptor, and Bayesian network models as the learning method
for worker and backhoe action recognition. Golparvar-Fard et al.
[44] focus on action recognition of earthmoving equipment. They
use Gabor filter as feature detector [29], HoG and HoF as descriptor
and Support Vector Machines for action learning. Both the above
mentioned works [43,44] are tested on relatively small datasets.
The average numbers of action types per each dataset are four
and three separately. What is more, they all adopt a joint spatio-
temporal feature description. The space domain and the time
domain in videos have different characteristics naturally. It may
not be reasonable to simply join them together.

Apart from obtaining videos by common cameras, adopting
RGB-D cameras becomes a new trend in construction operation
analysis [4,3,45,46]. Since RGB-D cameras can capture depth infor-
mation, skeleton information is usually extracted to infer body
poses related to various worker actions.

2.3. Datasets for action recognition

As a prerequisite for evaluation and comparison, a large amount
of human action datasets have been created [47]. The complexity
of existing datasets increases as that of the corresponding algo-
rithms. Early age data sets concern more for full body actions
and are usually captured under control environments. Typical
examples are the Weizmann dataset [13], the KTH dataset [14]
and the UIUC dataset [15]. Soon after there comes a need
for real-world videos with less limitation on environment,
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illumination, point of view and even performers (actors). Thanks to
the prevalence of digital movies and web videos, many compre-
hensive datasets with diverse action categories have been col-
lected, such as the YouTube dataset [48], the Holloywood2
dataset [49], the UCF sports dataset [16], the Olympic sports [17],
the UCF50 dataset [50] and the HMDB51 dataset [51]. Surveillance
datasets care more for the interaction between people [52,53] and
the trajectories of movement, and are usually recorded from wider
view angle and in longer duration [54–56].

Instead of focusing on general body actions, a recent trend is to
explore goal-directed actions. Assisted daily living (ADL) datasets
[57] fall into this category. Compared to coarse-grained activities
for full-body motions, ADL activities are more fine-grained and
share smaller inter-class variability, which propose serious chal-
lenges for action recognition. Kitchen duty is the most heavily
studied scenario. Typical datasets include the CMU-MMAC dataset
[18], the TUM kitchen dataset [19], the MPII dataset [20], the 50
salads dataset [21] and the Serre Breakfast dataset [22]. These
datasets record human subjects preparing various types of food
following given recipes. Beyond daily living activities, very few
researchers study on professional activities from different fields,
such as the automobile industry [58], the medical surgery [59]
and the construction operations [43,44]. However, only the WR
(Workflow Recognition) dataset [58] from the production line of
the automobile manufacturer is made publicly available.

2.4. Open challenges for action recognition of construction workers

Except common challenges in action recognition, such as illumi-
nation change, various view angels and self-occlusion, several
unique issues related with worker action recognition are discussed
as follows:

� Worker actions are combined with both coarse-grained and
fine-grained movements. For example, transporting materials
mainly involve lifting and walking, which are coarse-grained.
But tying rebars requires fine-grained arm and finger move-
ments. This varies from previous studies, which focused either
on coarse-grained actions [51,50] or fine-grained actions
[21,22] only. Since coarse-grained and fine grained actions
may require different granularity of feature description, it is
interesting to explore how a single algorithm will perform on
mixed data.

� The inter-class variability of different worker actions might be
small while the intra-class variability might be big, which is
extremely challenging for action recognition. For example, a
worker bolting rebars may visually resemble another worker
hammering nails since they all bent over with a tool in hand.
While even performing the same task, the work flow from dif-
ferent individuals may vary largely due to personal habits.
Fig. 1. The system
� Worker actions vary from trades to trades. Previous work [43]
only studies five action categories of formwork workers. There
are many other types of trades to be explored, such as carpenter
and ironworker. A comprehensive publicly available dataset is
missing.

