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Evacuation planning contains more than a few decisions which have to be made in a very short period of
time and in the most appropriate way. Evacuation path optimization has vital importance in reducing the
human and social harm and saving the aid time. Significant research efforts have been made in the liter-
ature to deal with evacuation optimization on the basis of deterministic optimization model, neverthe-
less the stochastic aspects or uncertainty of real-world evacuation have not been taken into account
comprehensively. Inspired by the promising performance of heuristic algorithms to solve combinatorial
problems, this paper proposes an improved quantum ant colony algorithm (QACA) for exhaustive opti-
mization of the evacuation path that people can evacuate from hazardous areas to safe areas. In compar-
ison with ACO (ant colony optimization) based method, QACA has the capability of finding a good
solution faster using fewer individuals and possesses strong robustness, as a result of the quantum rep-
resentation and updating of pheromone. Experiment results show that the proposed approach executes
more effectively during evacuation.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Swarm intelligence (SI) is based on natural biome communities,
which has been used in various engineering applications due to its
desirable properties of being adaptive, scalable, and robust [1]. The
SI framework encompasses other popular frameworks such as Ant
Colony Optimization (ACO) [2], and Particle Swarm Optimization
(PSO) [3]. ACO is inspired from the foraging behavior of real world
ant colonies, where ants release chemicals, i.e., pheromone on the
route so as to mark the routes from the nest to food which would
be followed by other members of the colony [4]. As a simulation
evolution algorithm with typical swarm intelligence features,
ACO is used to solve some complicated NP hard combinatorial opti-
mization problems [5]. The ACO has experienced a tremendous
growth, and its diverse applications include traffic congestion con-
trol [6], data mining [7], job-shop scheduling [8], and manufactur-
ing [9].

Since evacuation methods have critical applications, scholars
have carried out extensive and in-depth researches, and various
approaches have been proposed and developed to deal with the
evacuation problem [10]. A crowd is expected to move from areas
impacted by accidents, terror attacks and other emergency events
to safe zones, in short time and in the most appropriate way. How-
ever, urban evacuation is a complex adaptive system, as a mass of
personnel interactions are involved [11]. Group belongingness,
self-organization, and other motion characteristics of how evac-
uees behave during evacuation have many things in common with
ant colony system. If affected by other ants in the colony, the ant
would gradually tend to move along the route passed by most of
the ants. Such herd behavior is in accordance with small group
phenomenon of evacuees. In ACO, individuals’ perception and
interaction with the environment is represented by positive feed-
back mechanism, which, together with communication mecha-
nism, are important foundations of the ACO algorithm. Therefore,
the ACO algorithm provides a suitable solution to evacuation path
optimization regardless of some limitations such as slow astrin-
gency, earlier stagnation.

The objective of this work is to design an evacuation path opti-
mization method with high efficiency and strong robustness. This
paper introduces the basic concepts and principles of quantum-
inspired evolutionary algorithm (QEA) [12] into ACO, and proposes
a quantum-inspired ACO algorithm for evacuation path optimiza-
tion, called quantum ant colony algorithm (QACA). A quantum
bit (Q-bit) is used to represent current pheromone information of
the ant, and the quantum rotation gate is adopted to update pher-
omone. Similar to the general evolutionary algorithms, the QACA is
characterized by the individuals, the evaluation function, and the
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population. However, instead of using binary or numeric represen-
tation, the QACA uses quantum bit to represent the population.
When measuring the population fitness, a binary solution (repre-
sented by binary bits) is made by observing the quantum states.
Although the basis of QACA is the concept and rules of quantum
computing, this approach is an evolutionary algorithm rather than
a quantum algorithm.

The rest of this paper is organized as follows. Section 2 provides
a literature review. Section 3 sheds light on the evacuation prob-
lem. Section 4 elucidates an approach for evacuation path opti-
mization based on QACA. Section 5 illustrates some experimental
results. Section 6 presents conclusions and discusses some poten-
tial further work.
2. Literature review

Path optimization plays a significant role in evacuation, and
affects the standard to measure whether an evacuation plan is fea-
sible. On the other hand, evacuation path planning is one kind of
path optimization and network flow problems. Therefore, this sec-
tion covers the literature review on path optimization in general
with some focus on applications to evacuation.

While there are various approaches proposed and developed in
the literature to deal with evacuations, most of them are based on
mathematical modeling, simulation, and soft computing.

Network flow models have been widely used in path optimiza-
tion. Typically, there are two kinds of networks, i.e., dynamic and
static. Dunn et al. [13] presented the maximum flow method for
evacuation route within the permitted scope of network capacity.
However, a network varies with time in real evacuation scenarios.
Cova et al. [14] took into consideration the conflicts within inter-
sections on a lane-based static network. In comparison with static
models, dynamic models have some superiority in reflecting the
time-varying characteristics. In [15], evacuation schemes, includ-
ing vehicle allocation plans and routing strategies, are determined
by an interval parameter fuzzy evacuation management model.
Due to the uncertainty and complexity of the environment in
emergency, such models have serious limitations in dealing with
the evacuation process based on individual behaviors.

A considerable number of evacuation solutions rely on simula-
tion models. Earlier simulation software tools include OREMS,
DYNEV, VISSIM, and CORSIM. Subsequently, agent-based
approaches have been proposed and developed [16,17]. Agents
are generated to simulate the behavior of individuals, and accord-
ingly a society system is built through interactive mechanisms
among multi-agents. Such approaches could combine organically
the microscopic behavior of individuals in a complex evacuation
system with the macroscopic features of the system. In [18], an
agent-based technique was used to model traffic flows at the level
of individual vehicles, further to explore the effectiveness of simul-
taneous and staged evacuation strategies under different road net-
work structures. Using an agent-based model, Lei et al. [19]
simulated the evacuation process in different cases to investigate
the effects of occupant density, exit width and automatic fare gates
on evacuation time. They concluded that there is a linear relation-
ship between occupant density and evacuation time. The human
congestion problem in evacuation is considered in [20], and a dis-
tributed guiding navigation protocol was presented to balance the
load of moving objects among multiple navigation paths to differ-
ent exits. Chen et al. [21] proposed a distributed path planning
algorithm for sensor network navigation in dynamic hazardous
environments, and they constructed a distributed in-network
directed navigation graph by using geographic or virtual coordi-
nates of sensors based on a partial reversal method for directed
acyclic graphs. Oxendine et al. [22] presented a network-based
methodology to provide additional analytic support to emergency
services personnel. In addition, a multi-objective, multi-criteria
approach was used to determine optimum evacuation routes by
using mobile phones. Ren et al. [23] combined the processes of
evacuation route planning and traffic signal designing into an inte-
grated model for evacuation, considering uncertain background
demands.

Soft computing based intelligent algorithms provide new
insights to deal with the evacuation problem. Common intelligent
algorithms for evacuation path optimization include neural net-
work algorithms [24], genetic algorithms [25], and swarm intelli-
gence algorithms [26]. Introduced by Marco Dorigo in his Ph.D.
thesis (1992), ACO is one of the most representative swarm intel-
ligence algorithms, acting as an important nature-inspired stochas-
tic metaheuristic for hard optimization problems [27]. Forcael et al.
[28] developed an ACO algorithm to optimize the evacuation times
during tsunamis, further to ensure safe routes. Rahman et al. [29]
modified the ACO algorithm by creating exit sign, an agent, to
determine the feasible route and guide occupants during the evac-
uation. They also considered physical obstacles during building
evacuation in transitional probability rule of ACO. Zong et al.
[30,31] presented a multi-objective ant colony optimization model
to solve massive evacuation problems under complex traffic condi-
tions, and a multi-ant colony system was developed to tackle
mixed traffic evacuation problems. An improved ACO-based evac-
uation system was proposed in [32], which uses deodorant phero-
mone as a new guidance mechanism to erase ACO pheromone
traces when dangerous locations are found.