Aiming at the above mentioned challenges, the paper proposes
a comprehensive worker action dataset with 1176 video clips, cov-
ering 11 types of worker actions from various trades. Both coarse-
grained and fine-grained actions are involved. Meanwhile, multiple
factors which may affect the action presentation in video are con-
sidered, such as illumination, view angle, workers’ gender and skill
level. To evaluate on existing action recognition algorithms, dense
trajectories is adopted for video representation hence dense sam-
pling exhibits superiority over sparse feature points and achieves
state-of-the-art performance on multiple datasets [34].

3. Methodology

The overall workflow of the system is shown in Fig. 1. As it can
been seen, the system is built upon a Bag-of-Feature structure.
First, video clips are represented by visual feature descriptors.
Specifically, dense trajectories are generated by dense sampling
and tracking on a dense optical flow field. Then various descriptors
are computed along the dense trajectories. Second, codebooks per
each description channel are constructed using k-means clustering
algorithm and descriptors are quantized by assigning to the near-
est vocabulary word using Euclidean distance. Third, a non-linear
SVM (Support Vector Machines) is adopted for classification. More
details are illustrated as follows.

3.1. Dense trajectories generation

Unlike [43,44] which use spatial–temporal features for video
representation, we adopt the dense trajectories method [34] to
model videos. To make the paper self contained, a brief description
is given below.

Dense trajectories are obtained by densely sampling and track-
ing feature points on multiple spatial scales separately. For every
spatial scale, feature points are densely and equally sampled by
step of W pixels. And the scale increases by a factor of 1=

ffiffiffi
2

p
. For

future tracking, sampled points in homogeneous image areas is
removed.

Dense optical field enables densely tracking features effort-
lessly, and ensures robust tracking of fast irregular motion patterns
due to its smoothness nature. For an image frame It , suppose that
its dense optical flow field xt ¼ ðut;v tÞ is extracted, where ut and
v t represent the horizontal and vertical component separately.
For a given point Pt ¼ ðxt ; ytÞ in this frame, its tracked position in
the next frame Itþ1 is smoothed by median filtering on xt:
overview.
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Ptþ1 ¼ ðxtþ1; ytþ1Þ ¼ ðxt; ytÞ þ ðM �xtÞjðxt ;ytÞ
where M is the median filtering kernel with size in 3� 3 pixels.

Trajectories are formed by concatenating points from subse-
quent frames: Pt ; Ptþ1; Ptþ2. To restrain tracking drifting, the length
of the trajectories is limited to L frames. Static trajectories and tra-
jectories with sudden large displacements are filtered out in post
processing steps. To ensure dense coverage of trajectories, a new
point is added if no tracked point is found in a W �W
neighborhood.

3.2. Descriptors

To depict motion pattern, descriptors are computed within a
space–time volume aligned with the dense trajectories. The vol-
ume size is N � N � L, where N is in pixels and L is the frame length.
Considering the structure information, the volume is further
divided into a smaller size nr � nr � ns.

Three types of descriptors, namely HoG (Histograms of Oriented
Gradients) [60], HoF (Histogram of Optical Flow) [26] and MBH
(Motion Boundary Histograms) [61] are tested in our system. Each
has its own characteristics. HoG is designed to encode static
appearance information while HoF is good at capturing the local
motion. Optical flow represents the absolute between continuous
frames. By computing the gradient of the optical flow, MBH keeps
the relative motions between pixels and removes constant motions
from camera.

3.3. Codebook generation and vector quantization

A large amount of features (in the order of 105 or even 106 in our
experiments) will be extracted along the dense trajectories, which
poses big difficulties for learning and classification. The core
strength of the Bag-of-Features approach is to form a histogram like
compact representation for each candidate by mapping computed
features to a codebook. Usually codebook is generated by clustering
on training features. Cluster centers are the vocabularywords. Then
features are assigned to its nearest words. A histogram like sparse
vector is finally computed by the occurrence counts of words.