Based on the existing literature, this paper proposes an
improved ACO approach called quantum ant colony algorithm
(QACA) to cover the exhaustive optimization of the evacuation
path that people can evacuate from hazardous areas to safe areas.
In order to construct an evacuation optimization method with bet-
ter performance, QACA integrates the properties of ACO and
quantum-inspired evolutionary algorithm (QEA) [33,34].
3. Description of the evacuation problem

This section introduces an intelligible way to build an evacua-
tion network in order to simulate real-world situations. The evac-
uation problem will be represented as a network flow problem
with certain constraints. Based on nodes and arc segments of graph
theory, a graph, i.e., GðN;AÞ needs to be defined with sources and
sinks to emulate the flow of evacuees. Inside the buildings, nodes
are used to describe rooms, corridors, stairs and halls, arc segments
represent the links between the nodes. And likewise, every acces-
sible area, in the outdoors, such as roads, squares, lawns, pave-
ments are represented as nodes, and every link between two
neighbor nodes denotes an arc segment.

Thus, a directed digraph GðN;AÞ is used to represent a network
of the evacuation area, where N denotes the set of nodes, and A is
the set of links between two nodes. Several nodes are chosen to
construct the set of origination nodes, O, while another part of
them forms the set of destination nodes, D, and the others are
intermediate nodes. Fig. 1 illustrates an evacuation network topol-
ogy with 18 nodes and 32 links.

The objective of evacuation planning is to find a solution which
minimizes the total time that all evacuees finish moving from dan-
gerous zones to safe places. Consequently, time is the most signif-
icant factor that should be considered in the evacuation process. In
this paper, the objectives are to minimize the total evacuation time
of all evacuees and to balance the load of the whole evacuation
network.

Following are definitions of some variables and parameters:
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Fig. 1. The evacuation network topology.
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T – a variable that shows the current moment of evacuation.
i – index of network nodes.
M – number of evacuees.
lij – length of the link between nodes i and j.
tkij – time transferring through link ij of evacuee k.
pathk – evacuation path of evacuee k.
densityij – density of evacuees on link ij.

sk0 – the initial node of evacuee k.
vk

ijðTÞ – the speed of evacuee k on link ij.
v ijð0Þ – evacuation speed on link ij under normal conditions.
NijðTÞ – number of evacuees on link ij.
Cij – maximum capacity of link ij.

The optimization problem can be described as:

min f 1 ¼
XM
k¼1

Xj¼pathk
i¼sk

0

tkij ð1Þ

min f 2 ¼
XM
k¼1

Xj¼pathk
i¼sk0

densityij ð2Þ

densityij ¼
NijðTÞ
lij

ð3Þ

vk
ijðTÞ ¼ v ijð0Þe�w�densityij �T ð4Þ

Z tk
ij

0
vk

ijðTÞdT ¼ lij ð5Þ

Subject to:

NijðTÞ
Cij � T 6 1 ð6Þ

The objective (1) is to minimize total evacuation time, and the
objective (2) is to minimize total density of all paths. Eq. (3) is
the formula of density along an arc segment. Eq. (4) is the function
of the evacuation speed of evacuee k on link ij, where the value of
speed decreases gradually according to the density of link ij, and w
is a parameter which controls the decreasing rate. Eq. (5) describes
the relation between vk

ijðTÞ and lij. Constraint (6) ensures that the
total number of evacuees at link ij at time T will not exceed the
maximum capacity of link ij.

Actually, both the weighted method and the reference point
method are effective in contributing to Pareto optimal solutions
of multi-objective nonlinear optimization problems. In this paper,
the weighted ideal point method [38] is used to deal with the
multi-objective problem. The Pareto optimal solution can be
obtained by solving the single objective optimization problem
below

min F; s:t:ð3Þ—ð6Þ

F ¼ c1
f 1 � fmin

1

fmin
1

 !2

þ c2
f 2 � fmin

2

fmin
2

 !2 ð7Þ

where the vector fmin ¼ ðfmin
1 ; fmin

2 Þ is the ideal point, (c1, c2) is a pair
of weight factors, and c1 þ c2 ¼ 1, c1 > 0; c2 > 0, for instance
(0.7,0.3).