3.4. Learning action patterns using support vector machine

To learn and predict worker actions, a non-linear support vector
machine with RBF � v2 kernel is adopted. Various descriptors can
be combined using the following approach [26]:

KðHi;HjÞ ¼ exp �
X
c2C

1
Ac

DcðHi;HjÞ
 !

where DcðHi;HjÞ ¼ 1
2

Pv
n¼1

ðhin�hjnÞ2
hinþhjn

. v is the vocabulary size. Ac is the

mean value of the distances between all training samples for a
Fig. 2. Examples of va
channel c. For multi-class classification, SVM classifier is trained
using a one-against-rest strategy for each action type. During test-
ing, classifier with the highest confidential value will dominate
the action type.
4. Dataset

Facing challenges discussed in Section 2, a new worker action
dataset is established. Videos were recorded with handheld cam-
corders from four construction sites. The ongoing projects in these
sites are mainly reinforced concrete buildings. We focus on direct
work according to CII’s definition [7]. At current stage, the scope
is limited to manual work with handheld tools. Therefore workers
working with heavy machines or vehicles are out of the range.
After two months observation, 11 frequently observed actions
are selected to form the dataset. They are ‘‘LayBrick”, ‘‘Transport-
ing”, ‘‘CutPlate”, ‘‘Drilling”, ‘‘TieRebar”, ‘‘Nailing”, ‘‘Plastering”,
‘‘Shoveling”, ‘‘Bolting”, ‘‘Welding”, ‘‘Sawing”. A wide range of
trades, namely carpenter, ironworker, mason, plasterer and welder,
are covered.

While capturing, different weathers, illuminations, points of
views, scales and occlusions are covered. Fig. 2 shows examples
of various view angles in nailing and tying rebar. The gender of
construction workers, as well as their skill levels, is also consid-
ered. Most importantly, the recorded worker actions were com-
pletely unscripted, unrehearsed and undirected.

Finally, the recorded videos are segmented into 1176 clips with
action type annotated manually. Each clip only contains a single
action type. Snapshots of video frames from different actions are
shown in Fig. 3. Notice that in the 11 types of actions, some of them
are cyclic with clear starting point and ending point, such as
‘‘LayBrick”, ‘‘CutPlate”,‘‘Drilling”, ‘‘TieRebar”,‘‘Nailing”, ‘‘Shoveling”
and ‘‘Bolting”. They are segmented by the action cycle, such as lay-
ing a brick, drilling a hole or tying a knot. Some of the actions are
repetitive with action primitives, such as ‘‘Transporting”, ‘‘Plas
tering”,‘‘Sawing”, and ‘‘Welding”. It is either difficult to define a
clear beginning and ending point for these types of actions. Or even
with a task duration, it is too long to be an independent unit for
action classification. For example, plastering a wall can take tens
of minutes. Cutting a wooden plate into two pieces by sawing
may need at least several minutes. For these types of actions, we
segment them by action primitives. Usually a video clip contains
8–10 repeated primitives in several seconds duration.

Some features of the proposed dataset are as follows. First, com-
pared to other human action datasets, which are either coarse
grained [14,17] or fine grained [20–22], our dataset is combined
with both fine grained and coarse grained actions. Some construc-
tion tasks involve both limb movement and figure movement. Sec-
ond, worker actions exhibit low inter-class variability and high
intra-class variability. Third, since the recorded videos are com-
pletely unscripted and undirected, unexpected situation happens
rious view angles.



Fig. 3. Snapshots of all actions in our dataset.
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Table 1
Statistical information of the proposed dataset.

Action type Number
of Clips

Number of
workers

Mean of clips
length (s)

Variance of clips
length (s)

LayBrick 190 18 9.8 3.6
Transporting 54 25 5.1 1.7
CutPlate 53 7 13.1 5.6
Drilling 58 5 5.9 2.4
TieRebar 157 10 5.1 1.4
Nailing 132 17 5.7 2.5
Plastering 168 12 9.8 5.2
Shoveling 185 22 3.8 1.7
Bolting 79 18 7.2 2.8
Welding 50 4 3.6 2.0
Sawing 50 8 5.9 1.1

Average 107 13 6.8 2.7

Table 2
Comparison with other datasets.

Reference Dataset Number
of clips

Number of
action types

Length of
video
clips (s)

Gong et al. [43] Backhoe 150 3 10
Worker 300 5 5

Golparvar-Fard et al. [44] Excavator 627 3 6
Truck 233 3 9

The proposed dataset Worker 1176 11 6.8
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occasionally. For example, in the videos there are interrupted
action cycle. We still keep these data since that is what will also
happen in real applications. Fourth, though we mainly focus on
construction tasks performed by a single worker, we reserve those
video clips containing small cooperations by multiple workers. As
shown in Fig. 3, two workers are cooperating to cut a plate. Some-
times it is common that a second worker just happens to be in the
camera view and introduces some disturbing movement. In a
word, we tried to keep all the real situations in the proposed
dataset.

All video are in the resolution of 320 by 240 with the frame rate
of 30 f/s. The statistical information of the proposed data set is
summarized in Table 1. It can be seen that the average number
of clips per each action type is 107 performed by 13 workers.
The average video length for all action types is 6.8 s with a 2.7 s
variation. The variance per each action type is relatively high due
to aforementioned data features.

As can be seen in Table 2, compared to the datasets from our
two closely related references [43,44], the proposed dataset has
the most video clips covering the biggest number of action
categories.
1 For interpretation of color in Figs. 5 and 7, the reader is referred to the web
version of this article.
5. Experimental results

In the experiment, dense trajectories are computed from input-
ting videos using Wang’s method [34]. Parameters are kept the
same as in [34], W ¼ 5, L ¼ 15, N ¼ 32, nr ¼ 2, ns ¼ 3. Three types
of descriptors HoG, HoF and MBH are computed along the trajecto-
ries to depict the motion. The descriptor size is 96 for HoG with 8
bins quantization and 108 for HoF with 9 bins quantization (with a
zero bin). Specifically, the MBH descriptor is split into horizontal
component MBHx and vertical components MBHy, whose size
are both 96.

The proposed data set is divided into four independent groups,
where videos in separate groups are taken from different actors.
We apply Leave-One-Group-Out Cross-Validation for training and
testing. During training, a subset of 100,000 randomly selected fea-
tures is clustered using k-means to generate codebooks for each
description channel. Then all features are quantized by assigning
to the nearest vocabulary word using Euclidean distance. SVM clas-
sifiers with RBF kernel are trained using quadratic programming.
All experimental results given below are averaged through four
folds cross validation.

To evaluate the performance results, the confusion matrix and
average per class accuracy have been adopted. The confusion
matrix Cði; jÞ is a percent count of observations known to be type
i but predicted as type j. Each column of the matrix represents
the instances in a predicted action class, while each row represents
the instances in an actual action class. The average per class accu-
racy is defined as:

ACC ¼
Xi¼j¼N

i¼j¼1

Cði; jÞ=N

where N is the number of action categories.
The performance of the system has been tested on each individ-

ual descriptor (HoG, HoF, MBH), and also the combination of all
descriptors using the multi-channel approach as aforementioned.
Notice the performance of MBH is the combination of MBHx and
MBHy using multi-channel approach. The impact of various code-
book size on the system has been investigated as well. Lastly, we
performed the algorithm from Gong et al. [43] on the proposed
dataset for comparison.