4. Optimization method for evacuation path

4.1. ACO algorithm based path planning

In ACO algorithms, the computational resources are assigned to
a group of artificial ants (agents) that explore and construct solu-
tions to the considered problem. The process of construction is a
consequence of the ants’ collaboration. Every ant makes decision
on the next movement of its construction path according to the
state transition rule [2], which will be introduced in the following.

In each node i, the ant moves to the node j in line with a
random-proportional rule shown in (8).

Pk
ij ¼

sl
ij
ðtÞgv

ij
ðtÞP

sl
ij
ðtÞgv

ij
ðtÞ ; j 2 U

0; otherwise

8<
: ð8Þ

where U is a set of nodes that have not been visited before; sijðtÞ
represents the pheromone remained in the link between the nodes
i and j; gij represents the heuristic information which is defined as
1=dij; dij is the length of the link between the nodes i and j. The
weight of pheromone and heuristic information are denoted by
parameter l and m, respectively, which influence the tendency
towards new route against detected route. And t represents
iterations.

The pheromone updates in every search cycle, and the updating
rules are introduced in Eqs. (9) and (10),

sijðt þ 1Þ  qsijðtÞ þ Dsij ð9Þ
where q is the pheromone decay parameter, 0 < q < 1; Dsij repre-
sents the amount of pheromone left on the link ij, Dsij ¼

P
Dskij,

Dskij ¼
C=Fk; k passed link ij

0; otherwise

�
ð10Þ

where Dskij represents the pheromone that the ant k left on the link
ij; C is a constant.

The main steps of ACO algorithm for path planning are shown in
Fig. 2.

4.2. QACA algorithm based path optimization

4.2.1. Basic concepts and techniques
This subsection introduces some basic concepts and techniques

of QEA in details, such as the quantum bit, and the quantum rota-
tion gate, which are the basis of the proposed algorithm.

In the classical QEA [12], the smallest information unit is Q-bit,
which is constructed by two Eigen state 0j i and 1j i, or an arbitrary
superposition state of them, i.e., uij i ¼ ai 0j i þ bi 1j i, i ¼ 1;2; . . .n. a
and b are a pair of complex numbers that specify the probability
amplitudes of state 0j i and state 1j i. The probabilities of Q-bit in

state 0j i and 1j i are respectively defined as jaj2 and jbj2 with

jaj2 þ jbj2 ¼ 1.
A population with m individuals is defined as

Q ¼ ðq1; q2; . . . ; qj; . . . ; qmÞ, and



Fig. 2. The ACO based algorithm for evacuation path planning.
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qj ¼
a1

b1

����a2

b2

���� � � � an

bn

����
� �

ð11Þ

where n is the number of Q-bits, and jaij2 þ jbij2 ¼ 1, i ¼ 1;2; . . . n.
Such individual with n Q-bits can express 2n states, for instance,

a quantum individual with three Q-bits

1ffiffi
2
p

1ffiffi
2
p

�����
1ffiffi
2
p

�1ffiffi
2
p

�����
1
2 ffiffi
3
p
2

 !
ð12Þ

can be represented as

1
4
j000i þ

ffiffiffi
3
p

4
j001i � 1

4
j010i �

ffiffiffi
3
p

4
j011i þ 1

4
j100i

þ
ffiffiffi
3
p

4
j101i � 1

4
j110i �

ffiffiffi
3
p

4
j111i: ð13Þ

It means that the probabilities of the states j000i, j001i, j010i, j011i,
j100i, j101i, j110i and j111i are 1/16, 3/16, 1/16, 3/16, 1/16, 3/16,
1/16, and 3/16, respectively [35].