5.1. Experimental results on various descriptors

Though it has been reported [34] that the combination of all
descriptors outperforms each individual descriptor on action
recognition, the result is not achieved on coarse-grained and
fine-grained mixed action dataset. It would still be safe to test on
individual descriptor first and then their combination. To test the
impact of various descriptors on system performance, the number
of visual words per descriptor is fixed to 4000, which is shown to
perform well on a wide range of datasets [34]. As can been seen
in Fig. 4, the average confusion matrices for each type of descriptor
and their combination are given separately. Generally speaking,
the top three action categories with high accuracy are ‘‘LayBrick”,
‘‘TieRebar” and ‘‘Transporting”. And the bottom three actions are
‘‘Drilling”, ‘‘Bolting” and ‘‘Sawing”. One reason is that the former
three categories contain obvious movement and relatively stan-
dard workflow. For example, a common ‘‘LayBrick” flow is: ‘‘pick
up a brick”, ‘‘get mortar with a trowel”, ‘‘smear the mortar”, ‘‘place
the brick”, ‘‘knock the brick with the trowel to fasten”. The latter
three categories do not have either large movement or consistent
workflow. For example, when drilling, the worker’s body nearly
holds still, only with the bit spinning rapidly, which is really diffi-
cult to capture in a 30 f/s video. For these types of actions, supple-
mentary information such as tools recognition might be helpful to
enhance the performance [62]. Notice that dense trajectories are
formed by densely sampling all over the images, which is to say,
sematic background information is also critical for action predic-
tion. Future study may seek to encode background and foreground
separately and assign the corresponding features different weights
according to the magnitude of motions. For example, for those
action types with large motions, features on foreground area
should weigh more than those on background area and vice versa.

For a clearer comparison, we plot the average accuracy per each
action type per descriptor together in Fig. 5, where red1 line with
asterisk markers represents descriptor HOG, green line with circle
markers is for HoF, blue line with plus sign markers is for MBH,



Fig. 4. Confusion matrix of action recognition with various descriptors.
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and black line with triangle markers represents the combination of
all three descriptors. The average per class accuracy for each descrip-
tor is 40%, 49%, 56% and 44% for descriptor HoG, HoF, MBH and the
combination of them separately. It can be seen that except for action
type ‘‘LayBrick” and ‘‘CutPlate”, where MBH exhibits slightly weaker
accuracy compared to HoG and HoF, MBH achieves the highest per
action accuracy elsewhere and gives out the best overall perfor-
mance of 56%. This is mainly due to its ability to suppress camera
motion and capture local motion better. Unexpectedly, the combina-
tion of all descriptors does not perform as well as in [34], where it
achieved the best performance in all tested nine datasets. One possi-
ble explanation is that actions in our dataset are not as consistent as
those in other datasets. Some actions are coarse-grained, such as
‘‘Transporting”, ‘‘CutPlate” and ‘‘Shoveling”. Some are fine-grained,
such as ‘‘TieRebar” and ‘‘Bolting”. A few categories are somewhere
in between, such as ‘‘LayBrick” and ‘‘Nailing”, where both coarse
body movement and fine hand movement are involved. A naive com-
bination of all descriptors may affect the discrimination ability
adversely.
5.2. Experimental results on different codebook size

Codebook generation is a key step in Bag-of-Feature pipeline.
The size of codebook dominates the granularity of motion descrip-
tion and then affects the final action recognition performance. Fur-
thermore, since feature quantization is one of the most
computationally expensive step, the codebook size is closely
related with the computation complexity. Previously, a default
value of 4000 is adopted. However, the most appropriate codebook
size is unexplored. To investigate the impact of the codebook size
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on the system performance, the codebook size has been tuned from
100 to 4000 with average accuracy of action recognition shown in
Fig. 6. At this time, the descriptor with best performance – MBH is
chosen. Obviously there are two equal peaks at size 500 and 2000.
And the default value of 4000 only performs better than the worst
case at size 100. Considering the computation complexity, it can be
suggested that 500 is the most appropriate codebook size. For ref-
erence, the best codebook size in [43,44] are 1500 and 350
separately.