In order to evaluate the performance and fitness of each indi-
vidual, it is necessary to represent the corresponding solutions in
the conventional form. A conventional binary solution can be
obtained through observing the Q-bits. For instance, assuming that
xi(i = 1, 2, . . . , n) represents a bit of the binary individual x, a ran-
dom number w is generated between [0,1] and compared with ai

of the Q-bit individual, if jaij2 > w, then set xi = ‘‘0”, otherwise set
xi = ‘‘1”.

Accordingly, a probable solution P can be obtained through
measurement of Matrix Q. Given that P ¼ ðp1; p2; . . . ; pj; . . . ; pmÞ,
pjðj ¼ 1;2; . . . ;mÞ is a binary individual with length of n. Every ele-
ment in pj (for example, pji) is determined by comparing aji of qj

with w, 0 < w < 1.
The quantum rotation gate is significantly important for the

convergence of Q-bit individual to an ideal state. Therefore, the
rule of rotation is used to update the Q-bit individual in this paper.
The process is introduced in detail in the following Eqs. (14)–(16).

Given that aji; bji

� �T , i.e., the ith bit of the jth individual qj of

solution Q, evolves to a0ji; b
0
ji

h iT
:

a0ji
b0ji

" #
¼ G

aji

bji

" #
ð14Þ

G ¼ cos hji � sin hji
sin hji cos hji

	 

ð15Þ

the rotation angle is generally defined as:

hji ¼ Dhji � sðaji;bjiÞ ð16Þ
where G represents the quantum rotation gate, sðaji;bjiÞ represents
the sign of hji that controls the direction, and Dhji signifies the mag-
nitude of rotation angle.

Fig. 3 depicts the polar plot of the rotation gate for Q-bit indi-
vidual. The parameters used to calculate the rotation angle are
shown in Table 1, which lists all possible solutions. f ð�Þ represents
the fitness function; xji represents the ith bit of the jth individual of
current solution; and bi represents the ith bit of the best solution b.

4.2.2. QACA based path planning
In this subsection, an improved quantum ant colony algorithm

for evacuation path optimization is elaborated.
As an evolutionary algorithm, QACA is a convergence of ACO

and QEA, where the pheromone is represented with Q-bit. The evo-
lution of QACA is an adaptive iterative optimization process, since
the movement of Q-bit individual applies the random-proportional
rule (see (8)) which is in accordance with ACO. In addition, the
quantum gate operation ensures that the individual approaches
gradually to the searched optimum location.

The computation method of the rotation angle of QACA, i.e., hi,
differs from that of QEA, and the main difference is caused by Dh,
which is a variable related to iteration times. It determines the



Table 1
Look-up table of rotation angle of QEA [36].

xji bi f ðxÞ > f ðbÞ Dhji sðaji; bjiÞ
ajibji > 0 ajibji < 0 aji ¼ 0 bji ¼ 0

0 0 False 0 0 0 0 0
0 0 True 0 0 0 0 0
0 1 False 0 0 0 0 0
0 1 True 0.05p +1 �1 0 �1
1 0 False 0.01p +1 �1 0 �1
1 0 True 0.025p �1 +1 �1 0
1 1 False 0.005p �1 +1 �1 0
1 1 True 0.025p �1 +1 �1 0

Notes: f ð�Þ represents the fitness function, sðaji;bjiÞ represents the sign of hji , xji
represents the ith bit of the jth individual of current solution, and bi represents the
ith bit of the best solution b.

construct P(t) by observing the states of Q(t)

complete the building of path by using
 the transition rules

implement the mutation operation

evaluate P(t) and store the best solution in B(t) 

End

initialize to obtain Q(t)

update Q(t) with the quantum rotation gate

maxt t<

Y

N

Fig. 4. The flowchart of QACA based optimization method.

M. Liu et al. / Advanced Engineering Informatics 30 (2016) 259–267 263
value of rotation angle, convergence rate and performance. The
usual computation method of Dh is to construct a query table
(for example, Table 1), while the definition of Dh adopted in this
paper is a dynamic adjustment strategy [37].