5.3. Computation time

Time used for action learning and classification is consumed in
the steps of feature computation, codebook formation, vector
quantization, classifiers training and action type prediction. Except
feature computation which runs in C++ language, other stages are
all implemented in MATLAB. The run-time is obtained on a desktop
PC with a 3.5 GHz quadcore Intel CPU and 16 GB RAM. Keeping
parameters set as aforementioned, the time for computing all three
types of descriptors is around 2 frames/s. Time for codebook for-
mation and vector quantization depends largely on the selected
codebook size. With codebook size 4000, average time for code-
book formation on 100,000 features is around 1000 s. Vector quan-
tization takes approximately 85 s per each video clip. Time for
training 11 classifiers and predicting action type was benchmarked
as 514 and 174 s separately. Notice codebook formation and clas-
sifiers training can all be done as offline processes. So the main
computation bottleneck is at the vector quantization stage.

5.4. Comparison to the state-of-the-art results

As indicated in Table 2, there are two closely related references.
Gong et al. [43] tested their method both on equipment and
worker dataset, while Golparvar-Fard et al. [44] mainly focused
on earthmoving equipment actions. Since we only discuss worker
action recognition in this paper, Gong’s method is applied on our
dataset for comparison. Specifically, Gong et al. [43] adopted 3D
Harris corner detector [28] to model image sequences with HoG
or HoF descriptors. And it was claimed that the configuration of
1500 code words, HoG descriptor, and naive Bayesian model pro-
duces the best classification results [43]. Since we use discrimina-
tive model (SVM) other than generative model (Bayesian model) in
our system, the comparison is limited to the video modeling stage.
We applied 3D Harris corner detector and HoG to our dataset with
SVM for recognition. All parameters are set the same as they are in
[43]. As shown in Fig. 7, red line with asterisk markers is our
method with codebook size 500 and HoG descriptor, blue line with
circle markers is our method with codebook size 500 and MBH
descriptor, green line with plus sign markers is Gong’s method
with codebook size 500 and HoG descriptor, and black line with tri-
angle markers is Gong’s method with codebook size 1500 and HoG
descriptor. The average accuracy for these four setups are 40%, 59%,
35% and 34% separately. It can be concluded that our method per-
forms better than Gong’s method. With the same type of descrip-
tor, dense trajectories models motion better than 3D Harris
corner. And the MBH descriptor enhances the system performance
dramatically.
6. Conclusions

In this paper, we studied vision-based worker action recogni-
tion using the Bag-of-Feature framework. A cutting-edge video
representation method – dense trajectories was adopted. Three
types of descriptors, namely HoG, HoF and MBH, and their combi-
nation were tested for performance evaluation. The multi-class
SVM with non-linear RBF kernel was applied for training and clas-
sification. A new real world dataset were established for system
validation with totally 1176 video clips, covering 11 categories of
common worker actions. Several challenging situations, such as
view angle change, illumination change, interrupted workflow,
and interaction between multiple workers, are involved in the pro-
posed dataset. Experimental results showed that the system
achieved the best performance with average accuracy of 59% under
the configuration of MBH descriptor and codebook size 500, out-
performing Gong et al.’s method [43] by 24%. The system holds a
promising potential for future real world application.

However, several limitations exist and may be improved in the
future. From the algorithm aspect, recently convolutional neural
network (CNN) has exhibit good potentials in action recognition
[63,64], especially on super large scale dataset (with millions of
samples). Considering it will be difficult to achieve such a scale
in construction dataset, it is still unknown how CNN will perform
on construction scenario. A comparison on both accuracy and com-
putational cost is needed between CNN and feature based method.
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From the construction aspect, though we have established a
worker action dataset, a comprehensive taxonomy defining worker
activity lexicon and hierarchy [65] is still missing. Additionally,
each activity under the taxonomy should be modeled statistically
as temporally structured actions [22]. Only in this way can auto-
mated activity analysis in long videos be realized. Lastly, in this
paper, since dense sampling captures information not only from
workers but also from background scenario, we did not take tools
into account explicitly. However, it has been shown that combin-
ing tool detection can enhance action recognition [62]. In a very
recent study, Jain et al. [66] encoded 15,000 object categories for
actions without explicit detection and proved that adding object
encodings improved action classification and localization. We plan
to explore tool encodings with worker actions in the future.
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