Dh ¼ 0:5 � p � expð�t=tmaxÞ ð17Þ
where p is the circumferential ratio; t represents the current itera-
tions; tmax represents the upper limit of iterations.

Assuming that if sðai; biÞ > 0, the rotation gate rotates anticlock-
wise; if sðai; biÞ < 0, the rotation gate rotates clockwise. Given
Q ¼ ðq1; q2; . . . ; qj; . . . qmÞ, and the population size is m. The updat-
ing process of quantum rotation gate is shown as:

qtþ1
j ¼ GðtÞ � qt

j ð18Þ
where t represents the iterations; GðtÞ represents the rotation gate
of the tth iteration (see (14) and (15)); qt

j is the jth individual’s prob-

ability amplitude of the tth iteration; qtþ1
j is the jth individual’s

probability amplitude of the t þ 1ð Þth iteration.
The mutation operation can be performed to avoid premature

convergence and increase diversity of population. First, choose sev-
eral ants, and then the quantum non-gate is realized to some Q-bits
of the selected individuals with a certain probability [39] (usually
[0.01,0.05]). Since a Q-bit is represented by the vector ai; bi½ �T , we

can also use the cosu; sinu½ �T to express the Q-bit. The mutation
process can be described as follows:

0 1
1 0

	 

cosu
sinu

	 

¼ sinu

cosu

	 

ð19Þ

where u is mutated to p/2 � u, namely the phase of Q-bit
transformed.

The flowchart of QACA based path optimization approach is
shown in Fig. 4. The main steps are discussed below.

Step 1: Initialize Q(t), whose population size is m, i.e.,
QðtÞ ¼ ðqt

1; q
t
2; . . . ; q

t
mÞ.

qt
j ðj ¼ 1;2; . . . ;mÞ is the jth individual of the tth itera-

tion, and it is given by
� � � !

qt
j ¼

at
j1

bt
j1

����
at
j2

bt
j2

���� � � �
at
jn

bt
jn

���� ð20Þ
where the amount of Q-bits is n, initialize

ai; biði ¼ 1;2; . . . ;nÞ with 1
ffiffiffi
2
p.

at the beginning. The

initial value of iterations is set as t ¼ 0, and the max-
imum value of iterations is defined as tmax.

Step 2: Construct P(t) by observing the states of Q(t).
Given that PðtÞ ¼ ðpt

1; p
t
2; . . . ; p

t
j ; . . . ; p

t
mÞ, pt

j ðj ¼ 1;
2; . . . ;mÞ is a binary individual with length of n. Every
element in pt
j (for example, pt

ji) is determined by com-
paring at

ji of q
t
j with w, 0 < w < 1.

Step 3: Build path. Put m individuals into one of the source
nodes randomly. Construct path by using the state tran-
sition rules shown in Eqs. (8)–(10) repeatedly.

Step 4: Mutation operation. Select some individuals (10% of the
population size), and realize the operation according to
Eq. (19).

Step 5: Evaluate P(t). Eq. (7) is the evaluation function. Store the
best solution among P(t) into B(t).

Step 6: Update Q(t) according to the quantum rotation rules
described in Eq. (18). Set t = t + 1.

Step 7: Return to Step 3 till the current iterations exceed maxi-
mum number of iterations.
5. Case studies and experiment results

This section is organized into two subsections, both related to
the use of QACA to validate its effectiveness and efficiency. The first
subsection focuses on comparison of algorithm performances
between classic QEA and QACA with three benchmark functions
adopted. The second subsection deals with evacuation optimiza-
tion and makes a comparison of ACO based and QACA based solu-
tions. All the case studies were run on an Intel Core i3 PC of
3.10 GHz and 4 GB RAM.



Table 2
Experiment results of QEA vs. QACA.

Function Optimal value QEA QACA

Rate T Av Rate T Av

F1 0 1 40 0 1 51 0
F2 0 0.37 423 0.0077 0.98 513 1.15E�6
F3 1 1 61 1 1 25 1

(a) The initial evacuation network.                     

Fig. 5. The evacuation network w

(a) The initial evacuation network. 

Fig. 6. The evacuation network w

(a) The initial evacuation network. 

Fig. 7. The evacuation network w
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5.1. Numerical experiment

For a comparison, performance indicators [35] including the
success rate of finding optimal value (rate), the average iterations
to find optimal value (T) and the average optimal value (Av), are
introduced to evaluate the optimization ability of the improved
                                           (b) The diagram of optimum path. 

ith n = 50, m = 10, tmax = 300.

(b) The diagram of optimum path.  

ith n = 50, m = 20, tmax = 300.

(b) The diagram of optimum path .

ith n = 50, m = 30, tmax = 300.



(a) The initial evacuation network. (b) The diagram of optimum path.

Fig. 8. The evacuation network with n = 50, m = 40, tmax = 300.

Table 3
Comparison between ACO and QACA by evacuation case when n = 50 and m = 10.

tmax

50 100 150 200 300 400

lopt (m) ACO 2557 2609 2834 1952 2613 2435
QACA 2611 2589 2950 1897 1970 1971

Et (s) ACO 40,546 56,383 53,073 50,469 49,196 54,416
QACA 42,814 40,356 47,828 35,209 41,948 42,798

Fig. 9. Tendency chart of Et with n = 50 and m = 10.

Table 4
Comparison between ACO and QACA by evacuation case when n = 50 and m = 20.

tmax

50 100 150 200 300 400

lopt (m) ACO 2188 3982 1881 2177 2429 1948
QACA 2355 3269 2025 2377 2275 1901

Et (s) ACO 120,654 132,934 77,393 83,454 118,942 94,805
QACA 122,830 114,424 72,239 80,812 106,687 81,872
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QACA, and the benchmark functions used in this experiment are
listed as follows:

F1 ¼ x21 þ x22
� �0:25

sin2ð50 x21 þ x22
� �0:1Þ þ 1:0

h i
; �100 < xi < 100

ð21Þ

F2 ¼ �13þ x1 þ ðð5� x2Þ � x2 � 2Þ � x2½ �2

þ �29þ x1 þ ððx2 þ 1Þ � x2 � 14Þ � x22
� �2

; �10 6 xi 6 10 ð22Þ

F3 ¼ 0:5�
sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
� 0:5

1þ 0:001ðx21 þ x22Þ
� �4 ; �100 < xi < 100 ð23Þ

where F3 has the global maximum, others have the global
minimum.

In this experiment, the population size was 20, and the length of
the Q-bit was 30 bits. The experiment was repeated for 100 runs,
and the fixed maximum generation was 1000.

Table 2 describes the experiment results. It can be noted from
Table 2 that QEA performed slightly better than QACA in terms
of average iterations for F1. As to F2, in spite of 90 iterations greater
than QEA, QACA performance better in respect of success rate,
which is more than twice as much as that of QEA. Furthermore,
the average optimal value of QACA is correct to six decimal places,
which is two decimal places better than Av of QEA. For F3, QACA is
obviously superior to the classic QEA in respect of time efficiency.
In general, the QACA has a better accuracy, while the advantage of
QACA is not so evident in dealing with simple optimization
problems.

5.2. Case studies

In this subsection, a random network typology is generated to
represent the evacuation network, and MATLAB 2012b is used as
the simulation platform.

Each individual is taken as an evacuee in this case. Figs. 5–8
describe different evacuation situations with various conditions,
such as the size of populationm and the maximum number of iter-
ations. Fig. 5(a) shows an instance of such a network with 50
nodes, and the area of evacuation zone is 1 square kilometer. Each
link of two accessible neighbor nodes is connected by a straight
dotted line. Assume that both the set of source nodes and the set
of destination nodes contain one element, and the movement
speed of each evacuee is a constant, i.e., 2 m/s. Thus, the evacuation
problem in this task is to evacuate people in Node 1 to Node 50.

Due to the randomness of the generated network, the initial
evacuation networks have dissimilar typologies. Correspondingly,
the evacuation path varies with the typology, as illustrated in
Figs. 5–8. The red solid line signifies the optimum path sought
out by QACA based solution, while the blue dotted line with plus
sign represents the optimum path searched out by ACO based
solution.

Two indicators, i.e., lopt and Et, were chosen to compare ACO
based and QACA based solutions with different values of tmax. lopt
denotes the length of the optimum path, as a non-global



Table 5
Comparison between ACO and QACA by evacuation case when n = 50 and m = 30.

tmax

50 100 150 200 300 400

lopt (m) ACO 2935 2421 2354 2239 2099 2170
QACA 2684 2402 2217 2049 2020 2018

Et (s) ACO 144,131 187,351 159,894 149,427 111,605 147,879
QACA 142,765 173,114 149,627 136,569 105,321 130,366

Table 6
Comparison between ACO and QACA by evacuation case when n = 50 and m = 40.

tmax

50 100 150 200 300 400

lopt (m) ACO 2430 1918 2276 2301 2234 2544
QACA 2214 1928 2151 2130 2118 2281

Et (s) ACO 179,373 207,967 137,620 194,824 161,437 233,948
QACA 174,920 185,890 119,626 185,218 146,601 220,569
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measurable indicator, reflects the local performance of solution to
some extent. Et represents the total evacuation time of all individ-
uals to find the optimum path during the iteration. Therefore, the
smaller the value of Et is, the better the effectiveness and efficiency
of solution is.

Table 3 shows the results of lopt and Et under six scenarios that
tmax values 50, 100, 150, 200, 300 and 400 respectively. It can be
seen from Table 3 that QACA based solution shows a little advan-
tage on condition that the number of iterations is small, especially
when tmax ¼ 50, the value of Et acquired by ACO based solution is
smaller than that of QACA based solution. As tmax increases, the
superiority of the proposed solution comes to be more obvious.

The tendency of Et with different iterations when n = 50 and
m = 10 is displayed in Fig. 9. The x-axis denotes the maximum
number of iterations, i.e., tmax, while the y-axis represents the total
evacuation time, i.e., Et. We can see from Fig. 9 that the value of
total evacuation time for QACA based solution is generally less
than the same value for ACO based solution except when the value
of tmax is 50. The line of QACA starts to maintain level when tmax

values 300.
Tables 4–6 list the results of lopt and Et when the size of popu-

lation m is 20, 30 and 40 respectively. Overall, the performance
of QACA based solution is better than that of ACO based solution.
The difference is small when the number of iterations is small.
But as the number increases, the growing superiority of the pro-
posed solution in time efficiency reveals gradually. Since the net-
work topology is not fixed, the value of optimum evacuation
time has a slight fluctuation.
6. Conclusion

Evacuation planning covers more than a few decisions which
have to be made in a very short time and in the most appropriate
way. This paper proposes a QACA based evacuation optimization
approach. Basic concepts and principles of QEA are introduced into
ACO based optimization method, therefore, it is expected to avoid
slow convergence and improve efficiency. Simulation results by
comparing ACO based and QACA based solutions show that QACA
is efficient in solving this problem, and the advantage of QACA
based solution tends to expand as the number of iterations
increases. Besides, it should be noticed that the research focus is
not confined to a single path between two locations (origin–desti-
nation), and the proposed method is suitable for multiple source
nodes to multiple destination nodes.
In our future work, improvements are possible in multiple
aspects. Relevant context variables affecting the evacuation pro-
cess should be taken into account. Factors like network dynamics
and human behaviors have significant effects on evacuation opti-
mization and should be considered. Furthermore, the advance-
ments of mobile communication networks and wireless sensor
networks make it much easier to obtain real data of evacuation
zones and evacuees instantly. These technologies also promote
some other future research directions.
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